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Abstract: Classrooms are complex in their real sets. To understand such sets and their emergent
patterns, network approach provides useful theoretical and methodological tools. In this work,
we used network approach to explore two domains of complexity in a classroom: the interpersonal
domain, via social networks; and the representational domain, through collective semantic networks.
This work is grounded in both Social Network Analyses and Social Representation Theory for
gathering information from interpersonal and representational domains. We investigated a physics
high school classroom by proceeding sociometric tests and by using words freely evoked by students
to explore relations between students” dyad’s weights, in social networks, and emerging consensus in
semantic networks. Our findings showed closer relations between social ties” weight and consensus
formed on intra-school representational objects, while consensus on extra-school representational
objects is less dependent on the classroom interpersonal ties” strength.

Keywords: networks; science education research; sociodynamics; social representations

1. Introduction

Entanglements in which independent and elementary unities constantly interact can be viewed as
complex systems. In such systems, structural organization can emerge from interaction between its
elementary entities (or unities). These emerging organizations enable stabilities. Once some stability
arises, patterns can be noticed in the system. In order to investigate emergent patterns, it is required to
have (i) suitable methods that allow one to make inferences from data that capture objective features
of the world and (ii) ways to formally represent those patterns [1].

Complexity is inherent to real systems, such as classrooms. Although there is no unanimous
definition of what a complex system would be, they are often informally defined as being a network of
interacting elements, exhibiting complex behavior and without central control [2]. Complex networks
provide methods for referring to complex systems and tools for explicitly representing complex
structures. Networks, in general, can be conceived as a set of elements and the connections
between them. Such element/connections sets can refer to basically any group of unities and its
relations, or actors and its interactions, as long as there is an objective way to recognize nodes
(i.e., vertexes, elements, actors, or other) and its links (i.e., edges, connections, interactions, or other).
Networks can be formally represented as mathematical sets, a matrix, or images, operating under
norms from the graph theory [34].

In borrowing those notions to think as a classroom, its complex structures can be seen as networks
in numerous ways. In the interpersonal domain, network approach can be used, considering each
student as a vertex and each student/student link as an edge, from a social network perspective [5].
The social network approach has been adopted as a way to understand aspects of classrooms, such as
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partnership formation [6] and student leadership [7]. Although networks used in a strict social domain
can be a rich source of information on interpersonal realm, it does not account for the thought domain.
Social networks can clarify structural positions of each student, how their position operates in the
group, what are the sub-communities formed, or even show who are the closest pairs in the classroom.
On the other hand, they are not about tracing students ideas.

In this work, we are interested in investigating not only interpersonal networks but also which
ideas students share. That calls for approaching another dimension: Networks can also be used
for exploring and understanding domain of thought. In this sense, applying the network approach
to students’ thinking in science education has been used in various ways, from an individual’s
propositional networks in concept maps [8] to structural analyses of semantic networks built from an
individual’s words associations [9] or even for analyzing oral discourse [10].

Notwithstanding, each of those domains can work alone as a fruitful informative tool to investigate
classrooms; our interest in using networks is to expand the research landscape on teaching and learning
processes. In doing so, networks serve as a way to lump together different features from both social and
thought domains. Even though one may say those domains would be ontologically disjointed, because
each of them has its own intrinsic complexity, the more we amplify our view on a certain complex
scenario, such as classrooms, the more we see that boundaries are not clear and interdependencies
between levels and domains always play a role. This is essentially what the complex system approach
accounts for. Thus, networks can be used as a way to think and investigate a classroom in its complexity.
It can merge in the same analysis domains that are supposedly separate.

Efforts to relate structural traces from different domains via a network has been posed as a cutting
edge approach for deepening the understanding of classroom complexity. One example of this effort
can be seen in the so-called epistemic network analysis [11], in which networks from different domains
are plotted in the same topological space to be analyzed together. Another example is the analysis
of a correlation network to study the multiple influences of problem-solving, concept discussion,
and classroom communication in students” grades performance, by binding different network’s
dimensions [12]. Although not in a learning context, another approach can be pointed to, which uses a
socio-semantic perspective for studying the interplay between social structures and commonalities
in group discourse [13]. The diversity of networks as a research approach for mixing dimensions of
analysis indicates an existing field to be explored in classroom-grounded educational research.

