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Abstract: This study contributes to research on the nonparametric evaluation of German trade
forecasts. To this end, I compute random classification and regression forests to analyze the optimality
of annual German export and import growth forecasts from 1970 to 2017. A forecast is considered as
optimal if a set of predictors, which models the information set of a forecaster at the time of forecast
formation, has no explanatory power for the corresponding (sign of the) forecast error. I analyze trade
forecasts of four major German economic research institutes, a collaboration of German economic
research institutes, and one international forecaster. For trade forecasts with a horizon of half-a-year, I
cannot reject forecast optimality for all but one forecaster. In the case of a forecast horizon of one year,
forecast optimality is rejected in more cases if the underlying loss function is assumed to be quadratic.
Allowing for a flexible loss function results in more favorable assessment of forecast optimality.
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random forests
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1. Introduction

As one of the world’s main exporters, Germany’s trade policy has received much attention
in recent years. Professional forecasts play a crucial role in this context, as economic agents rely
on such forecasts, when shaping economic expectations (Carroll 2003). In order to make accurate
policy and investment decisions, it is, therefore, necessary to correctly predict trade developments,
as these dynamics greatly influence output growth and price levels through inflationary pressures
from import prices (D’Agostino et al. 2017). Additionally, optimal trade forecasts are an essential
part of GDP forecasts as macroeconomic forecasters tend to implement a so-called disaggregated
approach when forming such forecast. In that case, economic research institutes individually predict
all components of the GDP and combine these predictions to a forecast of total output (see, among
others, Angelini et al. 2010; Heinisch and Scheufele 2018, for a comparison of direct and disaggregated
forecasting approaches.). Research on predictions of single GDP components mostly focuses on
forecasts of private consumption (see, for instance, Vosen and Schmidt 2011). In the case of trade
developments, a study by Ito (1990) reports behavioral biases of importers and exporters when forming
expectations about exchange rate changes, hinting that also macroeconomic trade forecasts might not
be optimal.

Even though trade developments play a prominent role in the formation of macroeconomic
forecasts, their evaluation has not been extensively studied. The focus of the research on trade
forecasts lies on their formation. Here, studies either implement structural models of economic
environments and simulate trade dynamics (Hervé et al. 2011; Riad et al. 2012) or other authors aim at
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optimizing the forecasting performance of time series models (Frale et al. 2010; Jakaitiene and Dées 2012;
Keck et al. 2009; Yu et al. 2008). Studying German trade is especially interesting because of the country’s
dependence on exports and its large trade surplus, which has been at the center of public attention
in recent years. However, studies analyzing German trade forecasts are scarce. The existing studies
concentrate on forecasting a single trade aggregate, i.e., German exports (Elstner et al. 2013; Grossmann and
Scheufele 2019; Jannsen and Richter 2012) or imports (Grimme et al. 2019; Hetemäki and Mikkola 2005).
However, despite the fact that suboptimal trade forecasts can potentially be costly if, for instance, a
protectionist trade policy is pursued due to such forecasts, the evaluation of trade forecasts has not
received much attention.

The research on macroeconomic forecasts published by German economic research institutes has
a long tradition in the scientific community with early analyses by Neumann and Buscher (1980) and
Kirchgässner (1984). Today, the research topics in this field are manifold, including studies on forecast
revisions (Kirchgässner and Müller 2006), forecast accuracy (Heilemann and Stekler 2013), external
assumptions of forecasts (Engelke et al. 2019), forecaster rankings (Kirchgässner 1993; Sinclair et al. 2016),
or the economic value of forecasts (Döpke et al. 2018). Most of these studies focus on the analysis of GDP
and inflation forecasts by means of panel-based models (Döpke and Fritsche 2006; Müller et al. 2019)
or time series models (Kirchgässner and Savioz 2001). A fairly novel approach introduced by
Behrens et al. (2018b, 2019) utilizes nonparametric tree-based models to analyze German GDP growth
and inflation forecasts. Behrens (2019) has recently adapted this nonparametric approach to an analysis
of the joint efficiency of German trade forecasts in a multivariate setting under quadratic loss. I extend
this branch of research by analyzing the optimality of German export growth and import growth
forecasts under both quadratic and flexible loss.

To this end, I build on research by Elliott et al. (2005, 2008), who study optimal forecasts under
asymmetric loss. The seminal work in this field by Granger (1969), Varian (1974), and Zellner (1986)
as well as early applications (Christoffersen and Diebold 1996, 1997) have recently been applied in
several fields such as financial forecasting (Aretz et al. 2011; Fritsche et al. 2015), fiscal forecasting (Artis
and Marcellino 2001; Elliott et al. 2005), central banking (e.g., Capistrán 2008; Pierdzioch et al. 2016a),
as well as GDP and inflation forecasting (Christodoulakis and Mamatzakis 2008; Pierdzioch et al.
2016b; Sun et al. 2018). The basic assumption in this field of research is an asymmetric loss function. In
other words, researchers assume that a forecaster’s loss function is not symmetric, which allows for
the possibility that forecasters prefer, e.g., underestimating economic growth over overestimating. A
possible scenario could be that forecasters fear unfavorable media coverage in the case of an unforeseen
recession, whereas an upward correction of the forecast in economically good times might not have such
ramifications. In case of trade forecasts, especially in the case of Germany, a motivation for forecasters to
prefer underestimating export growth over overestimating, might be the recently increasing protectionist
tendencies in international trade (see, among others, Durusoy et al. 2015; Park 2018; Pelagidis 2018). An
inflated export growth forecast for Germany could add into the spirit of protectionism of some of its
trading partners. Patton and Timmermann (2007), for instance, find for GDP forecasts that, in times
of low economic growth, overpredictions of output growth are costlier to the Federal Reserve Bank
than underpredictions. The authors introduce the concept of a flexible loss function. The advantage of
this concept is that no restrictions need to be imposed on the forecasters loss function; however, as a
trade-off, restrictions need to be imposed on the data-generating process (for details on the concept of
flexible loss and its implementation, see Section 2). When analyzing the optimality of forecasts, it can be
crucial to consider a flexible loss function as results can be misleading if a researcher assumes a certain
type of loss function, which, in fact, is misspecified Pierdzioch and Rülke (2013). I, therefore, extend the
Behrens et al. (2018c) approach to testing forecast optimality by estimating random regression forests
with a quadratic, i.e., symmetric, loss function as well as random classification forests with a flexible
loss function to analyze whether or not German trade forecasts are best described by a symmetric
loss function. Tree-based models are powerful nonparametric modeling instruments, for which no
model specifications regarding the linkage of predictor and response variables need to be imposed a
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priori and that can deal with datasets with a small number of observations relative to the number of
predictor variables. I study export and import growth forecasts for Germany from 1970 to 2017 formed
by four major German economic research institutes, a collaboration of German economic research
institutes, and an international forecaster.

I describe random forests and my adaption of the Behrens et al. (2018c) approach to testing
forecast optimality in Section 2. In Section 3, I present my data and I summarize my empirical results
in Section 4. In Section 5, I conclude.

