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Abstract: In this study, we investigated participants’ reactions to supportive and anomalous data in
the context of population dynamics. Based on previous findings on conceptions about ecosystems
and responses to anomalous data, we assumed a tendency to confirm the initial prediction after
dealing with contradicting data. Our aim was to integrate a product-based analysis, operationalized
as prediction group changes with process-based analyses of individual data-based scientific reasoning
processes to gain a deeper insight into the ongoing cognitive processes. Based on a theoretical frame-
work describing a data-based scientific reasoning process, we developed an instrument assessing
initial and subsequent predictions, confidence change toward these predictions, and the subprocesses
data appraisal, data explanation, and data interpretation. We analyzed the data of twenty pre-service
biology teachers applying a mixed-methods approach. Our results show that participants tend to
maintain their initial prediction fully or change to predictions associated with a mix of different
ff,‘,eﬁtf;’s' conceptions. Maintenance was observed even if most participants were able to use sophisticated

conceptual knowledge during their processes of data-based scientific reasoning. Furthermore, our
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or contradicting data [8], are a driving force for engaging in scientific reasoning. Rea-
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on the reaction (e.g., change of initial theory) analyze responses to anomalous data from
a product-based view. In contrast, studies that analyze the reasoning process leading to
these reactions are considered to apply a process-based view (e.g., [10,11]).

Studies that investigated responses to anomalous data from a process-based view
mostly used data that were self-generated by the participants in laboratory settings [10,12].
However, reasoning processes with first-hand or second-hand data differ regarding used
entities of conceptual and procedural knowledge [13].

The aim of this paper is to provide an integrational perspective from a product-based
and a process-based analysis of reasoning processes with second-hand anomalous and
supportive data. Therefore, reasoning processes are described by applying a general model
of information processing [14] resulting in the model of data-based scientific reasoning.

The results might help to gain a deeper insight into processes that occur when reason-
ing with anomalous and supportive data as well as the relation to the use of conceptual,
procedural, and epistemic knowledge. Further research might tie in these findings, leading
to instructional recommendations for data-based scientific reasoning when used in teaching
and learning.

2. Theoretical Background
2.1. Data-Based Scientific Reasoning

Chinn and Brewer [15] highlight the initiating effects of anomalous data for the devel-
opment of scientific knowledge by reviewing historical examples in which anomalous data
played a crucial role in the investigations of scientists leading to discussions that initiated
a critical reflection on initial interpretations and theories. “Anomalous evidence are data
which would not be predicted by, and are inconsistent with, a person’s mental model” [8],
hence they can be described as initiators of cognitive conflicts that induce conceptual devel-
opment and reasoning processes [16]. However, previous studies on anomalous data show
that data contradicting initial expectations are discounted in different ways [8,15,17,18].
Such responses to anomalous data rely on a variety of justifications [8,9] based on different
aspects of conceptual, procedural, or epistemic knowledge [3]. Furthermore, evidence
exists that shows the importance of the perception and recognition of the anomalous data
for subsequent reasoning processes [10,13,19]. More recently, a study on anomalous data
provided evidence that the degree of anomaly relates to the likelihood of theory change [20].
In this study, the researchers could show that an increase of shown anomalous data in-
creases the recognition of the anomaly and subsequently decreases participants’ confidence
in the initial theory. This change in confidence was furthermore connected to a tendency to
change their initial theory based on the new information provided by the anomalous data
presented [20].

Responses to anomalous data are often conceptualized as part of interpretational
processes during data-based scientific reasoning [21]. Previous studies show a tendency for
a product-based view on responses to anomalous data and a concentration on a rather meta-
level appraisal of this kind of data, asking for the believability and relevance [8,22] instead
of asking for the coordination between anomalous data and initial knowledge. However,
knowledge about the processes involved in different situations of scientific reasoning
can lead to deeper insights into the structure of reasoning processes and enhances the
knowledge about scientific reasoning [3,11].

From a process-based view, reasoning initiated by anomalous data can be described
based on a general model of information processing [14], emphasizing the roles of data per-
ception, data selection, data appraisal, data explanation, and data interpretation regarding
initial knowledge (Figure 1).
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Figure 1. Theoretical model of data-based scientific reasoning (based on [8,14,19,21,23-26]).

In this process model of data-based scientific reasoning, anomalous data function as
sensory stimuli that, at first, have to be perceived [10,12,19,23] before they are selected and
appraised in early reasoning processes which focus on the perception of data characteris-
tics [24,25]. Subsequently, data are interpreted within and integrated into initial knowledge
entities during interpretational reasoning processes [24,27]. Interpretational processes can
be distinguished into data explanation and data interpretation. Data explanation focusses
on the sense-making of the data by offering alternative causes, whereas the interpretation
of the data includes the coordination of the data, the alternative explanations, and the
initial hypothesis to make a claim that is justified [28]. All of these sub-processes are
influenced consciously or unconsciously by initially held entities of conceptual, procedural,
and epistemic knowledge [3].

Research on information processing shows that a strong tendency to confirm prior
conceptions can influence each step in the information processing process [29]. Therefore,
we assume that responses to anomalous data, representing a specific type of scientific
information, differ qualitatively in relation to the phase of information processing. Such
strategies of confirmation can occur during several processes during data-based scientific
reasoning, for example: perceptually ignoring contradicting data in the process of data
perception, searching for flaws in contradicting data or information in the process of data
appraisal, being more willing to advance vague, nonspecific causes, or finding alternative
causes in the process of data explanation [18,24]. Therefore, a detailed look at the responses
to anomalous data in relation to the phases of information processing provides a deeper
understanding behind the cognitive processes during data-based reasoning.