In this work, our aim was to use the network approach to investigate both social and semantic
structures in a classroom in order to explore relations between the strength of interpersonal ties and
shared ideas.

2. Theoretical Background

Our approach for looking at both social and semantic networks is located in one of the edges
of the so-called didactic triangle [14]. A classroom didactic system was proposed by Chevallard for
problematizing the process of transposition that must be done in order to bring knowledge produced
in professional contexts to a kind of knowledge to be taught in classrooms. In the didactic system,
a triangle schematically represents three main elements involved in the process of teaching and
learning: teacher, knowledge, and students.

In the didactic system, knowledge refers to which content-specific knowledge should be
brought from its production context to classes, said transposed. Transposition refers to a series of
transformations made onto professional scientific knowledge, so-called wise knowledge, in order to be
teachable. In Chevallard’s sense, transposition is not a process of making easier a complex and distant
knowledge. Instead, transposition refers to creating a new kind of knowledge, deeply related to the
“wise” one but occupying a different epistemic niche [15].

In its new epistemic niche, knowledge to be taught unfolds in a learned knowledge. The unfolding
process includes how students would share meanings on the themes they interact with in classrooms.
Those shared meanings help to build a consensual universe in classrooms. In this case, while one
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way of using networks is to analyze individuals’ cognitive structures [16], another focal point can
be to understand what are the shared meanings circulating in the group [17]. In a second sense,
networks can be used in a socio-representational perspective for exploring the domain of thought in
the consensual universe.

The consensual universe can be captured in social representations built by a social group,
as proposed by Moscovici [18]. Social representations are phenomena of emerging consensual ideas
that help a group to deal with social life demands. It is a process of sharing symbolic referents in
order to make an object familiar to a group, helping to built the group’s social reality. The consensual
universe is in opposition to the reified universe. In a consensual universe, any member of a group has
the same authority over truth because what would be the truth is defined by the meanings those same
members can share. On the other hand, in a reified universe, norms and rules determine what is valid
as truth. Professional knowledges are produced and validated in the reified universe.

In a reified universe, society consists of a set of solid entities and science has authority over
individual experience. In contrast, a consensual universe has truths created by individuals’ experiences.
Individuals can share their experiences and produce representations that give identity and carry
historicity to the collective. Coupling Moscovici’s and Chevallard’s frameworks (Figure 1), reified and
consensual universes distinguish two kinds of knowledge. The first one is the “knowledge to be taught”
from the didactic triangle, which takes place in the scholar institutional sphere; therefore, it is related
to reified universe. The other one is the “learned knowledge” crystallized in meanings that students
share in classrooms, which builds students consensual realities; ergo, it is related to the consensual
universe. We are interested in the latter and how it is related to interpersonal complex structuring.
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professional NN @ (NI A [P %* [}
. ° S .
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Figure 1. Schematic representation of our network perspective for the classroom and its location in

Chevallard’s didactic system.

Although the consensual universe is less organized then the reified one, it is feasible to investigate
social representations despite its intricacy. Social representation are very dynamic; however, at the
same time, they are stable enough to be perceived. This seems to be contradictory; but, instead, stability
and dynamics are actually coexisting features of the same complex structure of a social representation.
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This supposed contradiction is solved by a structural approach of a social representation [19].
A social representation holds a central core and a periphery. The central core stands for the collective
memory and values, giving continuity to the group and having prominent elements. The peripheral
region of a social representation would be more influenced by immediate material and social contexts,
being more fuzzy and more dynamic. Periphery would work under an evolutionary dynamic
and would accommodate contradictions and heterogeneity.

This structural approach to social representations proposes that the central core has a functional
role in generating meanings and organizing the representation. It would emerge more stable than
periphery and would help to organize the representational field. The core could reveal its semantic
identification from similarities existing between lexemes (structuring words) freely evoked by
individuals in a group [20]. Hence, semantic networks in the present research refer to structures
of social representations produced by students and to their shared meanings in the learning process.