2. The Model

In their study of the Federal Reserve’s economic growth forecasts, Patton and Timmermann (2007)
introduce a method to analyze the optimality of a forecast when the type of a forecaster’s loss function
is unknown. This concept of a flexible loss function requires a trade-off regarding the underlying data
generating process. That is, if (a) the loss function depends only on the forecast error and the data
generating process only has dynamics in the conditional mean, or (b) the loss function is homogeneous
in the forecast error and the data generating process has dynamics in the conditional mean and
variance, a forecast is considered as optimal if the sequence, lFEt+1≤0, is independent of the forecaster’s
information set at the time of forecast formation (see proposition 3, Patton and Timmermann 2007, pp.
1175f). Here, l is an indicator function and FE denotes a forecast error. Given the data at hand (see
Section 3 for details), there are no issues regarding dynamics of higher-order moments, as the analyzed
forecasts are only available midyear and at the turn of a given year. Patton and Timmermann (2007)
further show that forecast optimality can, hence, be tested by estimating a logit or probit model of the
form:

lFEt+1≤0 = βZt + ut+1, (1)

where Zt is a matrix containing a forecaster’s information set in period of time t, β denotes a vector of
coefficients, and ut+1 is an error term. A forecast is considered as optimal if the null hypothesis, which
states that the set of predictors does not have predictive value for the sign of the forecast error, i.e.,
β = 0, cannot be rejected.

However, such a linear approach to testing forecast optimality runs into problems if, for instance,
the number of observed forecast errors is relatively small, such that a large set of predictors causes a
problem regarding the degrees of freedom of the model. In this case, one could reduce the number of
predictors, which are contained in Zt. However, choosing the omitted predictors is arbitrary at least to
some degree. Another problem arises when modeling the link between the sign of the forecast error
and the predictor variables. A priori, the researcher needs to define the nature of said link, i.e., if it is,
for instance, linear, quadratic, or cubic. Furthermore, the predictor variables can be interdependent,
such that this relationship also needs to enter the predefined estimation equation. When using a linear
approach to testing forecast optimality, there are several sources of possible model misspecifications,
which in turn result in biased results. I follow Behrens et al. (2018c), who propose a nonparametric
tree-based model, implementing the Patton and Timmermann (2007) test of forecast optimality, to
overcome these drawbacks. Tree-based models have first been introduced by Breiman et al. (1984)
and have an advantage in, loosely speaking, letting the data decide on an appropriate form of the
estimated model. No predefined linkages between predictor variables and the response variable or
among the predictor variables need to be imposed by the researcher. Behrens et al. (2018c) implement
Equation (1) by means of random classification forests, which pool a large number of classification
trees, such that forecast optimality under flexible loss can be studied by the following model (for an
introduction to random forests, see Breiman 2001):

lFEt+1≤0 = ∑
Tc

Tc(Zt) + ut+1, (2)
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where Tc is a single classification tree. I extend their model by reestimating Equation (2) by means of
random regression forests, ∑Tr

, in order to analyze forecast optimality of German export and import
growth forecasts under quadratic and flexible loss.

Generally speaking, regression trees analyze the effects of predictors on a continuous response
variable and classification trees do so on a discrete response variable. Both types of trees work along
the same process, as they aim at structuring the feature space, i.e., the space set up by the analyzed
n predictors, Z = (z1, z2, ..., zn), into several non-overlapping regions, Rj, in which a simple model
is fit (for a comprehensive introduction to tree-based methods, see James et al. 2015, whose notation
I roughly follow, dropping the time index, t, for simplification.) These rectangles, or partitions, are
generated by recursive, binary splits at the so-called interior nodes of each tree. Figure 1 depicts this
tree-building process. An exemplary tree is depicted in the left panel and the respectively divided
feature space is shown on the right. The dataset is split into two subsequent regions at each node. The
first split occurs at the root of the tree and observations with partitioning predictors z1 less than or
equal to cutpoint c1 are sent down the left branch of the tree, where they reach a terminal node and
are assigned to region R1. For observations with partitioning predictors z1 greater than cutpoint c1,
another split occurs at the following node. Here, observations which satisfy c1 < z1 ≤ c2, are sent
down this node’s left branch and observations with partitioning predictors z1 > c2 are sent down
the right branch. At each following node, another split occurs with regard to partitioning predictor
z2, such that, at the first subsequent node, observations with partitioning predictors c1 < z1 ≤ c2

and z2 ≤ c3 are assigned to region R2 and those observations with c1 < z1 ≤ c2 and z2 > c3 are
assigned to region R3. At the second subsequent node, i.e., for z1 > c2, observations which satisfy
z2 ≤ c4 are assigned to region R4, whereas observations with partitioning predictors z2 greater than
cutpoint c4 are assigned to region R5. The right panel of Figure 1 depicts how a single tree divides the
thusly obtained two-dimensional feature space into the respective regions. The same logic of recursive
binary splitting can be analogously applied to a multi-dimensional feature space consisting of various
predictor variables. Once the whole feature space is divided into regions, the same prediction is made
for all observations, which fall into one region. In the case of a regression tree, the prediction is the
mean response of all observations, i.e., forecast errors, in said region. For a classification tree, the
response is the sign of the forecast error, which is determined by a majority vote of all observations in
the respective region.

Regression and classification trees differ in the way of searching for optimal nodes. For both
types of trees, a partitioning predictor and a cutpoint are chosen at each node in order to minimize a
so-called node impurity measure. For regression trees, the residual sum of squares, RSS, measures
node impurity under quadratic loss. For every pair of predictor variables, z, and cutpoints, c, the
following equation is minimized:

RSSj,c = ∑
i:zi∈Rl(j,c)

(FEi − F̄ERl )
2 + ∑

i:zi∈Rr(j,c)
(FEi − F̄ERr )

2, (3)

where F̄ERl denotes the mean forecast error response for observations falling into the left subsequent
region of a given node and F̄ERr denotes the mean forecast error response for observations falling into
the right subsequent region of said node. In other words, for every possible split, the emerging regions
are chosen such that they minimize the RSS of observations which they contain vis-à-vis the mean
response of that region.
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Figure 1. Data Segmentation of an Exemplary Classification or Regression Tree—Left panel: Exemplary
classification/regression tree with partitioning predictors, zt, cutpoints, ck, and regions, Rj. With
t = 1, 2, k = 1− 4, j = 1− 5. Right panel: Partitioned feature space with the respective regions.
Example based on Hastie et al. (2009, Figure 9.2).

Analogous to the linear logit/probit Patton and Timmermann (2007) approach to testing forecast
optimality, classification trees are a nonparametric way to implement a flexible loss function. Here,
node impurity is measured by means of a Gini index, G:

G = sm,Rl/r (1− sm,Rl/r ), (4)

where sm,Rl/r is the share of positive/negative (m = 0, 1) forecast errors in the subsequent left/right
region of a given node. A small Gini index indicates nude purity, i.e., that a region mostly contains
forecast errors with the same sign.