2.2. Changes of Conceptual Development with Data in the Context of Population Dynamics

The acquisition of knowledge in the context of ecology is influenced by initial concep-
tions that are often not in line with current scientific theories [30], such as the assumption
that ecosystems have a specific equilibrium state given by nature [31]. Most of these
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not scientifically adequate conceptions derive from the use of the so-called Balance of
Nature (BoN) metaphor [32]. Within this metaphor, ecosystems are defined as being sta-
ble, homogenous entities that regenerate to an ideal equilibrium state after disturbances.
Human interactions with ecosystems are mostly seen as destructive leading to instability.
According to BoN, organisms in ecosystems behave harmonically and control each other
in a balanced way [32]. Conceptions on ecosystem and population dynamics that are
related to BoN are prominently used in media like news, the Internet [31], and school-
books [33]. Therefore, it is not surprising that BoN conceptions are stable against teaching
interventions [34]. The aim of teaching inventions is to initiate conceptual development by
offering alternative scientifically adequate conceptions that would fit into a Flux of Nature
(FoN) metaphor [31,32] and support the preference of using FoN conceptions over the BoN
conception during scientific reasoning [35].

Using the example of population dynamics, the advantages, and difficulties for data-
based scientific reasoning initiated by anomalous data can be shown. The development of a
population in size and composition over time is a typical topic discussed in school biology
and university level ecology courses [36]. However, entities of conceptual knowledge
emerge from teaching interventions, but are influenced by initially held conceptions about
the topic [37]. Furthermore, population dynamics are often represented by using data
depicted as line graphs [38] to show, for example, the development of the population size
of a species over time. Additionally, the presentation of empirical data sets is more likely to
induce theory change [39]; hence, presenting anomalous data in the context of population
dynamics in their typical representation as line graphs might give interesting insights for
research on data-based scientific reasoning. Thus, scientific reasoning processes in this
context require the use of procedural knowledge regarding handling data (e.g., knowing
procedures of data generation, identifying patterns in data sets [25,26]) and interpreting
graphs (diagram competence [40]). Connected to procedural knowledge, knowledge on
the limits of interpreting the data are necessary for scientific reasoning, which is part of
epistemic knowledge. In the case of population dynamics, represented line graphs are
often connected to the use of the Lotka—Volterra equations modeling the development of
populations in a prey—predator relationship hypothetically [32,41]. Therefore, epistemic
knowledge associated with meta-modeling knowledge is also required during scientific
reasoning in the context of population dynamics [42].

2.3. Aim and Research Questions

The aim of the following study is the identification and empirical description of
reactions to anomalous and supportive data and their relation to individual processes
of data-based scientific reasoning in the field of ecology. Therefore, we focused on the
following research questions.

1. How does anomalous data affect the change of initial predictions regarding the
scientific phenomenon of population dynamics?

2. How are changes of initial predictions about population dynamics related to a change
in confidence towards the initial predictions?

3. How are reactions regarding initial predictions about population dynamics related to
presented proportions of anomalous to supportive data?

4. How are reactions regarding initial predictions about population dynamics related to
individual processes of data-based scientific reasoning?

3. Materials and Methods

The study is based on a mixed-methods design encompassing assessment instruments
that allow the application of quantitative and qualitative analysis methods [43]. A tradi-
tional paper-and-pencil format was combined with the use of eye-tracking techniques [44].
Participants were invited to participate in the study that was conducted in a laboratory
setting in the university.
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3.1. Participants

In the study, twenty pre-service biology teachers (mean age = 26.25 years; SD = 5.44 years)
ranging from attending first-year bachelor courses (1pachelor = 11) to attending master
courses (Myaster = 9) participated voluntarily. The range of invited participants was chosen
to enhance the variety of assessable responses to anomalous data during the process of
data-based scientific reasoning due to their assumed differences in expertise regarding
ecology and scientific reasoning [45].

3.2. Instrument

We developed a paper-and-pencil instrument in the context of population dynamics
containing a set of tasks for assessing individual initial expectations and subsequently
responding to anomalous and supportive data (Table 1). To interpret the answers given in
the instrument, regarding responses to anomalous data, individual initial expectations on
population dynamics were assessed by a prediction task in which participants graphed
predicted outcomes of population development over a period of ten years and explained
their prediction in an open-ended writing task. The prediction task was combined with a
confidence rating scale for all scenarios prior to the remaining set of tasks (Table 1). Each of
the following tasks is aiming to operationalize one of the sub-processes of the process model
of data-based scientific reasoning (Figure 1). Perceptual processes of data-based scientific
reasoning were operationalized in the paper-pencil instrument by the data selection task,
which was combined with the assessment of eye-tracking data for validation purposes [44].
Interpretational processes were assessed by the data appraisal task, data explanation task,
and data interpretation task (Table 1). Changes in the confidence regarding the initial
predictions were assessed by a second confidence rating scale [20]).

Table 1. Overview of the used tasks and their corresponding sub-processes of the model of data-based scientific reasoning.

Sub-Process/Task Task Content Format of Data Assessment
Making predictions about Open-ended graphing task combined with
Prediction population development open-ended writing task for explanation
Rating scale: percentage scale from 0%
Rating the confidence in the made predictions (totally unconfident) to 100%
(totally confident)

Data visual perception
(perceptual)
Data selection
(perceptual)

Data appraisal
(perceptual/interpretational)

Data explanation
(interpretational)
Data interpretation
(interpretational)

Looking on the presented data sets without a

further instruction. Eye tracking experiment

Selecting data sets Multiple-choice task

Rating scales from 1
Rating credibility, relevance, and fit of each data set (credible/relevant/fitting) to 5
(non-credible/irrelevant/not fitting)

Explaining each data set Open-ended writing task

Interpreting data sets regarding initial conceptions Open-ended writing task
Rating scale: percentage scale from 0%
(totally unconfident) to 100%
(totally confident)

Rating the confidence in the made
predictions retrospectively

The contexts of the three scenarios were closely comparable with all introducing
a population of an herbivorous mammal species (elk, deer, and goat) in a terrestrial
ecosystem and a typical predator species. The scenarios varied regarding the proportion
of anomalous and supportive data shown to induce the data-based scientific reasoning
process. Anomalous and supportive data were operationalized as data sets represented as
line graphs. Each of the line graphs was pre-defined to show either a population dynamic
associated with typical BoN expectations (stable, slightly fluctuating population number)
or typical FoN expectations (chaotic fluctuating population number, extinction; [41]). In
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induce the scientific reasoning process (Figure 2).
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Figure 2. Example stimulus showing the six line graphs that represent different outcomes for the population development
of a specific species in a defined ecosystem. Three line graphs are pre-defined as BoN-associated (B,D,F) and three line
graphs are pre-defined as FoN-associated (A,C,E).

