
education 
sciences

Article

A Synergy between History of Mathematics and
Mathematics Education: A Possible Path from
Geometry to Symbolic Algebra

Emilia Florio

Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Rende, Italy; emilia.florio@unical.it

Received: 26 July 2020; Accepted: 31 August 2020; Published: 11 September 2020
����������
�������

Abstract: This paper proposes an experimental path aimed at guiding upper secondary school
students to overcome that discontinuity, often perceived by them, between learning geometry and
learning algebra. This path contributes to making students aware of how the algebraic language,
formalized in the most powerful form by Descartes, grafts itself onto the geometric language. This is
realized by introducing a problem included in a text written by Abū Kāmil before the year 870.
This awareness acquired by the students, when accompanied by some semiotic considerations, allows
the translation of the problem from “spoken” algebra to “symbolic” algebra, and it represents the
background for a possible use of the same problem within the framework of analytic geometry.
This proposition manifests a didactic and popular efficacy that supports and favors the recognition of
the object it is talking about in different contexts, helping to create a unitary vision of mathematics.

Keywords: mathematics education; history of mathematics; regular pentagon; geometry; algebra;
analytic geometry

1. Introduction

This work proposes a didactic path, designed for an upper secondary school class, aimed at
showing a connection between geometric knowledge and algebraic knowledge starting from the use
of the first problem of the chapter on the regular pentagon and decagon of the Kitāb fı̄ al-jabr wa
al-muqābala (Book on algebra and science of reduction and cancellation) of Abū Kāmil [1].

The choice of a proposition taken from the history of mathematics is encouraged by the fact that
knowledge of the latter and its use in teaching constitute a significant part of the cultural background
of future mathematics teachers [2]. The knowledge of how a mathematical concept was born and
evolved can contribute to a better understanding of that concept itself [3], and the study of historical
sources contains a potential suitable to increase awareness of possible misconceptions, obstacles,
and impediments related to various mathematical concepts and ideas [4].

Useful feedback on the training of teachers are found in Reference [5] with the practice-based
theory of mathematical knowledge for teaching, in Reference [6–8] where the authors specify the
positive elements of the teacher education through the history of mathematics, in Reference [9] where
the importance of the historical and cultural dimensions in mathematics education is underlined,
in Reference [10], concerning the support of history in changing individual’s epistemic beliefs about
the nature of mathematical knowledge, and in Reference [11] for the implementation of teachers’ skills
in the cultural analysis of content.

The same choice of Abū Kāmil’s proposition is also motivated by the fact that the teaching and
learning of mathematics are favorably affected by a programming that takes into account the social
context in which they develop [12,13]. A further motivation is given from the cultural elements [14–16]
that can suggest suitable communicative means of the mathematical concepts and can address
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towards adequate choices of specific contents [17–19]. Other authors [20–22] evidenced that history
of mathematics certainly takes on a relevant role among the possible cultural elements to consider.
Moreover, important considerations on the fact that the history of mathematics provides significant
material for teaching in the classroom are included in the wide review [23].

Why does the problem of Abū Kāmil contains aspects of novelty for educational use among the
available historical material?

With regard to the learning of mathematical language, it constitutes a particularly simple
environment to effectively explore the potential of some forms and registers with which mathematics
expresses itself, to ascertain how the changes between these registers can occur in a reliable and effective
way and to evaluate the types of responses that these changes can produce in a problem solving.

The Abū Kāmil’s problem constitutes an experiential environment of rare transparency to start
students of secondary school to develop the ability to compose the mathematical structure that
allows them to solve and then to generalize the problem, thus making a significant part of the path
towards modeling in mathematics, that has for years been the subject of a constructively critical and
argumentative discussion among researchers in mathematics education [24,25].

In the initial part of this path, starting from the problem posed by Abū Kāmil, students are invited
to become aware that in the geometric field the figure performs the task of visualizing the object
which the problem is centered on and which you can reflect on to understand and demonstrate their
specific properties.

Subsequently, still following the path of Abū Kāmil, they can enter into the heart of the
question constituted by the search for the measure of an element of the pentagon, its side in
the specific case, as a function of the radius of the circumscribed circle. The question is, in fact,
to establish numerical relationships that require a linguistic and narrative change with respect to the
Euclidean one and contain the need for a new model that, as history shows, if realized, will have
unpredictable consequences.