The advantage of this recursive binary splitting process is that no restrictions regarding the
linkages of the response variable and the predictor variables or among the predictor variables need to
be imposed beforehand. These possibly complex linkages can easily be modeled by regression and
classification trees. However, the prediction of a single tree suffers from high variance. Therefore, it is
reasonable to combine a large number of trees to a so-called random forest (for an introduction, see
Breiman 2001) in order to model the response variable. To this end, it is necessary to use bootstrap
resampling to estimate a random regression or classification tree on every bootstrapped dataset (for
an introduction to bootstrap resampling, see James et al. 2015). Random trees have the distinct
specification that they only use a subset of the set of predictors, Z. This decorrelates the predictions of
the single classification or regression trees and minimizes computation time. For every bootstrapped
dataset, two thirds of the data are used to model a classification or regression tree and for the remaining
third of the data out of bag predictions are made (for an introduction to out of bag error estimation
using tree based models, see Hastie et al. 2009). By means of these out of bag predictions, the
predictive performance of a tree can be measured. In the case of a classification problem, predictive
performance is measured by the out of bag misclassification rate, whereas, for regression trees, the
share of the explained out of bag variance of the forecast errors, which is a pseudo R2-statistic, serves
as a performance metric.

Following Behrens et al. (2018c) and Murphy et al. (2010), I implement permutation tests to
measure the statistical significance of the predictive power of a random classification or regression
forest. By drawing hundreds of samples without replacement of the forecast errors and estimating
random forests on every purely random sample, a benchmark model, which should have no predictive
value for the (signs of the) forecast errors, is established. The implied pseudo R2-statistics and
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misclassification rates vary by chance. Hence, the respective metrics obtained by means of the original
model should, under the null hypothesis of forecast optimality, not perform significantly better than
the formerly described metrics obtained by permuting the data. In other words, if trade forecasts are
optimal, the pseudo R2-statistic computed for the original random forest must not exceed, for instance,
the 95th percentile of the permuted sampling distribution for random regression forests. On the other
hand, for random classification forests, the misclassification error rate of the original model must not
be smaller than the 5th percentile of the permuted sampling distribution. In summary, the permutation
test is carried out along the following steps:

1. Fit a random classification/regression forest on the original data by means of bootstrap resampling
and compute the respective out of bag performance metric (misclassification error rate/pseudo
R2-statistic), PO.

2. Fit a random classification/regression forest on the permuted, i.e., randomized, data by drawing
a sample without replacement and compute the respective out of bag performance metric, PP.

3. Repeat Step 2 1000 times and average over the respective performance metrics.
4. Compute p-value = lPP<PO , where l is an indicator function.

The underlying concept is similar to the one of a standard F-test. If the set of predictors has joint
predictive power with respect to the sign of the forecast error (classification problem under flexible
loss) or the forecast error (regression problem under quadratic loss), the null hypothesis of forecast
optimality can be rejected.

3. The Data

I collected data on annual export and import growth forecasts for Germany from 1970 to
2017 by six economic research institutes. Among the forecasters are four German economic
research institutes (alphabetical order): Deutsches Institut für Wirtschaftsforschung Berlin (DIW),
Hamburgisches Weltwirtschaftsarchiv/-institut (HWWI), ifo Institut für Wirtschaftsforschung Munich
(ifo), Institut für Weltwirtschaft Kiel (IfW); a collaboration of German economic research institutes:
Gemeinschaftsdiagnose (GD); and the Organisation for Economic Co-operation and Development
(OECD). The latter is included as an international forecaster to see if German forecast institutes have
a possible advantage because of geographical proximity (see, e.g., Bae et al. 2008; Berger et al. 2009;
Malloy 2005). Due to data availability, which varies across forecasters and decades, I focus on annual
forecasts with a forecast horizon of one year and half-a-year, which are published at the turn of the
year and mid-year, respectively. In order to minimize data revision effects in computing forecast
errors, I use initial release data from the German statistical office to measure realized values of export
and import growth (see Statistisches Bundesamt 2018, data taken from ”Wirtschaft und Statistik“
publications). These realizations for the previous year are published by the German statistical office
within the first months of a given year. Forecast errors are computed by subtracting these realized values
for export or import growth from the forecast for the respective year (see also, Behrens et al. 2019):

FEt(h),i,j = ŷt(h),i,j − yt+h,j, (5)

where ŷ denotes the annual forecast formed by forecaster i in year t (1970–2017), h is the forecast
horizon (half-a-year, one year), j denotes the forecasted trade aggregate (export growth, import growth),
and y denotes the realization of the respective trade aggregate. Shortly after the German reunification
(i.e., between 1992 and 1993), the economic research institutes form forecasts for reunified Germany
instead of only West-Germany. I, therefore, adapt the corresponding time series for realized export or
import growth for each economic research institute.

Table 1 summarizes the descriptive statistics for the forecast errors of all forecasters in the sample.
Most observations (N = 48) are available for the longer-term export and import growth forecasts of DIW
and GD, whereas HWWI contributes the fewest observations (N = 31) for their shorter-term forecasts.
For the majority of forecasters, the mean forecast errors are close to zero. It is, however, striking that
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the reported mean forecast errors are generally larger than the ones usually obtained in the standard
analyses of German inflation and economic growth forecasts (see, among others, Behrens et al. 2018c;
Döpke et al. 2017). The relatively high mean trade forecast errors are in line with recent research
(Behrens 2019) and can be explained by the fact that exports and imports are among the most volatile
GDP components (Döhrn and Schmidt 2011). Regarding the standard deviations, the results are, as
one could have anticipated, generally larger for the longer-term forecasts. It is noteworthy that GD’s
standard deviation is the highest for all but one forecasting scenario, in which it is second highest. This
might be explained by the fact that GD is the only collaboration of forecasters in the sample and hence
possible controversies among the participating forecasters regarding economic theory or estimation
techniques might arise. However, it also needs to be taken into account that the GD forecasts are
published on average two months before the other forecasts, resulting in a longer forecast horizon.
In addition, I report coefficients of first-order autocorrelation, which hint at weak efficiency of the
trade forecasts, as the coefficients are relatively small (see Section 4 for an in-depth analysis. Finally,
the share of negative forecast errors is shown as an indicator of the symmetry of the forecasters’ loss
functions. In case of symmetric loss, the FE < 0-statistic should equal 0.5. For most forecasters, the
share of negative forecast errors is close to the 0.5-benchmark.

Table 1. Descriptive statistics of forecast errors.

Forecaster Horizon N MEAN SD AC FE < 0 N MEAN SD AC FE < 0

Exports Imports

DIW Shorter-term 36 0.20 2.35 0.03 0.47 36 0.71 2.85 0.10 0.42
Longer-term 48 −0.78 5.05 −0.15 0.62 48 −0.28 3.98 −0.06 0.56

HWWI Shorter-term 31 −0.11 2.44 −0.01 0.58 31 0.24 2.79 −0.10 0.39
Longer-term 43 −0.14 5.04 −0.31 0.51 42 0.35 4.01 −0.26 0.45

ifo Shorter-term 41 −0.06 2.40 −0.08 0.54 41 0.02 2.29 −0.20 0.41
Longer-term 44 −0.50 4.73 −0.16 0.61 44 −0.09 3.52 −0.15 0.50

IfW Shorter-term 39 0.26 2.76 −0.07 0.41 39 0.57 2.40 −0.09 0.38
Longer-term 47 −0.84 4.28 0.08 0.60 47 0.08 3.47 0.10 0.53

GD Shorter-term 46 −0.58 3.77 −0.09 0.57 47 −0.10 3.19 −0.09 0.49
Longer-term 48 −0.16 5.35 −0.12 0.56 48 0.13 4.25 −0.03 0.50

OECD Shorter-term 46 0.38 3.21 −0.07 0.43 46 0.29 3.54 −0.25 0.43
Longer-term 46 0.09 5.53 −0.28 0.50 46 0.29 4.20 −0.19 0.48

Notes: N: Number of observations, MEAN: Arithmetic mean, SD: Standard deviation, AC: First, order
autocorrelation, FE < 0: Share of negative forecast errors.
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The predictor variables I use to model a forecaster’s information set at the time of forecast
formation are shown in Table 2. Recent studies on trade forecasts (D’Agostino et al. 2017) and their
evaluation (Behrens 2019) show that typical trade variables as well as other macroeconomic variables
are essential to accurately and efficiently predict future trade developments. My set of predictors,
therefore, comprises, in addition to trade variables, several macroeconomic variables.