The degree of anomaly was varied by changing the ratio between FoN and BoN associ-
ated graphs from 2:4; 3:3 to 4:2 within the three scenarios [20]. Each scenario was assigned
to a specific ratio between FoN and BoN-associated graphs (deer = 3 FON:3 BoN: goat = 2
FoN:4BoN: elk = 4 FoN:2 BoN). The sequencing of the three scenarios was randomized
between the participants to avoid sequencing effects. Hence, participants responded to the
set of tasks three times while processing the three scenarios in different orders.

3.3. Analyses

In this study, responses to anomalous data were analyzed from a product-based and
a process-based view (e.g., [10,11]). The product-based view focuses on the change of
initial predictions made by the participants after reasoning with anomalous data. There-
fore, the analysis is grounded strongly in the nature of the three predictions made by the
participants as part of the instrument. Therefore, we coded the type of graphed prediction
and associated written explanation following a qualitative content analysis approach [46].
We developed a category system that includes deductively generated categories from the
main theoretical frameworks addressing conceptual, procedural, and epistemic knowl-
edge entities that might be used when reasoning with anomalous data in the context of
population dynamics [3,24-26,41]. After piloting the category system, descriptions were
refined and inductively generated categories included, resulting in a final category system
with 26 codes for coding the answers of all tasks included in the instrument (Table A1).
The first author coded all answers from the participants. To check for the objectivity of
the category system, a second coder who was no expert in this field of research re-coded
20% of the material, resulting in an intercoder agreement of k = 0.73, indicating a good
objectivity. However, disagreements were subsequently discussed and coding descriptions
in the coding manual adjusted. To group the given answers of the prediction task into pre-
diction groups, we used an epistemic network analysis (ENA [47]), using an open-source
online tool that quantifies, visualizes, and models networks between qualitative entities
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of processes such as discussions. This tool allows unraveling relations between cognitive
knowledge entities and is based on theoretical frameworks for learning analytics [47]. ENA
represents relations between objects in dynamic networks in which also the strength of each
relation is considered [47]. Objects are represented as knot points and relations as lines be-
tween these knots varying in their thickness to indicate the strength of the relation. Objects
are defined as the coded categories that indicate the use of conceptual (e.g., mentioning
theories of prey—predator relationships), procedural (e.g., using statistics), and epistemic
(e.g., credibility of data) knowledge entities (Appendix Table Al). Hence, each answer from
the prediction task for the three scenarios per participant resulted in an individual network
(N = 60), with the coding categories as objects and their co-occurrences as relations. All
networks are located in a two-dimensional coordinate system; hence, all objects have the
same position in the coordinate system independent from the individual network making
different networks comparable [47]. Hence, similar networks are located closer to one
another than networks that differ in their included objects and relations. To group the
networks, we first distinguished the answers based on the type of graphed prediction into
BoN-associated (Figure 3a,b), FoN-associated (Figure 3c), or FON/BoN, when participants
graphed two different predictions that were associated with both BoN and FoN [41]. These
three groups were labeled as superior prediction groups indicating the superficial tendency
of the conception behind the made prediction.

Within these superior prediction groups, similar individual networks were grouped,
based on the co-occurrence of knowledge entities used for explaining the graphed predic-
tions (represented in the ENA model as relations between objects) and labeled as explicit
prediction groups. Based on this grouping, summary statistics that are included to ENA al-
low an aggregation of all networks in a group into a mean network. Hence, a mean network
represents the average combination of objects and their relations for this group [47]. In this
study, mean networks of an explicit prediction group showed typical combinations of used
knowledge entities for explaining the made prediction regarding population development.
Furthermore, ENA offers the calculation of t-tests (e.g., Mann-Whitney test) to check for a
statistically significant difference between the mean networks of different groups [47].

Based on the found prediction groups, we observed if participants changed the pre-
diction group for the second and third scenario in the instrument after reasoning with
anomalous and supportive data regarding their initial prediction (Figure 4; prediction
group change). Furthermore, changes of confidence in the initial prediction (Figure 4;
confidence change) and the relation to the presented proportion of anomalous to support-
ive data were taken into consideration as factors that might influence the responses to
anomalous data.

Subsequently to this product-based view of analysis, we analyzed the data-based
reasoning processes that occurred between the prediction group changes and confidence
changes (Figure 1 DbR processes). For this process-based analysis (e.g., [10,11], answers to
the data appraisal task, data explanation task, and data interpretation task were analyzed
for the first and second scenario of each participant. We excluded the third scenario in this
analysis since we did not assess a further prediction change after the reasoning process
during the third scenario due to the test construction. The answers of the rating scales in
the data appraisal task were subsumed into five groups. If participants rated the credibility
and the relevance of the perceived anomalous data as low (1 or 2 on the rating scale) they
were assigned to skeptical general. When participants rated the perceived anomalous data as
only low on the credibility scale, they were assigned to skeptical credibility; in the case of the
relevance scale this led to skeptical relevance. Participants who rated both scales in the middle
(3 on the rating scale), were assigned to undecided, and participants who rated high on both
scales (4 and 5 on the rating scale) were assigned to not skeptical. After coding the answers
to the open-ended questions from the data explanation task and data interpretation task,
we compared the used conceptual knowledge entities with the ones the participants used
for their prediction in each scenario. Based on this comparison, two groups were defined
as new conceptual knowledge and initial conceptual knowledge. New conceptual knowledge
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encompasses cases in which participants used new conceptual knowledge entities in
addition to the initial conceptual knowledge entities, for example, when a participant
used theories of prey—predator relationships for their prediction only but explained or
interpreted the data by considered environmental factors like natural resources. Initial
conceptual knowledge encompasses cases in which participants only used initial conceptual
knowledge entities, for example, when the previous mentioned participant used theories
of prey—predator relationships during data explanation and interpretation as the single
explanation option. If participants additionally used procedural or epistemic knowledge
entities for explaining and interpreting data, they were assigned to the sub-groups plus
procedural or epistemic knowledge. Participants that answered without using conceptual,
procedural, or epistemic knowledge to explain or interpret data were assigned to no
explanation. Based on this grouping, participants” data-based scientific reasoning processes
were assigned into a dimensional matrix with data appraisal on one dimension and data
explanation/interpretation on the other dimension.
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Figure 3. (a,b) Examples of graphed predictions for the population development of a specific species
in a defined ecosystem that were assigned into BoN-associated. (¢) Example of a graphed prediction
for the population development of a specific species in a defined ecosystem that was assigned into
FoN-associated.
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Figure 4. Schematic representation of the analysis processes for this study.