More specifically, the chosen problem is particularly suitable for showing the passages in which
some properties, enumerated in Euclid’s Elements in geometric language, are translated into the
rhetorical language of Arabic algebra, in order to write the resolutive equation of the problem;
subsequently those passages that realize a translation of the same properties from the language
of spoken algebra in the language of symbolic algebra and, finally, those that lead to the generalization
of the problem through the use of a parameter. These passages are sketched in the flowchart shown
in Figure 1.

This problem is grafted on the geometric construction of regular polygons inscribed or
circumscribed in a circle, the importance of which is evident in learning mathematics [26]. By reflecting
on it, one can help to clarify the formative role of geometry and algebra, before going on to the real
contents of analysis, as well as to the understanding of the significance of “demonstration/solution”
within the study of algebra, considered much more than a mere tool for calculation.

Under a more general point of view, this kind of process of translating by the spoken algebra
to symbolic algebra helps the students to understand better the “natural” historical evolution of
mathematics through the progressive elimination of verbal components in the expression of algebraic
procedures by realizing a more practical, fluid and effective language. Such an advantageous language,
that represents a general tool for studying mathematical problems given in the past, and still remains,
a strong impulse to science allowing the possibility to generalize both the problems and their solution
through parameterization. All this is of utmost importance in the algorithmic expression of the
mathematical problems and, therefore, in their numerical solution, as well as in the possibility to use
computer science tools for a didactic aim.

The organization of the paper is the following. In next section, it is explained as the problem
proposed by Abū Kāmil allows the students to “see” and “tell” a mathematical object with different
languages and signs. Moreover, essential information about Abū Kāmil and his main work are given.
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In the third section, the passage from the formulation of the proposition given by Abū Kāmil to a more
general one, is described. Finally, a brief discussion and some conclusions are drawn.

Figure 1. Flowchart showing the logical steps in the proposed path from geometry to algebra.

2. Materials and Methods

2.1. Theoretical Framework

The path proposed in this paper aspires to take into account the significant relationships
between the construction of mathematical knowledge by students and the historical construction of
mathematical knowledge highlighted in literature [27,28]. Moreover, the historical material presented
in this article can take on a particular value of support for the teaching of mathematics within specific
semiotic and epistemological considerations [16,29–33].

Abū Kāmil’s chapter appears indeed as one of the first “written recordings” of a crucial moment
of the semiotic evolution of the language of mathematics and of its expressive potential. It shows a
didactic and informative efficacy that justifies its particular diffusion in a separate form from the rest
of the work. The text by Abū Kāmil presents and solves some “simple” problems using the “signs of
spoken algebra”, not yet “signs of literal algebra”, which for this reason naturally begin to ferry from
the universe of the consolidated Euclidean narrative to that of the future Cartesian narrative [34].

As an element to graft the semiotic “metamorphosis”, the geometric constructions that, in the
context of Abū Kāmil’s writing and, even now, in class work with the students, manifest their potential
as a suitable element to support and encourage the recognition of the object one is talking about,
take on a key role. This recognition [35] is fundamental for the realization of learning through a
diversification of the way in which this object is “seen” and then “told” through a new sign [36,37].
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In the text of Abū Kāmil, resonances and differences can be glimpsed between the “knowledge”
underlying the use of the Euclidean language and that underlying the algebraic language, considering
the knowledge as potential that emerges from human activity in a process of becoming to “materialize”
into knowing (see Reference [16], p. 100). The first language (Euclidean) is strongly rooted in its spatial
development, as the reading of any Euclid’s passage reveals, the second (algebraic) is projected to
develop in successive states linked to temporally distinct “moments” [36], a prelude to the powerful
mathematical tools indispensable to the expression of Newtonian physics and mathematics of the
18th century.

In this perspective, the proposed path develops. The change of register, introduced to the students
“at the suggestion” of Abū Kāmil in order to speak of the pentagon with “new” signs in respect to those
of Euclid, contains some prodromes to the modeling process which are crucial for the development of
the skills of problem solving [38–41].

2.2. Historical Notes on the Writing of Abū Kāmil

The name Abū Kāmil Shuja ibn Aslam ibn Muhammad ibn Shuja (850–930), also known as
a-Hasib al-Misri, or as the Egyptian “calculator”, frequently occurs in the first Western algebraic
tradition, when reference is made to the transmission of algebra. The name slowly disappears in the
later Latin algebraic tradition, until finally lost without trace. Abū Kāmil is especially remembered by
later generations as the first commentator on Kitāb al-jabr wa al-muqābala (Book of algebra and science of
reduction and cancellation) by Muhammad ibn Mūsā al-Khwārizmı̄, written between 813 and 830 [42].
Commentary by Abū Kāmil is the Kitāb fı̄ al-jabr wa al-muqābala (Book on algebra and science of reduction
and cancellation), written before 870 (see Reference [43] for a historical collocation of Abū Kāmil’s work
on algebra among Arab mathematicians). In this treatise, the author devoted a chapter to problems on
the regular pentagon and decagon inscribed in or circumscribing a circle in which the Latin translation
by Gerard (from the 12th century) can be found at the Bibliotèque Nationale de Paris (Ms. lat. 7377A).