• As trade variables I include (following Behrens 2019; D’Agostino et al. 2017): Export and import
prices for Germany as well as German export and import volumes lagged one year and the German
real effective exchange rate as a measure of international price competitiveness (Grimme et al. 2019;
Lehmann 2015). I also include lags for the last four periods of the real effective exchange rate for
Germany to account for a possible J-curve effect (see e.g., Hacker and Hatemi-J 2004).

Table 2. Predictor variables.

Predictors Group ln Lag Description Source

Production Germany M - Real Y 1 Year-on-year rate of change of the monthly OECDGerman total manufacturing output.

Production United States M - Real Y 1 Year-on-year rate of change of the monthly OECDU.S. total manufacturing output.

Production France M - Real Y 1 Year-on-year rate of change of the monthly OECDFrench total manufacturing output.

Production United Kingdom M - Real Y 1 Year-on-year rate of change of the monthly OECDU.K. total manufacturing output.

Production Italy M - Real Y 1 Year-on-year rate of change of the monthly OECDItalian total manufacturing output.

Production Netherlands M - Real Y 1 Year-on-year rate of change of the monthly OECDDutch total manufacturing output.

Order inflow M - Real Y 1 Year-on-year rate of change of the industrial orders BUBAreceived for Germany; calendar and seasonally adjusted.

Unemployment M - Real N 1 Monthly unemployment rate (in percent of civilian BUBAlabor) for Germany; calendar and seasonally adjusted.

Oil price M - Prices Y 0 Year-on-year rate of change of the monthly FREDcrude oil price (WTI); dollars per barrel.

Climate M - Survey N 0 Monthly ifo business tendency survey for manufacturing for FREDGermany; half-a-year-ahead tendency, seasonally adjusted.

Climate (expectations) M - Survey N 0 Monthly ifo business tendency survey for manufacturing for FREDGermany; situation in six months; seasonally adjusted.

OECD leading (normalized) M - Composite N 2 Monthly normalized OECD composite OECDleading indicator for Germany.

Real effective exchange rate T - Prices Y 1 Year-on-year rate of change of the monthly narrow BISeffective exchange rate for Germany; CPI-based.

Exports T - Real Y 12 12-months-lag of the year-on-year rate of change of FREDGerman value goods exports; seasonally adjusted.

Imports T - Real Y 12 12-months-lag of the year-on-year rate of change of FREDGerman value goods imports; seasonally adjusted.

Export Prices T - Prices Y 1 Year-on-year rate of change of the monthly index of German DESTATISexport prices; standard international trade classification.

Import Prices T - Prices Y 1 Year-on-year rate of change of the monthly index of German DESTATISimport prices; standard international trade classification.

Consumer Prices M - Prices Y 0 Year-on-year rate of change of the monthly German BUBAconsumer price index; calendar and seasonally adjusted.

Producer Prices M - Prices Y 0 Year-on-year rate of change of the monthly German FREDdomestic producer price index for manufacturing.

Notes: BIS - Bank for International Settlements, https://www.bis.org/statistics/index.htm; BUBA - German
Central Bank, http://www.bundesbank.de/Navigation/EN/Statistics/statistics.html; DESTATIS - Federal
Statistical Office of Germany, https://www.destatis.de/EN/FactsFigures/FactsFigures.html; FRED - Federal
Reserve Bank of St. Louis, https://fred.stlouisfed.org/; OECD - Organisation for Economic Co-operation
and Development, http://stats.oecd.org/. ln: natural logarithmic transformation, Y - yes, N - no, M -
Macroeconomic variable, T - Trade variable. − Lag: Publication lags in months added where necessary
(Drechsel and Scheufele 2012, Table 3).

• As other macroeconomic variables, I include (following Behrens et al. 2018b, 2018c, 2019; Döpke et al.
2017, who study German GDP and inflation forecasts): German industrial orders, German
consumer and producer price indices, industrial production for Germany, the United States,
France, the United Kingdom, Italy, and the Netherlands as leading indicators for Germany’s
main trading partners (Guichard and Rusticelli 2011), as well as the oil price, German business
tendency surveys for manufacturing (current and future tendency; on macroeconomic survey data

https://www.bis.org/statistics/index.htm
http://www.bundesbank.de/Navigation/EN/Statistics/statistics.html
https://www.destatis.de/EN/FactsFigures/FactsFigures.html
https://fred.stlouisfed.org/
http://stats.oecd.org/
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as predictors, see Frale et al. 2010; Lehmann 2015), finally, I include the OECD leading indicator
for Germany as a composite indicator .

Following Behrens et al. (2019), predictor variables are lagged by one period to account for a publication
lag of the forecasts. That is, I assume that a forecast which was published, for instance, in July is
formed by means of information available in June. I furthermore account for different publication
lags of the predictors based on research by Drechsel and Scheufele (2012). As real time data are not
available at a monthly frequency for the examined time period, I minimize data revision effects of the
affected variables by means of a backward looking moving-average of order 12 for the CPI, PPI, the
real effective exchange rate, industrial productions, orders, and trade variables (following Behrens et al.
2018b; Pesaran and Timmermann 1995), in order to proxy the information set which was available to a
forecaster when a given forecast was formed.

4. Empirical Results

The following empirical results were obtained by means of the R programming environment for
statistical computing (R Core Team 2019) as well as the add-on packages “randomForest” (Liaw and
Wiener 2002) for estimating random trees and “rfUtilities” (Murphy et al. 2010; Evans and Murphy 2017)
for computing permutation tests. Regarding the hyper-parameters of the random forests, I follow
the common approach in the literature in setting the maximum number of terminal nodes of a given
tree to five and setting the number of predictors used for growing a random forest to the square root
of the total number of predictors (see, e.g., Behrens 2019; Hastie et al. 2009). For robustness checks,
I report results for random forests, consisting of 250, 500, and 750 trees. Numbers in bold indicate
a significantly (at the 5%-level) smaller out of bag misclassification error (classification problem) or
a significantly larger pseudo R2 (regression problem) of the original model compared to the model
estimated by means of the permuted data. In other words, cases in which I reject forecast optimality
are printed in bold.