4. Results

Each of the participants (N = 20) answered the prediction and data-based scientific rea-
soning tasks (Table 1) for the three scenarios leading to a total amount of 60 answers for each
task. For the open-ended writing tasks that were coded by a qualitative content analysis, a
total of N = 868 codes were assigned, ranging from 19 to 59 codes between participants.

First, the results regarding the prediction groups found by ENA are presented. All
individual networks for the answers of the prediction tasks in the three scenarios per
participants (N = 60) were modeled into a dynamics network by ENA as shown in Figure 5.

° °
°
. °
° .
° .
. o L4 Environmental factors
[ o °
o % b Population. mocels
.
o% s
® eg°
o . BoN_Graph

Figure 5. Individual networks for all predictions made by the participants in a two-dimensional
system modeled with ENA.

From these individual networks presented as dots, seven explicit prediction groups
were defined (Table 2). However, in ten individual networks that represent answers to
the prediction task in the second and third scenario, the main explanation for the made
prediction was test wiseness. Test wiseness is operationalized as identifying participants’
statements that present experiences from the previous tasks of the test instrument as the
main reasons for the task performance under consideration instead of answering the task
based on conceptional, epistemic, or procedural knowledge. Test wiseness is often used to
improve test performance [48]. For example: “A stable graph was shown in the previous
scenario. I want to cover every option”.

The Mann-Whitney test showed that explicit prediction groups within their superior
group were statistically different at the alpha = 0.05 level in at least one dimension of
the coordinate system, except for divergent prey—predator relation conceptions and mixed
conceptions and human disturbance in the FON/BoN group (Table 2). Based on the theoretical
background, both groups represent different aspects of conceptions associated with the
BoN metaphor [30,32]; hence, we maintained both explicit prediction groups.
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Table 2. Descriptions and absolute frequencies per scenario (N 1st; N 2nd; N 3rd) of superior prediction groups and explicit prediction groups found with ENA.
Superior Explicit o
Prediction Groups Prediction Groups Mean Network Model Description N1st N2nd N 3rd
A Pepusscnmodss Participants assigned to this group graphed BoN
BoN.conception_stability . . . . . . . .
Harmonic prev—predator o predictions and explained their predictions with their
relation (PIER) }éoﬁce tion content knowledge about population models that they 4 3 1
p "°"-‘$\ connected with conceptions about stability and
Bo.conception_harmanic.PPR harmonic prey-predator relationships.
@ Environmental.factors
Participants assigned to this group graphed BoN
BoN Stability conception Seblcanception Stahity predictions and explained their predictions with 7 3 4
a general stability conception.
BoN, O JPatch.dynamics
* General.prior.knowledge.Intuition
Environmontal factors
Participants assigned to this group graphed BoN
Population:models predictions and explained their predictions with
Content knowledge biological content knowledge. They mentioned 3 2 1
population models and environmental factors, without
 Patchdynsmics connecting these with stability conceptions.
BoN_Graph
® Environmental factors
i Participants assigned to this group graphed BoN
Population.models g . g . .
’ predictions and FoN predictions. They explained their
Mixed conceptions and Bt predictions with biological content knowledge. They 3 4 5

FoN/BoN content knowledge

Patch dynamics
BoN_Gr. ® y

BoN.conception_human.disturbance
@ o FoN.conception_Inharmonic.PPR
. BoN.conception_harmonic.PPR
FoN_Graph FoN.conception_natural.causes

connected their knowledge with divergent conceptions
addressing both FoN (natural causes, inharmonic PPR)
and BoN (stability, harmonic PPR).
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Table 2. Cont.
Superior Explicit -
- L Mean Network Model Description Ni1st N2nd N3rd
Prediction Groups Prediction Groups
BoN.conception_tablhy Participants assigned to this group graphed BoN
Divergent prev—predator BoN_Grarh predictions and FoN predictions. They explained their
relagtion Eon}clep tions predictions with divergent conceptions about 0 1 2
p oo o cancapton. harmonic.PPI prey—predator relationships addressing
* FoN.conception_instability both FON and BON.
® Environmental.factors
® Population.models Participants assigned to this group graphed FoN
Mixed conceptions and predictions. They explained their predictions with
human disfurbance biological content knowledge and FoN related 1 3 1
conceptions. They also mentioned human disturbance
when explaining their predictions.
Fon_Graflh s FOR.COnCopUGN.Innarmonic-PPR.
®FoN.conception_natural.causes
® Environmental.factors
@ Population.models .. . .
Participants assigned to this group graphed FoN
. dictions. They explained their predictions with
F t d predict y oW
FoN oN conceptions an biological content knowledge, mostly mentioning 2 0 3

content knowledge

oPatch.dynamics

FoN_Gr‘ @ FoN.conception_inharmonic.PPR
®FoN.conception_natural.causes
« FoN.conception_instability
« Disturbances

population models. They connected their knowledge
with FoN-related conceptions.
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Most predictions given by the participants indicate a tendency towards BoN concep-
tions (n = 28; 46.7%) or a mix of BoN and FoN conceptions (1 = 17; 28.3%). Therefore,
BoN-associated data sets presented in the instrument are assumed to be perceived as
supportive, while FoN-associated data sets are assumed to be perceived as anomalous data.
This assumption is supported by the decrease of frequencies for BoN prediction groups
and an increase of FON/BoN prediction groups after the first scenario (Table 2).