Considering the didactic system and its vertexes (teacher, students, and knowledge), it can be said
that social representations stands for the thought domain. Not in an individual sense of thought but in
the collectively shared thought. In order to bridge the edge knowledge < students from a didactic system
(Figure 1), we might also draw our attention to interpersonal social structures formed in the classroom.

Group structures study has roots in Moreno’s sociometry [21], in which sociograms were
used as explicit representations of an individual’s social position and its relation with peers.
Sociograms have evolved, shifting from its original “gravitational” form to a complex relation
structure [22]. Since sociograms have met graph theory, it gained a new configuration: the complex
social networks. That allows one to change the observations from the social attractor perspective to a
more elaborate analysis of the structural features, such as the relations actor/actor (network edges).

Today, social networks are still metaphorically associated with physical systems, in which
any dyadic relation can be seen as a network, or to chemical structures, in which social binding
works as an analog to covalent bonding [23]. In classrooms, dyadic relations could be any kind of
student/student transfer, like direct interactions or server logs in discussion forums [24]. It can also be
explicit nomination of preferred peers for collaborating in problem-solving [6].

Despite objections one can make to readily import natural sciences logic to analysis of social
contexts, parallels to natural sciences can be helpful allegories for minding that the network’s approach
is a way to make sense of classroom complex sets. As classrooms interpersonal relations and social
representation both emerge as complex organizations, networks can be used first as a metaphor to
think about classroom complexity and, secondly, as a method to explore it.

By articulating social networks and semantic networks, we can work on the students <+ knowledge
edge of the didactic triangle. That makes it possible to explore relations between interpersonal and
consensual thought domains. There is where our research question lies, as schematically represented
in Figure 1.

Both wise knowledge and specific knowledge brought to school are reified knowledges, in a reified
universe. In classrooms, the construction of social representations regarding the taught knowledge
occurs when elements from reified universe permeate students’ consensual universe, allowing the
emergence of shared meanings.

In Figure 1, the solid line between professional knowledge and knowledge to be taught indicates
that didactic transposition is first made by the teacher at an institutional level. Therefore, its process is
guaranteed by institutional norms. Regarding the teacher’s role, she/he operates this first transposition,
playing a central role in the teaching and learning process. The teacher’s role is so relevant that
she/he her/himself became one of the vertexes of Chevallard’s system. Thus, proceeding an analysis,
including the teacher in the network means that both her/his social and epistemic authority would be
included. Although that could be worthy because it would inform the teacher’s influence in bridging
institutional and pedagogical instances, in this work, we are interested in a later step, when the
knowledge spreads among students and shared ideas are formed. Thus, in this second order process,
the dashed line between knowledge to be taught and shared knowledge (Figure 1) indicates that
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another transformation in knowledge occurs, not institutionally but consensually among members of
the group. Once social representations cannot be imposed, the emergence of shared ideas takes place in
a consensual universe. This implies uncertainties as to whether or not socially shared representations,
said learned knowledge, would include elements of the reified universe.

The remaining question regards what role interpersonal ties would play on that process of sharing
ideas. In this matter, we borrowed from Saxe and collaborators [25] the idea of analyzing social ties
weight. They take a vygotskyan developmental approach [26] and use a sociocultural perspective
for relating interpersonal affiliation and the process of traveling ideas in classroom communities.
Sociograms built from table mates choices in classroom were used as social structuring explicit
representations. For those authors (ibid), social and thought realms would be coupled in a genetic
perspective: while onfogenesis refers to shifting in patterns of thinking over time, microgenesis involves
ongoing production of meaningful representations, and sociogenesis deals with reproductions and
transformations of representations, in order to promote communication among group members.

Although in the present work we are not taking the genetic perspective, and we are using
a different approach specially regarding thought domain, their proposal of investigating the
interpersonal affiliation strength (or intensity or weight) in the social networks has shed some light on
the necessity to account for student/student ties. That has been a particularly important informative
source in our findings, as we will show in the following.