From the analysis of the historical literature available, it is possible to hypothesize an autonomous
diffusion of this chapter with respect to the rest of the treatise, if we assume it was directed at readers
already familiar with algebra and equations. It is possible to hypothesize that this could have happened
during the period most favorable to the spread of algebra. Bearing in mind the considerable interest
in the discipline following publication of the work of al-Khwārizmı̄ and Abū Kāmil, the relevant
period could lie between the years 950 and 1200 in the case of the Arab world, as seems most likely,
or alternatively the years after 1100 in Europe, with the establishment of a Latin tradition in algebra
and the birth of cultural centres on this subject in Europe, both among Jewish and Latin scholars.
As to why this should have happened, it is possible to put forward the hypothesis that the contents of
the chapter are easily placed in relation to certain propositions in books IV and XIII of the Elements
by Euclid, that deal with the construction of regular polygons with a ruler and compass, and to the
tradition built around this work.

Since the issue of the construction of polygons inscribed within or circumscribed by a circle is a
fundamental part of basic mathematical training [44,45], as attested by numerous Arab mathematicians,
one can believe that Abū Kāmil chose the construction of the pentagon and decagon as examples of the
beauty and value of algebra in finding solutions to problems. Indeed, in the introduction to the second
part of the treatise, after having displayed the indispensable elements for an understanding of algebra,
Abū Kāmil turns his attention to that which “important” and “skilful” geometers have read in Euclid’s
book and other works, explaining and commenting on it in his writing, starting from consideration
of the measurement of the side of a pentagon and a decagon, inscribed within or circumscribed by a
circle, and the measurement of the diameter of the circle in the two cases [1,46,47].

Al-Qūhı̄ (second half of the X century) was inspired by this short chapter of Abū Kāmil when he
wrote On the construction of an equilateral pentagon in a given square. This highlights the fact that Arab
mathematicians recognized the importance of the chapter vis-à-vis the treatise on algebra.
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The same chapter was a certain point of reference for Leonardo Pisano when writing his book
Practica Geometriae [48].

3. Results

From the Editing of Abū Kāmil to the General Formulation of A Proposition

The propositions of the chapter of Abū Kāmil’s treatise contain problems regarding regular
pentagons and decagons inscribed in or circumscribing a circle (1–11), the triangles and squares in
which figures are inscribed (12–15) and regular pentagons and decagons and how to determine the
length of their sides when the area is known (16–20).

As mentioned above, to show students an example of connection between geometric knowledge
and algebraic knowledge the first proposition is presented below in a didactic fashion. Figure 2
represents the original picture realized by Abū Kāmil (see Reference [1], pp. 524–525) to introduce the
problem of finding the length of the side of the regular pentagon inscribed into a circle of diameter
equal to 10.

Figure 2. Abū Kāmil’s construction to obtain the length of the side of the regular pentagon
(see Reference [1], pp. 524–525).

Here, below, the English translation of the first of the twenty geometric problems that Abū Kāmil
solves in the chapter concerning the regular pentagon and decagon of Kitāb fı̄ al-jabr wa al-muqābala,
is reported (see Reference [1], pp. 522–527, for a French translation of the original Arabic text):