The results for the basic specification of the model are reported in Table 3. The null hypothesis
of forecast optimality cannot be rejected for DIW for all but one specification (longer-term import
growth forecasts under quadratic loss, 750 trees). Regarding HWWI and ifo, the results are very
interesting. Assuming a quadratic loss function for the forecasters results in the rejection of forecast
optimality for both longer-term export and import growth forecasts, whereas, under flexible loss,
forecast optimality cannot be rejected for these forecasts. Here, when evaluating the forecasting
performance, the underlying loss function plays a crucial role. For IfW, I reject forecast optimality
for their shorter-term export forecasts (500 and 750 trees) for both types of loss function. Forecast
optimality for IfW’s longer-term export forecasts and all import forecasts cannot be rejected. The same
applies to all trade forecasts of GD under quadratic as well as flexible loss. For OECD, the results are
mixed. Under quadratic loss, I reject forecast optimality only for OECD’s longer-term import growth
forecasts, whereas, under flexible loss, forecast optimality is rejected only for two cases (250, 750 trees)
of their longer-term export growth forecasts. Overall, forecast optimality is rejected in more cases if
the underlying loss function is assumed to be quadratic. Allowing for a flexible loss function results in
a more favorable assessment of forecast optimality with respect to the forecasters. Additionally, for the
forecasters’ shorter-term forecasts, optimality cannot be rejected even under quadratic loss, except for
IfW’s export growth forecasts.

It is interesting to find out which predictors have explanatory power for the (sign of the) forecast
error. I, therefore, report variable importance plots for the export growth forecast evaluation in Figure 2
and for the import growth forecast evaluation in Figure 3. Variable importance is computed by counting
the times a predictor is chosen as splitting variable in the construction of a regression/classification tree.
These measures are summed up over all trees and the share of each predictor as a splitting variable is
computed by dividing by the number of trees in a forest, here 750. Hence, a large share indicates that
this predictor has explanatory power for the (sign of the) forecast error. It is, therefore, not optimally
incorporated into the respective forecast. On the other hand, if the share of a predictor variable is small,
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the predictor mentioned does not have explanatory power for the (sign of the) forecast error. It is,
therefore, either optimally incorporated in the respective forecast or it does not have any explanatory
power for the trade forecast. It is striking that, under quadratic loss, macroeconomic predictors
other than typical trade aggregates (depicted in dark grey) are among the top splitting variables. In
particular, macroeconomic survey indicators, such as the ifo business climate survey, are top splitting
variables. Both findings are in line with recent research (Behrens 2019; D’Agostino et al. 2017). For
most scenarios, lags of the German real effective exchange rate are among the top trade predictors
(depicted in light grey), possibly hinting at a J-curve effect, which is not optimally incorporated in
the analyzed trade forecasts. Another interesting observation is that, under flexible loss, the shares
of the predictor variables as splitting variables are more evenly distributed. This is possibly due to
the fact that the node impurity measure for regression trees (Equation (3)) punishes outliers more
severely. Regression trees, therefore, split the feature space more often than classification trees, in order
to minimize the effects of outliers on the RSS. Thus, top predictors are chosen as splitting variables
multiple times when growing a regression tree and their overall share as splitting variables increases.

Table 3. Basic specification.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Shorter-term 0.801 0.765 0.804 0.146 0.215 0.166 0.852 0.813 0.565 0.381 0.515 0.415
Longer-term 0.105 0.549 0.196 0.093 0.057 0.003 0.338 0.451 0.484 0.358 0.130 0.178

HWWI

Forecast Exports Imports Exports Imports

Shorter-term 0.164 0.261 0.275 0.309 0.326 0.232 0.102 0.091 0.244 0.318 0.289 0.400
Longer-term 0.026 0.011 0.018 0.018 0.006 0.009 0.913 0.691 0.854 0.424 0.240 0.184

ifo

Forecast Exports Imports Exports Imports

Shorter-term 0.792 0.745 0.837 0.945 0.992 0.966 0.819 0.886 0.830 0.313 0.421 0.302
Longer-term 0.001 0.003 0.018 0.003 0.001 0.005 0.260 0.190 0.183 0.810 0.819 0.800

IfW

Forecast Exports Imports Exports Imports

Shorter-term 0.054 0.046 0.048 0.477 0.448 0.454 0.182 0.017 0.019 0.656 0.552 0.304
Longer-term 0.109 0.141 0.116 0.162 0.140 0.120 0.444 0.265 0.620 0.087 0.060 0.146

GD

Forecast Exports Imports Exports Imports

Shorter-term 0.346 0.298 0.533 0.587 0.794 0.591 0.819 0.773 0.542 0.064 0.178 0.091
Longer-term 0.551 0.386 0.343 0.079 0.064 0.079 0.841 0.621 0.622 0.556 0.715 0.370

OECD

Forecast Exports Imports Exports Imports

Shorter-term 0.508 0.498 0.342 0.191 0.309 0.160 0.169 0.106 0.158 0.426 0.317 0.107
Longer-term 0.109 0.079 0.113 0.002 0.001 0.002 0.039 0.091 0.035 0.202 0.216 0.145

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.