3. Materials and Methods

3.1. Research Context

We conducted the present investigation by following an 11th grade high school physics classroom
in a comprehensive public institution in Sdo Paulo, Brazil, between March and May 2018. The school
had between 800 and 850 students enrolled that year (the precise number was omitted in order to keep
school anonymity). Sdo Paulo is the biggest city in the country of Brazil. As a huge metropolis, the city
is a multitude of contrasts.

Socioeconomic contrast can be addressed to studied school reality. The school facility is located in
an upper middle class neighborhood, but most of its students come from surrounding “low income”
neighborhoods. As they walk uphills to get to school, they experience a spectrum of changing
in the landscape. In this adverse reality, our research subjects struggled to obtain their basic education.

The class we followed had 36 students enrolled, 23 male and 13 female. During the period of
observation, students were having classes on heating exchange. The teacher was a young licensed
physics teacher and had an apparently good relation to students, demonstrated by their shared
friendliness.

Regarding the research design, we are proceeding an exploratory and explanatory case study [27]:
we are using multiple sources of evidence (semantic networks and social networks), and we are
exploring an area where context and phenomenon cannot be clearly detached.

As an exploratory and explanatory case study, the present research design works as an informative
process that must be addressed to a specific environment and context. Dealing with complex sets,
our networks are not in service of deterministic assumptions nor generalizations. On the contrary,
investigating a classroom through its emerging semantic and social networks and exploring relations
between those domains must be used as a form of making sense to subtle complex structuring process.

3.2. Research Instruments and Procedures

During the first week, having previously obtained permission from the teacher, the researcher
presented himself to the class, presented a brief of the kind of research would be conducted, and asked
students permission to proceed. Each student received an authorization form they had to bring back
signed by their responsible parent or guardian. After the forms had been returned, data started to be
collected. The data for the present work were collected between the third and the fourth week.
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3.2.1. Semantic Networks

The process of gathering data for the semantic network followed the free word evoking
technique [28]. The technique consists of asking a research subject to say the first words that come
to their mind when we say some inductor term. Then, a network made by words and word links
is built. The uses of word networks in semantic contexts can vary, although the main idea is to use
associations between words for inferring similarities, meanings, or structural features. Proximity can
be either phonological or semantic [29]. It can also be obtained by free association between words,
considering its valency [30]. In the present research, as we are investigating shared ideas in a group,
proximity between words was obtained by a similarity index, considering the co-occurrence of evoked
terms. Although big data surveys using free word evocation technique have standardized the use of
three evocations for each inductor term [31], in this work, we opted for more evocations, providing
students with more opportunities to express their related words and enhancing nuances of Social
Representations studied. In order to survey representations on objects varying from inner classroom
content to students extra-school world, we asked students to freely evoke the five first words that
would come to their mind on the following five inductor terms:

(i) Heat: it was the specific content they were studying during the research, and it would be a vivid
theme to them;
(ii) Physics: as a scholar discipline, it could still being an inner school theme to them;

(iii) Science: its meanings could bridge inner school ideas and the outer school world. As science is
present as an object in media but also in the classes they were taking, related words could reveal
the overlapping of both;

(iv) School: words evoked on this inductor bring thoughts on students daily life but, at the same time,
could accommodate both their expressed feelings about the school reality and the contrast they
experience on their way;

(v) Future: it should be the more distant one, both in space and time. The prospective features of
ideas regarding future was considered and related words can show social representations of
possible life-paths on which they imagine themselves.

All present students, by the day we collect the evoking data (22/36 students), answered the
evoking sheet. Evoked words were lemmatized, reducing gender and plurals to a single form, and the
data was converted to a .CSV file. Then, it was imported to IRaMuTeQ software [32] for a proceeding
similarity analysis between words.

The co-occurrence similarity index was computed using Russel’s algorithm [33], which provides
a proximity value used for an undirected network. Directional dependence between the cue and the
response were not considered. For all pairs of words, the details are shown in the following figure
(Figure 2). All five similarity matrices computed were converted into another .CSV file and exported
to be post-processed in R software [34] using the Igraph package [35].