Assume the known circle ABDEC in which the diameter is ten in number, it is the straight
line EH, and in which a regular pentagon is inscribed; it is the pentagon ABDCE. If we
want to know what is the size of each of the sides of this pentagon, we draw the straight line
CLD that is the chord of two-fifths of the circle, and we assume the straight line ED a thing.
We know that the straight line EL is a tenth of a māl (Here, the authors used the transliteration
of the original Arabic word. Literally, this word means a quantity of money (among other
things). In modern mathematical translations, it is usually translated as “square”, as in
Reference [1]. I preferred here to maintain the original word used by Abū Kāmil. I have
referred to translations into a number of languages [1,46,47,49,50]), since the product of
ED by itself is equal to the product of HE by EL; the straight line DL is the root of māl
minus one-tenth of one-tenth of māl-māl and straight line CL is equal to the straight line LD;
the straight line CD is therefore the root of four māl minus two-fifths of one-tenth of māl-māl.
But we know that the sum of the product of AB and CD plus AB by itself is equal to the
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product of CD by itself, because the product of AB and CD plus AC by BD is equal to the
product of AD by BC; or AC by BD is equal to AB by itself, AD by BC is equal to CD by itself,
and CD by itself is four māl minus two-fifths of one-tenth of māl-māl. Eliminate from this
the product of AB by itself, that is a māl; thus remain three māl minus two-fifths of one-tenth
of māl-māl, equal to the product of AB by CD. We then divide three māl minus two-fifths of
one-tenth of māl-māl by the straight line AB, which is a thing; we get the straight line CD,
three things minus two-fifths of one-tenth of a cube. But we have shown that the straight line
CD is the root of four māl minus two-fifths of one-tenth of māl-māl. We multiply three things
minus two-fifths of one-tenth of a cube by themselves; we get nine māl and one part of six
hundred-twenty-five parts of cube-cube minus six parts of twenty-five parts of māl-māl equal
to four māl minus two-fifths of one-tenth of māl-māl. Reducing from this, we have a fifth of
māl-māl equal to five māl and a part of six hundred twenty-five parts of a cube-cube. Dividing
all that you have by a māl, you get five “dirhams” and one part of six hundred twenty-five
parts of māl-māl equal to one-fifth of māl. Make whole māl-māl for which you have a māl-māl,
and so multiply it by six hundred twenty-five, so all that you have by six hundred and
twenty-five; we have a māl-māl plus three thousand one hundred twenty-five “dirhams”
equal to one hundred twenty-five māl. Divide the māl into two halves, get sixty-two and a
half; multiply them by themselves, you get three thousand nine hundred six and a quarter;
subtract three thousand one hundred twenty-five, it remains seven hundred eighty-one and
a quarter. We remove the root of this one from sixty-two and a half, we take the root of what
remains, we have the straight line ED which is one of the sides of the pentagon.

All this can be equally and more synthetically expressed in the modern algebraic language as
(see Reference [1], pp. 115–117):

Let ABDEC be the known circle of diameter EH = 10 and let ABDEC be the regular pentagon
inscribed within it. Draw the chord DC that subtends 2

5 of the circumference (because each side of the

pentagon subtends 1
5 of the circle). Assume ED = x (that is the side of the pentagon we want to find).

We know that EL = 1
10 x2 since ED2 = EH · EL (for Euclid’s first theorem applied to the right triangle

EDH, in which ED is a cathetus, and EL is the projection of ED on the hypotenuse EH).
For Pythagoras’ theorem applied to the right triangle EDL, we have: DL =

√
ED2 − EL2 =√

x2 − 1
10

1
10 x4; moreover CL = DL; therefore, CD =

√
4x2 − 2

5
1
10 x4.

We know that AB · CD + AB2 = CD2 because, for Ptolemy’s theorem applied to the quadrilateral
ABDC, AB ·CD + AC · BD = AD · BC, or AC · BD = AB2, AD · BC = CD2, and CD2 = 4x2− 2

5
1
10 x4.

Let us subtract from this AB2 = x2; thus, we remain with 3x2 − 2
5

1
10 x4 = AB · CD. Let us divide the

last relation by AB = x, and we obtain CD = 3x− 2
5

1
10 x3.

Let us multiply 3x− 2
5

1
10 x3 by itself, and we obtain:

(
3x− 2

5
1

10
x3
)2

= 9x2 +
1

625
x6 − 6

25
x4.

Since we have shown that CD2 = 4x2 − 2
5

1
10 x4, by equating the two expressions for CD2 we have just

found, we get 1
5 x4 = 5x2 + 1

625 x6. If we divide this relation by x2, we obtain: 5 + 1
625 x4 = 1

5 x2.
By multiplying the last relation by 625, we get: x4 + 3125 = 125x2. This is a biquadratic equation,

in which the acceptable solution (for our problem) is:

ED = x = 5

√
5−
√

5
2
' 5.88.
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Table 1 contains the steps of the solution of the problem under consideration, given through
a one-by-one correspondence between Abū Kāmil’s solution expressed in “spoken” algebra and a
“translation” in symbolic algebra. The left part of the table shows how, drawing on the knowledge
contained in Euclid’s Elements on the pentagon and expressed in the Euclidean geometric register,
the problem proposed by Abū Kāmil takes expression and form in the register of rhetorical algebra
and how the solution is found through its rules. In other words, a first expression of modeling of
the problem and its solution is realized. The right part of the table contains a further expressive
passage, the “translation” of the solution in the register in which today’s mathematical culture requires
students to learn to express themselves, the one to which Descartes invited us in his Géométrie, that of
formal algebra.