4.1. Prediction Group Changes

Based on the assignment of participants” answers given to the prediction task to the
prediction groups for each scenario, the changes of prediction groups between scenarios
were analyzed. Prediction group changes were expected between the scenarios as a reaction
to reasoning with anomalous and supportive data regarding the initial prediction made in
the previous scenario. Table 3 shows how many participants maintained or changed their
superior prediction group from the first to second and second to third scenario.

Table 3. Absolute frequencies of superior prediction group changes between the first and second
scenario and the second and third scenario.

To From BoN FoN/BoN FoN
BoN Mistond =8 (*=1) Nist-2nd = 6 (* =3) Mst2nd =0
Nond-3rd =6 (*=1) fond-3rd = 1 Nond-3rd = 2
n =0 n =4 n =0

FoN/BoN 1st-2nd 1st-2nd 1st-2nd
Nond-3rd =3 (*=2) Nond-3rd =7 (F=3) Nond-3rd = 1
FoN Nistond = 1 Mistond = 1 Mstond = 0
Mnd-3rd =0 Mond-3rd =0 Mnd-3rd =0

* Frequencies of cases in which test wiseness was included into the explanations for a made prediction.

In most possible changes (1 = 40) the initial prediction groups were maintained,
especially when BoN conceptions (n = 14; 35%) or a mix of FoN and BoN conceptions
(n = 11; 27.5%) were used initially in the prediction task. Changes of prediction groups
between the scenarios occurred fifteen times (37.5%). Most of the changes occurred from
prediction groups associated with BoN conceptions to prediction groups associated to a
mix of FoN and BoN conceptions (1 = 7; 17.5%). In four cases (10%), a change from an FoN
or mixed-associated prediction to a more BoN-associated prediction occurred. In particular,
changes to and the maintenance of an FoN/BoN prediction group were related to the effect
of test wiseness. When participants maintained the superior prediction group, they also
maintained their explicit prediction group with one case as an exception.

4.2. Reactions to Anomalous Data

For each scenario, the participants rated their confidence in their prediction before
and after dealing with anomalous and supportive data sets on a percentage scale. The
difference between the two ratings represents the confidence change. Based on the found
differences, five options of confidence change were identified: steady confidence when
confidence remained above 50% on the rating scale, steady unconfidence when confidence
remained under 50% on the rating scale, confidence in abeyance when confidence remained
on 50% on the rating scale, increase to confidence when confidence changed from under 50%
to above 50% on the rating scale, and decrease to unconfidence when confidence changed
from above 50% to under 50% on the rating scale. Table 4 shows the frequencies of each
option across the three scenarios to which the participants gave answers.

The data-based scientific reasoning process with anomalous and supportive data sets
in the first scenario led to a wide range of responses regarding the confidence in the initial
prediction. While some participants maintained their initial rating of confidence, either as
confident or as unconfident, six participants increased their confidence in their prediction
after dealing with the data. Furthermore, three participants decreased their confidence,
and four participants were undecided about their confidence. In contrast, the frequencies
of the confidence change options for the second and third scenarios show a tendency to
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maintain the rated confidence, either as confident or as unconfident, after dealing with the
shown data sets representing population dynamics.

Table 4. Absolute frequencies of options for confidence change which occurred within the first,
second, and third scenarios.

Confidence Change Options N (1st Scenario) N (2nd Scenario) N (3rd Scenario)

Steady confidence 4 8 9
Steady unconfidence 4 5 4
Confidence in abeyance 4 4(+1) 5
Increase to confidence 5(+1)1 1 1
Decrease to unconfidence 3 2 1(+1)

1 One participant made two different predictions and rated them separately.

To check relations between confidence change and prediction group change, the
presented frequencies shown in Table 3; Table 4 were integrated. Data from Table 4 were
limited to the columns for the first and second scenarios because we assessed no further
change of the prediction group after participants answered the instrument for the third
scenario. Based on this data integration, we defined six possible reactions after dealing
with the shown anomalous and supportive data sets (Table 5).

Table 5. Absolute frequencies and percentages of reactions to anomalous data shown by the participants.

Reactions N
Confident confirmation 14 (* = 3; 35%)
Undecided confirmation 4 (10%)
Unconfident confirmation 7 (*=2;17.5%)
Confident modification 4 (*=1;10%)
Undecided modification 4 (*=1;10%)
Unconfident modification 7 (* =3;17.5%)

* Frequencies of cases in which test wiseness was included into the explanations for a made prediction.

Mostly, participants that maintained their prediction group were confident in their
prediction after data-based scientific reasoning (n = 14; 35%). Still, twenty percent of
participants maintained their prediction group even if they stated that they are unconfident
about their prediction. If participants changed the prediction group by modifying their
prediction between the first and second scenario or second and third scenario, they mostly
stated to be unconfident towards their initial prediction (1 =7; 17.5%).

4.3. Relation to the Proportion between Anomalous Data and Supportive Data

All participants gave predictions for each of the three scenarios that differ in the
proportion between presented BoN and FoN-associated data sets; hence, the proportion
of perceived supportive and anomalous data varies. The three scenarios were randomly
sequenced between the participants. Table 6 shows the frequencies of reactions to the
data in relation to the different proportions between supportive and anomalous data also
labeled as the anomalous data ratio.

For both types of reactions to the data, confirmation or modification of the initial
prediction, the differences between the frequencies per anomalous data ratio are rather
ambiguous showing no statistical difference. However, for confirmation, a tendency of an
increasing confidence when confronted with a higher or equal proportion of FoN-associated
data sets to BoN-associated data sets can be found.
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Table 6. Absolute frequencies and percentages of reactions to anomalous and supportive data shown
by the participants in relation to the anomalous data ratio within the three scenarios.

Anomalous Data Ratio (BoN:FoN)

Reactions
2:4 3:3 4:2

Confident confirmation n=5(=1) n=6(*=2) n=3
Undecided confirmation n=2 n=0 n=2
Unconfident confirmation n=2 n=1 n=4(*=2)

Confirmation (N = 25) n=9*=1;36%) n="7(%*=2;28%) n=9*=2;36%)

Confident modification n=2%*=1) n=1 n=1
Undecided modification n=0 n=3%*=1) n=1
Unconfident modification n=3(*=2) n=2(=1) n=2

Modification (N = 15) n=>5*=3;33.3%) n=6(=2;40%) n=4(26.7%)

* Frequencies of cases in which test wiseness was included into the explanations for a made prediction.