Economies 2019, 7, 93 11 of 24

DIW

PROD_GER
REER_L1

IM_GER_LAG_12
REER

EX_GER_LAG_12
PROD_UK

UNEMP
REER_L4

ORDER
EX_P_GER

REER_L3
PROD_FR

IM_P_GER
PROD_IT
PPI_GER

PROD_US
OIL

PROD_NL
REER_L2

OECD_LEADING
CLIMATE_EXP

CPI_GER
CLIMATE

0.00 0.05 0.10

HWWI

EX_GER_LAG_12
IM_GER_LAG_12

PROD_GER
REER

PPI_GER
PROD_NL
PROD_IT

ORDER
PROD_FR
REER_L2

EX_P_GER
IM_P_GER

REER_L1
OIL

REER_L3
CPI_GER

PROD_US
PROD_UK
REER_L4

UNEMP
CLIMATE_EXP

OECD_LEADING
CLIMATE

0.00 0.05 0.10

ifo

IM_GER_LAG_12
PROD_NL

REER
REER_L3

PROD_GER
IM_P_GER

PPI_GER
PROD_IT

EX_GER_LAG_12
REER_L2

ORDER
REER_L1

OIL
EX_P_GER

REER_L4
PROD_FR
PROD_US
PROD_UK

UNEMP
CPI_GER

CLIMATE_EXP
OECD_LEADING

CLIMATE

0.00 0.05 0.10

IfW

REER
IM_GER_LAG_12
EX_GER_LAG_12

REER_L2
REER_L1
PPI_GER

PROD_GER
IM_P_GER

ORDER
PROD_IT

EX_P_GER
PROD_NL
REER_L3

PROD_UK
OECD_LEADING

PROD_FR
PROD_US

UNEMP
REER_L4
CPI_GER

CLIMATE_EXP
OIL

CLIMATE

0.00 0.05 0.10

GD

IM_GER_LAG_12
OECD_LEADING

PROD_NL
EX_P_GER

ORDER
REER_L1
PPI_GER

CLIMATE_EXP
IM_P_GER

PROD_GER
REER

REER_L3
PROD_IT

PROD_FR
REER_L2

OIL
UNEMP

CPI_GER
PROD_US
REER_L4

EX_GER_LAG_12
PROD_UK

CLIMATE

0.00 0.05 0.10

OECD

REER
IM_GER_LAG_12

PROD_IT
PPI_GER

PROD_GER
REER_L2

EX_GER_LAG_12
REER_L1

ORDER
EX_P_GER

REER_L3
IM_P_GER
PROD_UK

OIL
UNEMP

PROD_US
REER_L4

PROD_FR
OECD_LEADING

PROD_NL
CPI_GER
CLIMATE

CLIMATE_EXP

0.00 0.05 0.10

Quadratic Loss

DIW

CPI_GER
EX_P_GER
PROD_US
PPI_GER

PROD_FR
PROD_IT

REER
REER_L1

IM_P_GER
UNEMP

OIL
OECD_LEADING

PROD_GER
ORDER

PROD_UK
EX_GER_LAG_12

REER_L4
REER_L3
REER_L2

IM_GER_LAG_12
CLIMATE_EXP

CLIMATE
PROD_NL

0.00 0.05 0.10

HWWI

PPI_GER
CPI_GER

CLIMATE_EXP
IM_P_GER

REER_L4
REER_L3

REER
PROD_IT

EX_GER_LAG_12
EX_P_GER

ORDER
PROD_UK

OIL
CLIMATE

PROD_GER
REER_L2
PROD_NL

IM_GER_LAG_12
UNEMP

REER_L1
OECD_LEADING

PROD_US
PROD_FR

0.00 0.05 0.10

ifo

IM_P_GER
ORDER
UNEMP

CPI_GER
PROD_IT

PROD_GER
EX_GER_LAG_12

PPI_GER
EX_P_GER

PROD_NL
IM_GER_LAG_12

REER
PROD_US

OECD_LEADING
CLIMATE_EXP

PROD_FR
REER_L4
REER_L3
REER_L2
CLIMATE
REER_L1

PROD_UK
OIL

0.00 0.05 0.10

IfW

ORDER
PROD_GER

OECD_LEADING
IM_GER_LAG_12

IM_P_GER
PROD_UK
PROD_IT

EX_GER_LAG_12
CPI_GER
PPI_GER

REER
PROD_US

EX_P_GER
REER_L1

CLIMATE_EXP
REER_L4
CLIMATE
REER_L2

PROD_FR
REER_L3

UNEMP
PROD_NL

OIL

0.00 0.05 0.10

GD

CLIMATE_EXP
OECD_LEADING

PROD_IT
IM_P_GER
PROD_FR

ORDER
PPI_GER

PROD_US
REER_L1
CPI_GER

REER
IM_GER_LAG_12

PROD_GER
PROD_NL

EX_GER_LAG_12
REER_L2

UNEMP
EX_P_GER
PROD_UK
REER_L3

OIL
REER_L4
CLIMATE

0.00 0.05 0.10

OECD

CPI_GER
PROD_IT

PROD_US
PPI_GER

IM_P_GER
REER

UNEMP
ORDER

PROD_GER
REER_L2
REER_L4

EX_GER_LAG_12
PROD_UK
REER_L1

PROD_FR
REER_L3

OECD_LEADING
EX_P_GER

IM_GER_LAG_12
CLIMATE_EXP

PROD_NL
OIL

CLIMATE

0.00 0.05 0.10

Flexible Loss

Figure 2. Variable importanceplots for random forests evaluating export growth forecasts—variable
importance is measured by counting the times a predictor is selected as splitting variable in a regression
or classification tree. Variable importance measures of the respective trees are summed up and the
share of each predictor as a splitting variable in a random forest is computed by dividing by the number
of trees in the random forest, here 750. Light grey bars indicate trade variables, dark grey bars indicate
other macroeconomic variables.
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Figure 3. Variable importance plots for random forests evaluating import growth forecasts—Variable
importance is measured by counting the times a predictor is selected as splitting a variable in a
regression or classification tree. Variable importance measures of the respective trees are summed up
and the share of each predictor as a splitting variable in a random forest is computed by dividing by
the number of trees in the random forest, here 750. Light grey bars indicate trade variables; dark grey
bars indicate other macroeconomic variables.

As further robustness checks, I report results estimated by means of random forest models with
different hyperparameters in Tables 4–6. First, the maximum number of terminal nodes per tree is set
to ten (Table 4). Second, I halve the number of predictors that are randomly chosen at each node in
building a tree and report the results in Table 5. Finally, Table 6 shows results for a scenario in which
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the minimum number of observations at each terminal node is set to five. There are minor changes
in the statistical significance of the permutation tests for most institutes, as can be expected when
changing the model’s hyperparameters. For HWWI and ifo, I still observe that forecast optimality
is rejected under quadratic loss for their longer-term export and import growth forecasts, whereas,
when assuming flexible loss, I cannot reject forecast optimality in these cases. There are two exceptions
for HWWI’s forecasts in scenario two—Table 5. For their longer-term import forecast computed with
500 trees and a quadratic loss function, the permutation test yields insignificant results, whereas the
p-value for their shorter-term export forecast computed by means of 500 trees under flexible loss
becomes significant compared to the basic specification. In scenario one (Table 4), there remains no
evidence against the optimality of DIW’s longer-term import forecasts. For GD, the p-value for one of
their shorter-term import forecasts under flexible loss (250 trees) becomes significant. The same is true
for GD in scenario two (Table 5), in which also the p-value for one of their longer-term import growth
forecasts under quadratic loss (750 trees) becomes significant. Overall, however, the main findings
from the basic specification do not change qualitatively for all robustness scenarios. An underlying
flexible loss function continues to result in more favorable assessments of the trade forecasts with
respect to forecast optimality.

Table 4. Alternative hyperparameters—Maximum number of terminal nodes.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Shorter-term 0.939 0.936 0.864 0.206 0.159 0.190 0.549 0.792 0.800 0.397 0.282 0.587
Longer-term 0.308 0.293 0.228 0.259 0.104 0.091 0.217 0.450 0.228 0.065 0.105 0.181

HWWI

Forecast Exports Imports Exports Imports

Shorter-term 0.385 0.289 0.334 0.333 0.283 0.296 0.502 0.165 0.250 0.660 0.528 0.426
Longer-term 0.020 0.019 0.009 0.020 0.028 0.018 0.900 0.694 0.684 0.345 0.204 0.263

ifo

Forecast Exports Imports Exports Imports

Shorter-term 0.939 0.793 0.830 0.945 0.901 0.927 0.835 0.980 0.978 0.169 0.159 0.278
Longer-term 0.011 0.015 0.010 0.021 0.009 0.006 0.187 0.387 0.375 0.790 0.539 0.848

IfW

Forecast Exports Imports Exports Imports

Shorter-term 0.044 0.053 0.040 0.461 0.495 0.500 0.197 0.049 0.015 0.639 0.536 0.769
Longer-term 0.220 0.152 0.181 0.121 0.204 0.214 0.577 0.593 0.366 0.146 0.279 0.090

GD

Forecast Exports Imports Exports Imports

Shorter-term 0.296 0.537 0.423 0.571 0.927 0.732 0.867 0.882 0.701 0.046 0.084 0.182
Longer-term 0.389 0.453 0.336 0.145 0.065 0.067 0.511 0.512 0.601 0.437 0.641 0.639