Table 1. The first of the twenty geometric problems that Abū Kāmil solves in the pentagon and decagon
chapter. The left part contains the problem expressed in rhetorical algebra. The right part contains a
translation in the register of symbolic algebra.

Step Statement and Solution Steps of the Problem
Expressed in Spoken Algebra

Translation of the Statement and of the
Solution Steps in Symbolic Algebra

1 Determine the length of a chord of a fifth of a known
circle starting from its diameter.

Find the side of the regular pentagon inscribed in a
given circle.

2 Assume the known circle ABDEC in which the
diameter is ten in number, it is the straight line
EH, and in which a regular pentagon is
inscribed, it is the pentagon ABDEC.

Let ABDEC be the known circle of diameter
EH = 10 and let ABDEC be the regular
pentagon inscribed within it.

3 Draw the straight line CLD that is the chord of
two-fifths of the circle.

Draw the chord DC that subtends 2
5 of

the circumference.

4 Assume the straight line ED is a thing. Assume ED = x.

5 We know that the straight line EL is a tenth of a
māl, since the product of ED by itself is equal to
the product of EH by EL;

We know that EL = 1
10 x2 since ED2 = EH · EL;

6 the straight line DL is the root of māl minus
one-tenth of one-tenth of māl-māl and straight
line CL is equal to the straight line DL;

DL =
√

x2 − 1
10

1
10 x4 and CL = DL;

7 the straight line CD is therefore the root of four
māl minus two-fifths of one-tenth of māl-māl.

therefore, CD =
√

4x2 − 2
5

1
10 x4.

8 But we know that the sum of the product of AB
and CD plus AB by itself is equal to the product
of CD by itself, because the product of AB and
CD plus AC by BD is equal to the product of
AD by BC;

We know that AB · CD + AB2 = CD2 because
AB · CD + AC · BD = AD · BC;

9 or AC by BD is equal to AB by itself, AD by BC
is equal to CD by itself, and CD by itself is four
māl minus two-fifths of one-tenth of māl-māl.

or AC · BD = AB2, AD · BC = CD2,
and CD2 = 4x2 − 2

5
1

10 x4.

10 Eliminate from this the product of AB by itself,
that is a māl, thus remaining three māl minus
two-fifths of one-tenth of māl-māl, equal to the
product of AB by CD.

Subtract from this AB2 = x2, thus remaining
with 3x2 − 2

5
1

10 x4 = AB · CD.

11 We then divide three māl minus two-fifths of
one-tenth of māl-māl by the straight line AB,
which is a thing; we get the straight line CD,
three things minus two-fifths of one-tenth of
a cube.

Divide by AB = x, and we obtain
CD = 3x− 2

5
1

10 x3.
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Table 1. Cont.

Step Statement and Solution Steps of the Problem
Expressed in Spoken Algebra

Translation of the Statement and of the
Solution Steps in Symbolic Algebra

12 But we have shown that the straight line CD is
the root of four māl minus two-fifths of one-tenth
of māl-māl.

We have shown that CD =
√

4x2 − 2
5

1
10 x4.

13 Multiply three things minus two-fifths of
one-tenth of a cube by themselves; we get nine
māl and one part of six hundred-twenty-five
parts of cube-cube minus six parts of twenty-five
parts of māl-māl equal to four māl minus
two-fifths of one-tenth of māl-māl.

Multiply 3x− 2
5

1
10 x3 by itself, and we obtain:(

3x− 2
5

1
10

x3
)2

= 9x2 +
1

625
x6 − 6

25
x4.

14 Reducing from this, we have a fifth of māl-māl
equal to five māl and a part of six hundred
twenty-five parts of a cube-cube.

Reduce this and we get 1
5 x4 = 5x2 + 1

625 x6.

15 Dividing all that you have by a māl, you get five
“dirhams” and one part of six hundred
twenty-five parts of māl-māl equal to one-fifth
of māl.

Divide all by x2, and we obtain
5 + 1

625 x4 = 1
5 x2.