4.4. Role of Data-Based Reasoning Process

In Table 7, participants” data-based scientific reasoning processes for the first and
second scenario are represented as cells in a two-dimensional system with their assignment
to the data appraisal groups in the one dimension and the assignment to the explana-
tion/interpretation groups in the other dimension.

Table 7. Assignment of participants” data-based scientific reasoning processes into the two dimensions data appraisal and
data explanation/interpretation based on their answers for the first and second scenario. Participants’ reactions regarding
their initial prediction are highlighted with italic letters when assigned to confirmation (n = 25; * = 5) and bold letters when
assigned to modification (n = 15; * = 5).

New Conceptual Knowledge Initial Conceptual Knowledge
Onl Plus Procedural and/or Onl Plus Procedural and/or No Explanation
y Epistemic Knowledge y Epistemic Knowledge
. Finn_1st
Skeptical general Sam._2nd
Skeptical Alex_Ist
credibili Andrea_2nd
ty Andy_2nd
Skeptical Jamie_1st
relevance Quinn_2nd
Bente_1st *
Andrea_1st Chr‘l s_Lst
Chris_2nd
Bente_2nd * .
Jona 2nd Finn_2nd
Undecided - Kim_1st Nicola_2nd Nicola_1st
Kay_2nd
Luca_1st
Noah_1st
Noah_2nd Luca_2nd
- Quinn_1st
Sam_1st
Alex_2nd *
Andy_1st
Charlie_2nd Char:lzeflst
Jamie_2nd *
Jona_1st Kay 1st
Not skeptical Kim_2nd * - Toni_2nd *
. Mika_1st
Mika_2nd . "
Toni 1st * Robin_1st
- Robin_2nd *
Sascha_1st
Sascha_2nd

* Participants’ cases in which they used test wiseness as an explanation for their made prediction.
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Based on this, it is shown that most of the data-based scientific reasoning processes
leading to confirmation were characterized by an undecided or not skeptical appraisal
of the data combined with the use of new conceptual knowledge entities in addition to
the initial conceptual knowledge entities (1 = 15; 60%). Generally, all data-based scientific
reasoning processes leading to confirmation were related to the use of new conceptual
knowledge entities when explaining/interpreting the data. For a deeper insight into
this finding, we first looked for the assigned superior prediction groups of these cases
(" FoN/BoN = 11; 1 Bon = 14). For those cases that maintained an FoN/BoN prediction
group, most of the presented data sets were not anomalous, hence, there was no need
for modifying the initial prediction as it was not induced by the processed data. This is
illustrated by the example of Sascha (Table 8).

Table 8. Illustration of the prediction group change and data-based scientific reasoning process of Sascha in the first scenario.

Prediction Group 1st Scenario Data Interpretation (Extract) Prediction Group 2nd Scenario

Mixed conceptions and

content knowledge

Mixed conceptions and

“During this time, factors exist that
content knowledge

influenced the population density in a

A Seteormentel fosors negative way (e.g., predators, disasters).” @ cnvironmentaltactors
@ Forutation models “Similar to prediction, only time period
@ 5o conception_stabiity for regeneration of the population density ‘w«wmm_suww
@ = oo was not correct.” @ 5o G
a“ . : 3 AN
'#m:.%‘.%‘-.:’;’ﬁm%’;‘&i?“ COI’lfldel:lC? hlghly increased d:le to the ‘%’.&ﬁhmmmﬁmnw?ﬂ
- similarities to the data. -

When participants maintained their BoN prediction group, they explained or inter-
preted the data by using different conceptional knowledge entities but were undecided or
skeptical regarding the FoN data sets (anomalous data) by tendency. The confirmation of
the initial prediction was often explained by arguing with the higher ratio of supporting
data sets (statistical reasoning), as exemplified by the case of Chris (Table 9).

Table 9. Mlustration of the prediction group change and data-based scientific reasoning process of Chris in the second scenario.

Prediction Group 2nd Scenario Data Interpretation (Extract) Prediction Group 3rd Scenario

Stability conception

“Massive changes of environmental Stability conception
circumstances led to the extinction or extreme
population fluctuations.”

_conception_stability “In 2/3 of the areas, my prediction was the case.” _conception_stability
“Without further information about
BoN_Graph environmental factors, my confidence regarding BoN_Graph

my prediction will not increase.”

Participants who modified their initial prediction showed different data-based sci-
entific reasoning processes. For describing these cases, the direction of modification was
considered (7 poN direction = 10; 7 BoN direction = 9)- Almost all modifications of predictions
into the FoN direction were related to data-based scientific reasoning processes in which
new conceptual knowledge was used, shown by the example of Mika (Table 10).

Modifications of predictions into the BoN direction were related to data-based scien-
tific reasoning processes with a stronger focus on procedural or epistemic knowledge like
looking for statistical patterns or argumentations considering the probability of the data.
This is illustrated by the example of Nicola (Table 11).
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Table 10. Illustration of the prediction group change and data-based scientific reasoning process of Mika in the first scenario.

Stability conception

Prediction Group 1st Scenario Data Interpretation (Extract) Prediction Group 2nd Scenario
“4 of 6 data sets are supporting my prediction,
because of a stable prey-predator relationship.” Divergent prey-predator
“2 of 6 data sets show massive fluctuations. -relation conceptions

Patch. i N .
woncynamio “Unconfidence due to wrong assumptions and M—O'&Fou_snpn

BoN_Graph

Imbalance of prey-predator relationship could @ 2o conception_sabiy
also be influenced by other factors.” ®
the fact, that population growth cannot be Fo.conception_inharmonic T -
explained only by considering
prey-predator relationships.”

Table 11. Illustration of the prediction group change and data-based scientific reasoning process of Nicola in the first scenario.