OECD

Forecast Exports Imports Exports Imports

Shorter-term 0.364 0.334 0.413 0.208 0.098 0.164 0.066 0.222 0.108 0.175 0.458 0.251
Longer-term 0.042 0.141 0.100 0.001 0.001 0.001 0.085 0.025 0.015 0.084 0.211 0.086

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.
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Table 5. Alternative hyperparameters—Half of the chosen predictors.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Shorter-term 0.961 0.907 0.910 0.188 0.147 0.218 0.813 0.880 0.548 0.514 0.394 0.282
Longer-term 0.330 0.078 0.185 0.056 0.049 0.064 0.145 0.212 0.363 0.190 0.354 0.183

HWWI

Forecast Exports Imports Exports Imports

Shorter-term 0.294 0.216 0.227 0.631 0.323 0.313 0.108 0.046 0.088 0.646 0.529 0.408
Longer-term 0.017 0.017 0.008 0.039 0.055 0.009 0.888 0.894 0.746 0.279 0.355 0.257

ifo

Forecast Exports Imports Exports Imports

Shorter-term 0.930 0.939 0.892 0.976 0.988 0.994 0.973 0.761 0.929 0.428 0.248 0.229
Longer-term 0.009 0.013 0.013 0.043 0.009 0.007 0.363 0.468 0.252 0.713 0.713 0.623

IfW

Forecast Exports Imports Exports Imports

Shorter-term 0.026 0.069 0.012 0.594 0.498 0.478 0.044 0.039 0.007 0.787 0.770 0.539
Longer-term 0.371 0.157 0.290 0.290 0.241 0.230 0.688 0.761 0.812 0.181 0.133 0.218

GD

Forecast Exports Imports Exports Imports

Shorter-term 0.693 0.367 0.449 0.900 0.809 0.786 0.719 0.895 0.794 0.029 0.110 0.067
Longer-term 0.531 0.450 0.303 0.081 0.066 0.039 0.694 0.795 0.532 0.458 0.636 0.686

OECD

Forecast Exports Imports Exports Imports

Shorter-term 0.211 0.402 0.322 0.041 0.081 0.072 0.081 0.146 0.103 0.078 0.114 0.079
Longer-term 0.085 0.060 0.059 0.003 0.003 0.001 0.037 0.026 0.019 0.142 0.142 0.144

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.

Recently, the effects of uncertainty and trade policy uncertainty in particular on the economy and
on international trade have been analyzed by several studies (see, among others, Baker et al. 2016;
Fernández-Villaverde et al. 2015; Hassan et al. 2017). Caldara et al. (2019) have developed a trade policy
uncertainty index, which measures monthly media attention to news related to trade policy uncertainty.
Electronic archives of seven leading U.S. newspapers are analyzed by means of automated text-search in
order to construct the index (The list of newspapers comprises Boston Globe, Chicago Tribune, Guardian,
Los Angeles Times, New York Times, Wall Street Journal, and Washington Post; for the data and further
details on the construction of the index, see Caldara et al. (2019)). As U.S. trade policy uncertainty likely
affects international as well as German trade, I add the trade policy uncertainty measure by Caldara et al.
(2019) as well as a tariff volatility measure by the same authors to the list of predictors to proxy
uncertainty regarding international trade and report the results in Table 7 (quarterly tariff volatility is
estimated by a stochastic volatility model by Caldara et al. (2019)). The results mostly do not change
qualitatively. An exception is IfW, for which shorter-term export growth forecasts under flexible loss
are no longer significant. For ifo, the shorter-term import growth forecast under flexible loss computed
by means of 250 trees is now significant compared to the basic specification. For the most part, the
trade uncertainty measures do not seem to add further explanatory power for the forecast errors.
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Table 6. Alternative hyperparameters—Minimum number of observations at terminal nodes.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Shorter-term 0.996 0.899 0.882 0.374 0.176 0.198 0.537 0.609 0.565 0.266 0.607 0.494
Longer-term 0.290 0.188 0.294 0.104 0.088 0.046 0.322 0.138 0.148 0.273 0.129 0.071

HWWI

Forecast Exports Imports Exports Imports

Shorter-term 0.317 0.313 0.288 0.573 0.380 0.357 0.342 0.361 0.095 0.438 0.312 0.543
Longer-term 0.028 0.013 0.030 0.011 0.011 0.009 0.826 0.883 0.888 0.256 0.080 0.218

ifo

Forecast Exports Imports Exports Imports

Shorter-term 0.849 0.940 0.910 0.931 0.943 0.971 0.968 0.969 0.936 0.428 0.248 0.229
Longer-term 0.016 0.010 0.022 0.024 0.009 0.007 0.612 0.469 0.500 0.793 0.721 0.777

IfW

Forecast Exports Imports Exports Imports

Shorter-term 0.030 0.021 0.032 0.599 0.594 0.556 0.094 0.069 0.041 0.512 0.419 0.520
Longer-term 0.187 0.234 0.180 0.308 0.157 0.185 0.770 0.740 0.699 0.095 0.218 0.137

GD

Forecast Exports Imports Exports Imports

Shorter-term 0.221 0.528 0.523 0.726 0.761 0.834 0.852 0.853 0.869 0.223 0.131 0.102
Longer-term 0.359 0.606 0.331 0.113 0.109 0.118 0.715 0.688 0.443 0.609 0.717 0.628

OECD

Forecast Exports Imports Exports Imports

Shorter-term 0.446 0.404 0.348 0.241 0.101 0.206 0.185 0.215 0.170 0.733 0.067 0.509
Longer-term 0.160 0.092 0.081 0.002 0.002 0.002 0.021 0.030 0.038 0.368 0.080 0.155

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.

Table 7. Including trade uncertainty measures.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Shorter-term 0.959 0.954 0.835 0.150 0.178 0.140 0.457 0.733 0.737 0.404 0.581 0.693
Longer-term 0.132 0.194 0.197 0.116 0.011 0.025 0.339 0.350 0.224 0.143 0.193 0.088

HWWI

Forecast Exports Imports Exports Imports

Shorter-term 0.289 0.254 0.299 0.375 0.331 0.374 0.255 0.159 0.103 0.395 0.409 0.537
Longer-term 0.015 0.029 0.023 0.022 0.020 0.019 0.748 0.685 0.884 0.238 0.268 0.245

ifo

Forecast Exports Imports Exports Imports

Shorter-term 0.858 0.920 0.818 0.952 0.958 0.949 0.855 0.897 0.819 0.039 0.069 0.111
Longer-term 0.007 0.005 0.010 0.007 0.006 0.012 0.276 0.514 0.375 0.242 0.307 0.620

IfW

Forecast Exports Imports Exports Imports

Shorter-term 0.038 0.019 0.049 0.346 0.292 0.314 0.185 0.070 0.079 0.403 0.392 0.407
Longer-term 0.184 0.111 0.149 0.202 0.163 0.178 0.397 0.483 0.371 0.100 0.135 0.185
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Table 7. Cont.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

GD

Forecast Exports Imports Exports Imports

Shorter-term 0.457 0.340 0.224 0.780 0.697 0.621 0.858 0.766 0.803 0.180 0.068 0.185
Longer-term 0.769 0.554 0.762 0.070 0.094 0.346 0.404 0.869 0.702 0.565 0.718 0.782

OECD

Forecast Exports Imports Exports Imports

Shorter-term 0.505 0.404 0.503 0.055 0.271 0.294 0.135 0.179 0.400 0.648 0.359 0.392
Longer-term 0.067 0.077 0.080 0.001 0.001 0.001 0.006 0.069 0.015 0.088 0.198 0.145

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.