16 Make whole māl-māl for which you have a
māl-māl, and so multiply it by six hundred
twenty-five, so all that you have by six hundred
and twenty-five; we have a māl-māl plus three
thousand one hundred twenty-five “dirhams”
equal to one hundred twenty-five māl.

Multiply all by 625, and we have
x4 + 3125 = 125x2.

17 Divide the māl into two halves, get sixty-two and
a half;

Divide 125x2 by half, and we have
(

62 + 1
2

)
x2;

18 multiply them by themselves, you get three
thousand nine hundred six and a quarter;

multiply
(

62 + 1
2

)
by itself, and we obtain

3906 + 1
4 ;

19 subtract three thousand one hundred
twenty-five, it remains seven hundred
eighty-one and a quarter.

subtract 3125 and we are left with 781 + 1
4 .

20 We remove the root of this one from sixty-two
and a half, we take the root of what remains, we
have the straight line ED which is one of the
sides of the pentagon.

Take away the root of 781 + 1
4 from 62 + 1

2
and we get the root of the remainder; thus, we
have the line ED that is one of the sides of the
pentagon

ED =

√
62 +

1
2
−
√

781 +
1
4
' 5.88.

In this way, students can be stimulated to observe how Arabic algebra, as a numerical problem
solving technique, uses the properties of the figure considered, expressed by Euclid in the geometric
language of the Elements, in order to write the equation that solves the proposed problem and then to
express themselves with the signs of our current mathematical culture.

In order to facilitate understanding of the learners, in Table 2 a translation of the symbols from
spoken algebra to symbolic algebra used in Table 1, is shown.

Students of secondary school can be pointed out that Abū Kāmil starts from Euclid’s result
(Elements IV, 11), which allows him to think of the given figure as “built”. This gives meaning to the
search for the length of its side. This measure constitutes new knowing, produced by diversification
through semiotic change. The “dual” and crucial role of Euclidean constructions becomes evident.
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Euclid teaches to build and attributes the dignity of existence to objects that become “realizable” and
therefore “measurable” with the new creative role in the signs of algebra [34].

Table 2. Table useful to convert from rhetorical algebra into symbolic algebra for the fundamental operations.

# Expressions in Spoken Algebra Expressions in Symbolic Algebra

1 a fifth (or one-fifth) 1
5

2 two-fifths 2
5

3 a tenth (or one-tenth) 1
10

4 one-tenth of one-tenth 1
10 ·

1
10

(
= 1

100

)
5 two-fifths of one-tenth 2

5 ·
1
10

(
= 1

25

)
6 one-part of six hundred-twenty-five parts 1

625

7 six parts of twenty-five parts 6
25

8 sixty-two and a half 62 + 1
2

9 a thing (or one-thing) x

10 a māl (or one-māl) x2

11 a cube (or one-cube) x3

12 māl-māl x2x2(= x4)

13 cube-cube x3x3(= x6)

14 five dirhams 5

15 three thousand one hundred twenty five dirhams 3125

16 three thousand nine hundred and a quarter 3906 + 1
4

17 seven hundred eighty one and a quarter 781 + 1
4

Both the drawn figure and the beginning of Abū Kāmil’s speech are in the Euclidean register for
the terms introduced, for the use of capital letters to indicate points and segments, and for the proposal
to “build” the straight line CLD. When Abū Kāmil assumes CD equal to “a thing”, the register changes:
in fact, he passes from the geometric register to the algebraic register.

At this stage, students can observe and learn, on an elementary example, how the change of
register instantly generates the beginning of the process that will then be named mathematical modeling
by the teacher.

While Abū Kāmil indicates with the term “draw” the movement made in Euclid’s “space”,
in which the construction takes place, with the term “assume” he introduces the reader to the algebraic
“narrative” and, therefore, to the possibility of taking a measurement. It is in this passage that one can
see the beginning of those semiotic transformations described in Reference [29,36,37].

Abū Kāmil continues to transform the “objects” from the Euclidean to the algebraic register,
justifying each passage with appropriate Euclidean propositions, up to obtaining for the square of
CD two expressions in which the “thing” appears. By matching the two expressions, he obtains
the equation that allows him to solve the problem. Abū Kāmil so completes the operation that,
several centuries later, will be taken up by Descartes in his Géométrie (1637). That is, he writes the
equation that solves the problem by equating the two different “narratives” that “tell” the same CD
object multiplied by itself. At this point, he resolves the equation in the algebraic register with the
passages he learned from the work of al-Khwārizmı̄.