In Figure 2 is shown a proxy as an hypothetical example of four students evoking five words that
came to their mind on the inductor term “pet”. The process of building semantic networks takes as raw
data all evoked words (Figure 2A). Then, all lexemes are sorted by frequency, and an occurrence matrix
is built (Figure 2B). A 2 x 2 contingency matrix (Figure 2C) is used for computing the co-occurrence
similarity index for each pair of words.

In this 2 x 2 matrix, position a is the total number of co-occurrences for both words; position b
is the total number of occurrence of only word 2 but not word one; position ¢ is for total number of
occurrence of only word 1 but not word 2, and position d is the number of absences for both words.
With the similarity index computed for all possible pairs, it gives a similarity matrix which is taken
as an adjacency matrix. In the network, the similarity index was used as the edge weight value.
The vertexes” (words’) diameters are plotted proportional to its degree.
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Figure 2. Steps for the process of converting evoked words into a co-occurrence network.
3.2.2. Social Networks

For the social network, we proceed with a sociometric test by free choices [36], which consists of
asking students to declare who are their preferred peers or who do they feel more connected with in
different situations. Although classic sociometry includes the possibility of asking who are the peers
they feel in opposition with or disconnected to, we did not use disruptive criteria of choice in order to
avoid that research instrument itself becoming a disruptive factor in the classroom.

After validating different criteria of choice (i.e., sociometric questions) in our research group,
we end up with eight criteria. They would vary from direct interpersonal affiliation, such as (i) who are
the classmates you usually have lunch with?, to a cultural commonalities, such as (ii) who are the class mates
that like the same kind of music as you?.

The other six criteria concerned pairs who (iii) practice same sport as you, (iv) you use to meet outside
school, (v) you would invite for a party, (vi) you like to do school work with, (vii) support same soccer team as
you (in Brazil, soccer as a strong cultural element and can bind friend together), and (viii) overall you
feel more connected with.

Students were presented with a class list, and each one was asked to dash her/his own name.
That was used for identifying her/himself as the respondent. Each criteria generated a directed
unweighted social network. Then, all eight networks were concatenated for building an undirected
and weighted social network. In this network, edges were plotted with their thickness proportional to
total weight, as shown in Figure 3.

Even though the sociometric test was not answered by all present students (28/36 students) by
the day we collected that data, the social network was built using all 36 enrolled students, due the
fact that even an absent mate could be chosen by her/his peers and would, therefore, be part of that
social network.

The data were analyzed in R software [34] with the Igraph package [35]. For each respondent,
an outward edge list was taken from the respondent perspective to be imported to R. For each criteria,
a symmetric adjacency matrix was built. Then, all eight criteria networks were concatenated summing
the total number of edges between each pair and a weighted undirected social network was built.
A heatmap from the adjacency matrix was plotted in order to visually check possible randomness.
The vertex’s degree distribution and the edge weight distribution were plotted.



Educ. Sci. 2020, 10, 30

8of16
Criteria of choice 01 Criteria of choice 01 Criteria of choice 01
(JO)[John [/ | John John
(MR Maria——| (respondent) | Maria, Maria |v!
(PL)[Phill v Phill |~ Phill |+
(SD)|Sandra|v| Sandre Sandra Social Network
(criteria 01)
SD MR
JO ©OSD 0 B 10 \
+ \ + | N =
T/ PL PL
J PL )
MR MR MR
Social Network Social Network Social Network VVeigh‘.ced Undirected
(criteria 01) (criteria 02) (criteria 03) Social Network

(total weight)

T

edges prop.
to social

bl

Figure 3. Steps for the process of building directed unweighted social networks for each criteria and
one undirected weighted social network for all eight criteria.

tie weight

3.2.3. Dimensional Reduction

Having both a social and semantic network, we sorted six numerical variables (Table 1) to
process a dimensional reduction. They were (i) weight of edges for each dyad connected in the social

network and the number of coincident words evoked for (ii) heat; (iii) physics; (iv) science; (v) school;
and (vi) future.