Prediction Group 1st Scenario Data Interpretation (Extract) Prediction Group 2nd Scenario

FoN conceptions and content knowledge

. Environmental.factors

Harmonic prey—predator relation

“My prediction did not include extreme conception
’ Population.models events like diseases or influences of
weather, but only the development based Population.models

FoN_Graph

on prey-predator-relationships.”
“My confidence did not change, because

some data represent extreme events that BoN G
_Graph

were not included into my prediction.” BoN.conception_harmonic.PPR
FoN.conception_natural.causes

. Disturbances

However, for some cases of both reaction types of confirmation and modification, test
wiseness had an influence, indicating the tendency to answer the tasks of the instrument in
a way that was perceived as the expected one by these participants.

5. Discussion

In this study, our aim was to investigate how participants reason with supportive and
anomalous data in the context of population dynamics. In particular, we were interested in
the way they confirmed or modified an initial prediction after dealing with different data
sets represented as line graphs (Figure 2) by answering tasks coherent to the sub-processes
of a data-based scientific reasoning process (Figure 1). For this, we integrated analyses
with a product-based and a process-based view.

The first finding supports previous studies investigating conceptions about ecosystems
and populations dynamics [30,34,49]. Most of the participants explained their predictions
about the development of a population by using conceptions associated with the BoN
metaphor (Table 2). Some participants showed a mix of BoN and the scientifically more
adequate FON metaphor-associated conceptions. Furthermore, it is shown that the frequen-
cies of used mixed conceptions increased after the first scenario while using pure BoN
conceptions decreased for making a prediction (Table 2). However, most participants main-
tained their initial predictions (Table 3). This finding supports the theory that conceptions
are not replaced by one another, but different conceptions for a phenomenon exist parallel
to each other, for example, naive and scientifically adequate explanations for population
dynamics [35]. Which conception is used in a situation depends on the characteristics of the
situation itself, as this can inhibit or promote the prevalence of a specific conception [35].
In this study, participants’ conceptions associated with FoN might have been activated
with the presentation of the corresponding data sets in the first scenario.
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From this product-based view on the results of the study [3], we can distinguish
the reactions of participants to the presented data into the confirmation or modification
of the initial prediction. Both reactions are related to the confidence participants had
in their initial prediction (Table 5). While confirmation is by tendency related to a high
confidence in the initial prediction, modification mostly relates to a stated unconfidence
in the initial prediction. These findings are consistent with the results of the study by
Hemmerich and colleagues [20] in which they found that a decrease in confidence will
increase the probability to change the initial theory. However, they found evidence to
support the Incremental Change Hypothesis which states that the proportion of anomalous
data to supportive data will influence confidence change [20]. In our study, we found by
tendency opposite findings regarding the Incremental Change Hypothesis for the reaction
of confirmation (Table 6). More or an equivalent proportion of FoN-associated data sets
to BoN-associated data sets presented as line graphs led, by tendency, to an increased
confidence in the initial prediction. However, a higher proportion of BoN-associated
data sets had the opposite effect (Table 6). We assume two causes for this finding. First,
predefined FoN-associated data sets, that represent a chaotic fluctuation of the population
dynamic, were often interpreted in line with assumed harmonic-fluctuations and hence
were perceived as supportive data for BoN predictions. This observation fits with findings
of other studies which showed that some people tend to reinterpret anomalous data as
fitting with their initial expectation, and hence, perceiving no anomaly at all [8]. Second, in
44% of the cases in which the initial prediction was confirmed in a subsequent scenario,
the prediction was assigned into the superior prediction group FON/BoN. Therefore, data
sets that might have been perceived as anomalous were mostly limited to the data sets
representing an extinction event. Furthermore, the modification of the initial prediction
does not show a relation to the options of confidence change. One important reason
might be that one third of the cases in which modification of the prediction occurred were
based on test wiseness. Therefore, the modification shown by the participants was not
motivated by processing the data in the scenario in a scientific way, but by copying the
data sets as predictions to fit an expected outcome in the tasks of the subsequent scenarios.
According to the finding for confidence change, this supports previous findings that show
how participants’ confidence is more related to the individual perception of acceptance by
other people than the ability to refer to evidential considerations [50].

However, besides the effect of test wiseness during the product-based analysis, we
do not know how the processing of the data sets during data-based scientific reasoning
relates to the reactions regarding the initial predictions. Hence, the analyses of the tasks
operationalizing the sub-processes of data-based scientific reasoning, with a focus on
the interpretational processes, gave a deeper insight. Based on this, we found that the
participants used mostly a combination of conceptual, procedural, and epistemic knowl-
edge to explain and interpret data. In addition, most of them seemed undecided or not
skeptical when appraising the data regarding relevance and credibility. Compared to
previous studies that investigated responses to anomalous data, our study design favors
responses which try to explain the data on a conceptual basis, like reinterpretation, peripheral
theory change, and theory change in the taxonomy of responses to anomalous data [8], or
use of theoretical concepts in the categories of justifications to hold or reject a hypothesis [9].
This is consistent with the methodological differences between our and the cited studies.
First, we explicitly instructed the participants to explain each data set and interpret the
data sets regarding their initial prediction. However, Chinn and Brewer [8] asked their
participants to rate the believability and consistency to an initial theory of the presented
data and explain their ratings. These instructions focus rather on the sub-process of data
appraisal; hence, a tendency towards response types that are more on ‘the data side of the
[explanation] model” are expectable [24]. Second, in our study we presented second-hand
data represented as line graphs. Compared to Chinn and Brewer [8] who used textual
descriptions of evidence, the presentation of empirical data is typical of scientific domains.
Furthermore, the representation of data as text passages [8,17], charts [51], or graphs [52]
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will influence the ambiguity of the perceived anomality. For example, Masnick and col-
leagues [39] gave empirical support that reasoning with numerical data initiate and support
processes of conceptual change which need the activation of conceptual knowledge to
formulate alternative explanations. Ludwig and colleagues [9] let participants generate
data in laboratory settings or with computer simulations; therefore, they found a variety
of justifications to hold or reject a hypothesis that are connected to the methodological
issues of the data generation. This fits with findings of studies investigating the effect of
first-hand or second-hand data on scientific reasoning. Hug and McNeill [13] concluded
that first-hand data support the awareness of limitations and error in data, as well as
learners’ understanding of the role of data for knowledge generation in science. This is
also supported by findings from other studies, investigating responses to anomalous data
during experimentation and modeling activities [10,12]. Second-hand data, in turn, are
perceived as authoritative by learners and support more sophisticated reasoning skills
like identifying patterns, drawing conclusions, and considering content knowledge, due
to being often rather complex compared to first-hand data [13]. These conclusions were
supported by our findings that conceptual, procedural, and epistemic knowledge were
central during participants’ data-based scientific reasoning processes.