Having acquired the foregoing, students can now move towards a general formulation of the
statement and the solution of the same proposition, introducing the concept of parameter and reflecting
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on the articulated relationship between parameter and unknown. Introducing the concept of parameter
and reflecting on the relationship between parameter and variable leads one to imagine dynamic
transformations of the figure. In the transition from the particular case to the generalized case,
students can be guided to consciously complete the linguistic transformation, to comment on its effects
and descriptive effectiveness, gradually acquiring familiarity with forms of increasing complexity and
flexibility in interpreting, reflecting, and analyzing.

In the example, if one indicates the diameter of the circle with the parameter 2r (r > 0), one can
rewrite the proposition in the following way:

Find the side of the regular pentagon inscribed within a circle of diameter 2r.

With the aim to facilitate the understanding of the students, in Figure 3, a pictorial representation
of this problem is given.

Figure 3. Pictorial representation of the problem proposed to students in its general form.

By going over the steps contained in the right part of Table 1, one can determine the acceptable

solution for the problem: x = r
√

5−
√

5
2 .

The new formulation allows us to observe that the relationship between the side x of a regular
pentagon and the radius r of the circle circumscribing it is constant and independent of the pentagon

considered: x
r =

√
5−
√

5
2 .

In the given semiotic and epistemic reading, this generalization, with the introduction of
parameters, has the characteristics of a new core of “knowledge” produced by the “determination”
constituted by the moment of the particular solution produced in numerical terms. In this sense, it is
configured as an example similar to those described in Reference [3,16].

When a proposition (statement and solution) is formulated in a more general language, a reflection
naturally takes on what character the geometric construction offered in the Elements assumes with
the parameterization.

Considering a “parameter”, that is a “variable” measure among the positive values that can be
assumed, gives the construction a more universal reading, that is, a reading that includes all possible
cases. Thus, that particular figure, which expresses a specific case, is not considered, if not exceptionally,
in its specificity, but rather in the context of the general formulation of the problem: that figure contains
in itself all possible cases. Consequently, to look at “that” figure implies a rational and intellectual
vision, for which the physical “looking” is only the starting point of observation.
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On the sidelines to the solution of Abū Kāmil’s problem, it is also possible to reflect on a possible
extension of its use within the teaching of plane analytic geometry. This immediately leads to the
realization that “treating” the equations does not automatically imply being in the context of the
“analytical method”. The equation treated in this path has its own consistency, and it helps to
understand what it means to operate in algebra. But, if the teacher wants to lead students to give a
meaning to this specific equation in the context of analytic geometry, he should “re-read” inside it its
geometric texture.

In this regard, students can be noted that the ontological character of the solution x = r
√

5−
√

5
2

of the problem is a length (that of the side of the pentagon). This solution expresses the length of the
side of the pentagon in units of the radius of the circumscribed circle; that is, the side of the pentagon,

which has the dimensions of a length, is proportional, through the dimensionless constant
√

5−
√

5
2 ,

to the radius of the circumference, which also has the dimensions of a length. There is therefore a linear
relationship between the side of the pentagon and the radius of the circle. Being the latter positive,
the equation that describes the dependence between the x side and the radius r will be represented,
in the Cartesian plane xr, as a half-line coming out of the origin.

Then, wanting to interpret the problem proposed in the context of analytic geometry, it can
be observed that the length of the side of the pentagon depends, “is a function” of the radius of
the circumscribed circle. One can express this by writing x = kr (k constant, r > 0 and x > 0),
which represents the half-lines of the first quadrant, each point r, x of which is a solution of the
problem. Thus, one is faced with infinite solutions (infinite are the points of a half-line), and the
half-line is the “locus” of the solutions of the problem.

In the same chapter of the book Kitāb fı̄ al-jabr wa al-muqābala, Abū Kāmil further calculated the
length of the sides of the regular decagon (see Reference [1], pp. 526–529) and of the regular polygon
with 15 sides (see Reference [1], pp. 546–551) both inscribed in a circle of radius 10. Therefore, the linear
relation x = kr, already found for the regular pentagon inscribed in a circle, can be generalized in
the form: xn = knr in the case of a polygon with n sides. Here, below, the values for the cases n = 5,
n = 10 and n = 15 are given:

x5 = k5r; k5 =

√
5−
√

5
2

' 1.18

x10 = k10r; k10 =
1
2
(
√

5− 1) ' 0.62

x15 = k15r; k15 =
1
2

√5 +
√

5
2

−
√

3
2

(
√

5− 1)

 ' 0.42.