Table 1. Summary of numerical variables for all pairs of students (dyad) and steps for data processing.

Domain Numerical Variables Data Processing
Step 1 Step 2 Step 3
Social (i) Soc. tie weight
(ii) Heat

Number of (iii) Physics o Scree Test PCA
Semantic  coincident (iv) Science ot
(v) School

words for: (vi) Future

All complete cases, i.e., pairs formed in the social network and having both students answered
the word evoking sheet, were selected. Internal consistency « index [37] was computed using R’s
cocron package [38]. Then, a Scree Test [39] was proceeded using R’s nFactors package [40] in order
to determine the number of components to be retained. Finally, a Principal Components Analysis
(PCA) [41] for the variables was computed using R’s FactorMineR package [42]. All data and the
R script used for the analysis are available online [43].

4. Results

4.1. Social Representations and Similarities Networks Description

The words’ co-occurrence networks are shown in Figure 4, along with all evoked terms as
vertexes and with the edge thickness proportional to computed similarity index. The network for Heat
has 48 words with 290 co-occurrence relations. Sumn, fire, and beach had highest degrees, and the pairs
Sun-beach, Sun—fire, and beach—fire were the most similar ones (Figure 4A).
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Words’ co-occurrence network for (A) Heat; (B) Physics; (C) Science; (D) School,

and (E) Future. Vertexes with diameter proportional to degree and edges with thickness proportional
to similarity index computed with Russel’s algorithm.

For Physics, the network showed 60 words and 188 co-occurrence relations. Calculation, gravity,
and formula were the highest degrees, and the most similar pairs were heat—cold, calculation—studies,

and school-teacher (Figure 4B).

For Science, a network with 52 words having human body, animals, and studies as highest degrees
and 151 pairs (physics—biology, physics—chemistry, and chemistry-biology were the most similar pairs)

are shown in Figure 4C.

Evocations for School (Figure 4D) showed a 60 words network with teacher, studies, and prison as
more connected words and 303 relations with teacher— physical education, teacher—test, and teacher—friend

as the closest ones.
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The last network, Future, showed 63 words with 214 relations. The elements work, house, and grad
school were the highest degree, and the pairs work—grad school, work—money, and car—house were the

closest pairs (Figure 4E).

4.2. Interpersonal Ties and the Social Network Description

The weighted social network with all pairs of student is shown in Figure 5. Regarding the ego
perspective, the degree distribution (shown in Figure 5, bottom right) highest total degrees, considering

the sum of in and out degrees, were from PS (d = 33), AA (d = 32) and PF (d = 26).
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Considering an ego-alteri perspective, social network showed 277 pairs with social tie weight
varying from 1 to 14. The heatmap ( Figure 5, bottom left) is a graphical representation of the social
network in a N x N matrix with values of social strengths represented in different colors: stronger
social ties are in yellow, and weaker are in blue. Edge distribution (shown in Figure 5, bottom right)
presents largest weights for two pairs with w = 14 (GH-ET and YG-GL), followed by two other pairs
with w = 13 (BS-CP and YG-LF). The strongest social ties were all intra-gender, of which only BS-CP
were girl/girl. The following six pairs had w = 12, and among them, the network shows its first
inter-gender social tie.

4.3. Dimensionality Reduction via PCA

The total of complete cases were 128 observations, and the internal consistency index was
Kerony = 0.607. Although there is no cutoff point for internal consistence, a recent survey [44] suggests
this is largely accepted as satisfactory. The Scree test suggests that the hypothesis of two principal
components would be sufficient to explain most of the data variance. This is reinforced by a parallel
analysis, which suggests retention of a single component (Figure 6, left).

Non Graphical Solution to Scree Test Variables factor map (PCA)
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Figure 6. Scree test suggesting two principal components to retain (left) and Principal Components
Analysis (PCA) map with the numerical variables (right).

The first principal component (Figure 6, on the right, horizontal axis) takes loads mainly from
the following variables: social tie weight (0.73); number of coincident words in evocations for Heat
(0.75); and number of coincident words in evocations for Physics (0.73). They are followed by number
of coincident words in evocations for Science (0.49), for School (0.49), and Future (0.30) on the first
component.