Nevertheless, sophisticated data-based scientific reasoning processes in which new
conceptual knowledge is used to explain data do not lead to a change of the initial prediction
per se. Hence, in almost all analyzed reasoning processes, new conceptual knowledge
was used independent from the subsequent reaction of confirmation or modification
regarding the initial prediction. Our analysis approach to integrate a product-based with a
process-based view on responses to supportive and anomalous data showed that initial
conceptions are strongly held and repeated even if alternative conceptions and explanations
are available but are perceived as less likely due to arguments based on epistemic and
procedural knowledge.

In general, scientific reasoning is proposed to rely on conceptual, procedural, and
epistemic knowledge independent of the used style of reasoning that may be associated
with data-based scientific reasoning or not [3]. Hence, our findings suggest that the
interdependency between these forms of knowledge might be of crucial interest for future
research on scientific reasoning. The role of conceptual knowledge is one aspect that has
been extensively discussed lately [53]. Furthermore, a lot of research on the nature of
science has been done, a construct that includes many aspects of epistemic knowledge and
is related to scientific reasoning skills [54]. However, data-based scientific reasoning might
be essential for most scientific reasoning styles, and it is important for all people to engage
in data-based argumentation and decision making in the context of socio-scientific and
controversial science issues [55].

The interpretation and generalization of the findings of this study have limitations
because of methodological decisions. Due to the amount of different data sources to enable
the integrational analysis, the sample size was limited. Hence, all interpretations made
from the data show tendencies that need to be tested in further studies. However, with this
mixed-method approach new hypotheses can be built and tested in subsequent studies. For
instance, it would be interesting to observe possible causes for the tendency to maintain an
initial expectation and its conceptual explanation, even if other explanations are known, but
maybe seen as less likely. In addition, it might be interesting to investigate how other factors
regarding data characteristics, besides the proportion between anomalous and supportive
data, relate to the data-based scientific reasoning process and their outcomes. This might
be moderated by a change of skepticism regarding the data. Additionally, we decided
to focus the analysis of this study on the prediction group changes and corresponding
data-based scientific reasoning processes, hence we presented the results of the data-based
scientific reasoning processes for the first and second scenario. Furthermore, our model of
data-based scientific reasoning encompasses and highlights the role of perception. This
study focused on the interpretational processes during data-based scientific reasoning;
however, the role of perceptual processes is still important for gaining further insights into
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ongoing cognitive processes. Therefore, the analyzing of additional data assessed with
eye-tracking techniques [44] will be the focus of our future research.
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Appendix A
Table Al. Category System.
Category Subcategory Code Description
The graph shows a trend that represents a stable population development. Stable is defined
Type of BoN Graph as linear horizontal or around a mean value fluctuating lines. The fluctuation is mostly
graphed uniform, and the amplitudes are low.
prediction F The graph shows an unstable, chaotic trend. FoN graphs include increasing, decreasing, and
oN Graph . 1 N .
chaotic or with high amplitudes fluctuating graphs.
e The general assumption of a stable development or that disturbances are
Stability R
BoN not expected is stated.
conceptions Human disturbances Human caused disturbances are named as reasons for instability.
Harmonic prey—predator . . . . . e
relationship (PPR) A harmonic regulation by prey—predator relationship is stated as a reason for stability.
Instability An unpredictable/instable development is described.
Natural causes (e.g., disturbances like epidemics, fires, and invasive species; climate
Conceptual FoN Natural causes changes; change of environmental resource; imi- and emigration) are described as reasons
knowledge conceptions for an instable development.
Inharmonic PPR Predator caused changes that may also cause extinction are stated.
Population models Biological models like capacity limit, logarithmic population development, or prey—predator
models (Lotka—Volterra) are named.
Patch dynamics Aspects of a heterogeneoqs ecosystem like nafturally changing resources or imi- and
Content emigration of populations are named.
knowledge Disturbances The chance and importance of disturbances for development in ecosystems are named.
Biodiversity Aspects of biodiversity (also genetics) are named.
Environmental factors Change of biotic and/or abiotic factors are named.
- The data are statistically treated (e.g., comparison of means/data points,
Statistics . Lo
calculating/estimating mean values).
Cvs Aspects of the importance to control variables are stated.
Patterns The identification of patterns in the data is stated.
The data sets represented as line graphs are described superficially without
Represent . .
Procedural explaining the shown relation.
knowledge The data sets represented as line graphs are described by stating aspects of the shown
Di Syntactic relation, trend or single data points, no connection to the phenomenon/conceptual
lagram knowledge is given. Data set d superficiall
competence nowledge is given. Data sets are compared superficially.
The data sets represented as line graphs are described by stating aspects of the shown
Semantic relation, trend, or single data points and a connection to the phenomenon/conceptual
knowledge is given. Data sets are compared with relation to the phenomenon.
Limits of models Aspects of the limits or hypothetical nature of models are named.
. . Probability Aspects of probability and significance are named.
Epistemic s R . 9.
Credibility Aspects of credibility or believability of the data are stated.
knowledge . e
Quality Aspects of quality of the data are stated (e.g., reliability of measurement,
replication, experimentation bias).
Uncertainty Aspects of uncertainty (e.g., need for more information) are stated.
Oth Test wiseness Experiences from previous tasks are stated as reasons for any task performance.
€rs General prior General prior knowledge (e.g., memorizing from schoolbooks) or intuition are stated as
knowledge/Intuition reasons for any task performance.
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