Such a situation is given a representation in terms of analytic geometry in Figure 4, in which
some solutions of the generalized problem, xn = knr, for the three values of kn corresponding to
n = 5, n = 10 and n = 15, are shown in the first quadrant of the Cartesian plane. The black half-line,
in particular, represents the solution for the side of the regular pentagon inscribed in the circle of
radius r and the point S is the solution found by Abū Kāmil, obtained in the case r = 5. Analogously,
the blue and red half-lines represent the solutions for the regular decagon and polygon with 15 sides,
respectively, and the points Q and P are the solutions found by Abū Kāmil.

One therefore arrive, naturally, at modeling the locus of solutions of the generalized problem.
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Figure 4. Diagram showing the solution of the generalized problem xn = knr in the first quadrant of
the cartesian plane for three different values of n: n = 5, black half-line; n = 10, blue half-line; n = 15,
red half-line. The points S, Q, and P lying on the three half-lines represent the solutions found by Abū
Kāmil in the case r = 5, for the three cited values of n, respectively.

4. Discussion

The didactic proposal presented in this article allows to concretely follow: the realization
of a metamorphosis of objects, described in the Euclidean register, into the same objects, told in
the algebraic-rhetorical register; the translation of the same objects in terms of symbolic algebra;
the transition from the particular formulation of a problem to its general formulation, hinting at its
possible use within analytic geometry. All this helps to recognize, in different contexts, results obtained
in a specific context, making possible an intellectual experience of a continuum of meaning instead
of a discontinuity, which is often found in mathematics teaching, between learning geometry and
learning algebra.

The reference to results present in the Elements, as well as to the theorem of Ptolemy and that of
Pythagoras, within the proof of the proposition, contributes to creating a unitary vision of mathematics
and an awareness of the strength inherent in a new semiotic transformation.

The use of history of mathematics to improve learning abilities of the students has been
largely discussed in several works. The proposed path could even be used in the framework of
the Mathematical Knowledge for Teaching. In particular, comparing the approach of the present work
with Reference [2], some similarities with their case study n. 1 emerge, although they used a different
(and more modern) geometrical example excerpted from Viète’s theory of equations. For instance,
the model they show in Figure 1, that provides an analysis of meta-discursive rules in the excerpt
from Viète versus modern day meta-discursive rules, can be compared to Table 1 of the present work.
This shows how examples of this kind could be of fundamental importance not only for the learning
process of students but for the training of teachers, as well. This kind of approach could be the starting
point for further developments that will be given in future works.

5. Conclusions

In this work, a possible didactic path has been presented, that could be followed in a secondary
school class, in which it is shown a relationship between geometric knowledge and algebraic
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knowledge. The starting point for this didactic path was the first proposition of a chapter of the
book Kitāb fı̄ al-jabr wa al-muqābala written by the Arab mathematician Abū Kāmil before the year
870. Starting from Abū Kāmil’s proof, based on Euclidean geometric properties and expressed in the
language of spoken algebra, and afterwards in the language of symbolic algebra, the learners can
apprehend to “translate” from a mathematical language to another. This is a paradigmatic example to
experiment with the changes in registers with which mathematics is expressed and to assess how such
a procedure can be received by the students. This kind of approach can help the learners to be trained
with the process of generalizing a problem and constitutes a starting point in mathematical modeling.
This is the basis for modern science, as well as also a fundamental component for the application of
computer science to the solution of scientific problems.

This didactic path has the further advantage of making the students aware of the huge power of
symbolic algebra with respect to spoken algebra. Not only the language of symbolic algebra is more
compact and versatile, when compared to spoken algebra, since it can treat similar situations with
the same formalism, but also the use of symbolic algebra is a necessary prerequisite for mathematical
modeling. Last but not least, the use of symbolic algebra makes the communication of scientific results
almost independent on the language spoken by the persons, resulting in a more “universal” approach
to scientific advancements.

Reflecting on the link between the formulation of a problem and its geometric construction [44,45],
understanding how the “feasibility” of the geometric construction supports the possibility of “narrating”
the objects of the image in algebraic language up to identify an equation that models the problem,
understanding the character of the root that solves an equation [51], identifying one of the first historical
sources of the long path that will lead to express similar problems in the context of the analytical
method, etc., all opens culturally broader horizons in which successive mathematical theories will
develop and opens the students’ mind towards new situations that stimulate their creative potential.

6. Patents

There is no patent resulting from the work reported in this manuscript.
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