The second component (Figure 6, on the right, vertical axis) had variable loading 0.81 for consensus
emerging in evocations for Future and 0.49 for consensus in evoked words for School. All other
variables have had loads less than 0.3 in the second principal component.

5. Discussion

Both social and semantic networks showed non-hierarchical structures, and despite having core
elements, they did not show a clear central control. These are traces of a complex structuring both in
interpersonal and in thought domains.

Structures emerged in social representations, seen in semantic networks, accommodated both
common sense and reified terms regarding school objects (Heat, Physics, and Science). As proposed
by Chevallard [14], school systems bridge the general sphere of thinking, so-called “noosphere”,
and students reality in the the didactic system. That kind of open system overlaps reified and
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consensual universes. It is expected that fuzzy borders would combine different sources of
representation in students’ evocations.

Main words and main relations in the Heat network (Figure 4A) were related to common sense
ideas about heat, while Elements from scientific discourse were sparse on that network. Words from
scientific discourse appear more frequently in the “Physics” network (Figure 4B) but often related by a
supposed opposition, e.g., heat—cold. This kind of contrast is recognized by reified scientific discourse
as an alternative conception but circulates as consensus among students.

Co-occurrence networks patterns seem to be consistent to social representation theory [18]
in its structural approach [19]: fewer elements aggregate representation’s central core having strong
connectivity power. Although not exerting a central control in the system, it helps to organize the
representational field. They are emerging cores consensually formed by the group. Core elements
carry historicity and give identity to the group and would not, therefore, depend on immediate
material context.

The fact that students evoke Sun when we say “Heat”, for instance, is how they—using
Moscovici’s words—transform the unfamiliar, which would be how physicists define heat and how
concepts of heat are presented in physics classes, into the familiar, which by its turn, would be objects
that would make sense in students’ daily lives. Social representations are built for helping a social
group to deal with social life, social realities, and social demands.

Professionals in science could take heat as some “amount of transfered energy” as a first snapshot
idea. When students start to deal with new school knowledge, the idea of heat, for example, would not
be thought in the same way as physicists would think about it. Once there could be no representational
object for a group if members of the group do not deal with such object in their life demands, a reified
lexicon on heat could not circulate among students if they do not deal with life demands in which such
lexicon is consensually shared.

Professional and scientific discourses use reified definitions in a reified lexicon because they are
produced and used in a reified world. Considering this, the science teaching challenge would not be
to convert students’ common sense representations on science matters into reified representations.
Instead, it would be to promote situations in which real demands start to be part of students’ social
lives. Then, in order to deal with such demands, new social representations must be produced by them
and then would become consensual notions and would circulate among members of the collective.

In representation for “Physics”, the network brought the issue of thinking about physics as being
a discipline focused in formulas and calculations. That is consistent with recent findings reported in
Reference [45], where another kind of word network showed a similar relation. Besides that, pragmatic
elements of physics can be seen but not related to heat. Again, heat appears to be an unfamiliar
object for the group. Negative feelings, such as low grades, fear, and remedial lessons, suggests that
disciplinary physics is seen as an epistemic obstacle for those students.

In the network for “Science” (Figure 4C), the emergent structure has its core anchored in
biology elements (animal, human body), even though data gathering was conducted during physics
classes. This representation may be influenced by a stereotypical view of what science would be like.
Another feature is that the closest words in this network are all disciplinary relations between school
classes regarding biology, physics, or chemistry. It shows an image of school science in its typical
curricular discipline separation.

Considering the “School” network, it goes back to didactic triangle. The didactic system has a
remarkable asymmetry: the teacher occupies alone one of the three vertexes (Figure 1). Thus, her/his
importance is undeniable. Even in the most democratic teaching sets is to be expected a relevant role
for the teacher in terms of being recognized as social and epistemic authority in classroom.

That can be confirmed in the representation for “School” (Figure 4D), which emerges centered in
the image of the teacher and relates her /his figure in first most similar pairs. The “School” network
would not be the case of a tension between scientific and common sense discourses. However, an image
of school teacher-centered would be a consensual idea circulating among students that has been built
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since they began their school lives. Contemporary teaching sets tend to be focused in scaffold students’
autonomy. However, the teacher-centered representation for school in students” evocations does
not necessarily oppose that view. This can be seen in one of highest pair similarities, which was
teacher—friend, confirming a positive image of the teacher in relation to students. The central role of the
teacher in the classroom can actually be a key factor for promoting students” autonomy.

Another feature for “School” network is the emergence of negative images, such as “prison” and
“boring”. That can be addressed with traditional school sets which can be seen by students as an
imposing structure over them. Those negative evocations for school call a reflection: one can only be
jailed if she or he would be put inside a place. So, social representation of school as a place that jails
the student suggests another teaching challenge: the necessity to foment ways to empower students
and enacting their agency in order to build representations of school in which students could see
themselves more as being part of school instead of being at this place called school.

Despite some negative representation on “School”, the group appears to keep valuing studies as
an exit door for socioeconomic issues. While core elements in the network for “Future” were anchored
in what we could call by middle class desires, such as having a job, building a house, or getting
married, the closest pairs attached “grad school” to “work” and “work” to “money”. It shows that
students share values on the following studies in order to achieve their life goals.

Since, in all real representation, contrasts are an inherent feature, in the”Future” network,
a disconnected subgraph (Figure 4F) shows an evident negative self image. Contrasts aside, even in
this detached sub-network, the negative view of future is related to not having finished school.
That confirms the strong relation between schooling and work opportunities as a shared representation
in the group.

Going beyond representational content analysis, we are exploring networks brought from two
domains, social and representational, particularly interested in how an interpersonal emerging
structure, formed by several sociometric tests, would or would not be related to consensus described
above. In this case, the dimensionality reduction supports the notion of a social tie being influential in
the consensus formation.

PCA results in having its first principal component mainly loaded by the social tie weights
and coincident words evoked by students for intra-school themes (Physics, Heat, and Science).
That is consistent with Saxe and his colleagues’ proposal [25], in which traveling ideas in the classroom
depend on the strength of student-student affiliation. However, the first principal component showed
that this is not for any consensus. The PCA variables map (Figure 6, on the right) shows that the more
themes are getting “outer school” (School and Future), the more they become independent from the
classroom’s social tie weight. As a classroom’s social structure is an open system, it would be always
interacting with a broader noosphere, and social representations formation on outer school objects
would be less driven by inner classroom social relations.

6. Conclusions

The aim of this work was to use the network approach to investigate both social and semantic
structures in a classroom in order to explore relations between the strength of interpersonal ties
and shared ideas. Representations shared by members of a social group cannot be thought apart
from the group itself. Findings reported in the present work indicate that interdependence between
interpersonal tie strength and shared ideas on objects closer to students” school is stronger than the
interdependence between interpersonal relation strength and consensus regarding objects more distant
from school daily life.

Network approach for both students social relations and shared representations was a fruitful way
for building interpretative landscapes on both domains. We could show evidence that interpersonal
structures are indeed related to consensus formation in the classroom. Because each student’s life is an
overlapping of a multitude of different social groups, each of them sharing its own values and building
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its own identities, it is likely that themes related to non-scholar life contents produce representation
which are shared by a broader community. Therefore, classroom social ties is less related to them.

In this work, we analyzed classroom emerging structures synchronously. The advantage of doing
so is that networks can be addressed for a particular moment in the classroom and to a specific teaching
content and context. It is challenging to proceed with an analysis when operating two domains of
such a complex set, as a real classroom, but the dimensional reduction was helpful to dig relations
inter-domain. Further research on this perspective points out the importance exploring beyond
synchronic networks. That means accounting for network dynamics in order to understand how
the classroom’s emerging structures evolve through time. In addition, this goes beyond single-layer
networks, including new advances in the so-called multilayer networks perspective [29,46], to bridge
semantic and social networks dimensions as layers of the same system.
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