Next, I check if the forecasters form weakly efficient forecasts, where weak efficiency holds if
a forecaster’s current forecast error cannot be explained by its preceding forecast error (see, among
others, Behrens et al. 2018c; Öller and Barot 2000; Timmermann 2007). In other words, adding the
lagged forecast error to the list of predictors should not lead to more efficient forecasts under the
assumption of weak forecast efficiency. The results of the permutation tests reported in Table 8, hence,
should not be more significant than in the basic specification. Here, I observe only minor changes for
single specifications of DIW, HWWI, and OECD, suggesting that, for all forecasters, the lagged forecast
errors do not seem to have further predictive value, such that the forecasts are in line with the concept
of weak efficiency.

Table 8. Including the lagged forecast error.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Short-term 0.936 0.933 0.866 0.270 0.285 0.162 0.774 0.877 0.843 0.497 0.605 0.359
Long-term 0.322 0.420 0.265 0.010 0.033 0.055 0.246 0.351 0.465 0.176 0.255 0.256

HWWI

Forecast Exports Imports Exports Imports

Short-term 0.158 0.151 0.236 0.455 0.436 0.403 0.144 0.077 0.034 0.316 0.432 0.440
Long-term 0.013 0.009 0.008 0.009 0.016 0.016 0.631 0.845 0.774 0.159 0.194 0.276

ifo

Forecast Exports Imports Exports Imports

Short-term 0.759 0.730 0.807 0.932 0.885 0.834 0.774 0.864 0.855 0.512 0.351 0.215
Long-term 0.008 0.069 0.017 0.007 0.009 0.007 0.116 0.504 0.503 0.856 0.712 0.843

IfW

Forecast Exports Imports Exports Imports

Short-term 0.402 0.140 0.113 0.460 0.411 0.470 0.159 0.090 0.108 0.278 0.289 0.184
Long-term 0.279 0.285 0.213 0.080 0.107 0.121 0.298 0.527 0.604 0.171 0.054 0.047

GD

Forecast Exports Imports Exports Imports

Short-term 0.504 0.511 0.492 0.612 0.718 0.821 0.444 0.535 0.668 0.297 0.222 0.034
Long-term 0.492 0.396 0.426 0.083 0.078 0.068 0.856 0.817 0.866 0.544 0.452 0.426

OECD

Forecast Exports Imports Exports Imports

Short-term 0.212 0.396 0.333 0.183 0.192 0.227 0.136 0.075 0.189 0.063 0.242 0.244
Long-term 0.045 0.072 0.517 0.005 0.005 0.004 0.017 0.043 0.018 0.080 0.088 0.133

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.
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Table 9. Including the other trade forecast.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Short-term 0.775 0.741 0.624 0.292 0.268 0.173 0.652 0.742 0.811 0.497 0.605 0.359
Long-term 0.214 0.183 0.314 0.015 0.051 0.016 0.477 0.329 0.222 0.176 0.255 0.256

HWWI

Forecast Exports Imports Exports Imports

Short-term 0.291 0.200 0.284 0.305 0.407 0.456 0.343 0.095 0.336 0.316 0.432 0.440
Long-term 0.015 0.021 0.026 0.005 0.008 0.006 0.553 0.612 0.537 0.159 0.194 0.276

ifo

Forecast Exports Imports Exports Imports

Short-term 0.919 0.927 0.806 0.964 0.942 0.966 0.922 0.960 0.830 0.512 0.351 0.215
Long-term 0.019 0.011 0.002 0.010 0.011 0.019 0.252 0.636 0.378 0.856 0.712 0.843

IfW

Forecast Exports Imports Exports Imports

Short-term 0.077 0.042 0.037 0.474 0.479 0.413 0.189 0.016 0.038 0.278 0.289 0.184
Long-term 0.179 0.218 0.152 0.120 0.165 0.142 0.613 0.463 0.380 0.171 0.054 0.047

GD

Forecast Exports Imports Exports Imports

Short-term 0.681 0.461 0.581 0.841 0.795 0.902 0.742 0.873 0.789 0.297 0.222 0.034
Long-term 0.536 0.409 0.569 0.085 0.085 0.084 0.618 0.527 0.338 0.544 0.452 0.426

OECD

Forecast Exports Imports Exports Imports

Short-term 0.547 0.243 0.450 0.143 0.186 0.065 0.154 0.021 0.109 0.063 0.242 0.244
Long-term 0.149 0.149 0.189 0.001 0.001 0.001 0.081 0.025 0.021 0.080 0.088 0.133

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.

As one of the world’s largest exporters and due to interwoven transnational production chains,
Germany’s exports and imports are interdependent. I, therefore, add each forecaster’s import growth
forecast to the list of predictors for their export growth forecast and vice versa, in order to study if
the respective trade forecast has predictive value for the other trade forecast and report the results in
Table 9. Again, the results do not change qualitatively with respect to the basic specification. There are,
however, three exceptions, where insignificant p-values in the basic specification become significant
when adding the respective other trade forecast to the forecasters’ information set, namely IfW’s and
GD’s import forecasts as well as OECD’s export forecasts all under flexible loss.

Based on work by Andrade and Le Bihan (2013) who find evidence on rational inattention of
professional forecasters, I extend the forecasters’ information set by adding the lagged realizations of
the predictor variables (see also Behrens et al. 2018b, for an application to German GDP growth and
inflation forecasts). The results presented in Table 10 show only minor changes in the magnitude of
the permutation tests’ p-values. For two forecasters, results of one permutation test scenario become
significant compared to the basic specification, namely DIW’s longer-term export forecasts (750 trees)
and OECD’s shorter-term import forecasts (250 trees) both under quadratic loss. Forecast optimality
continues to be rejected in more cases if the underlying loss function is assumed to be quadratic.
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Table 10. Including additional lagged predictors.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Short-term 0.903 0.866 0.819 0.323 0.339 0.292 0.736 0.929 0.614 0.487 0.373 0.231
Long-term 0.079 0.069 0.023 0.008 0.011 0.008 0.310 0.132 0.454 0.356 0.195 0.292

HWWI

Forecast Exports Imports Exports Imports

Short-term 0.477 0.193 0.247 0.287 0.360 0.321 0.469 0.478 0.256 0.421 0.544 0.628
Long-term 0.037 0.034 0.016 0.020 0.027 0.013 0.688 0.747 0.674 0.365 0.198 0.220

ifo

Forecast Exports Imports Exports Imports

Short-term 0.655 0.875 0.864 0.985 0.983 0.994 0.828 0.929 0.979 0.174 0.352 0.327
Long-term 0.020 0.016 0.012 0.014 0.019 0.014 0.357 0.266 0.372 0.893 0.532 0.645

IfW

Forecast Exports Imports Exports Imports

Short-term 0.021 0.010 0.026 0.457 0.534 0.552 0.268 0.044 0.072 0.280 0.205 0.203
Long-term 0.082 0.086 0.056 0.196 0.078 0.092 0.463 0.587 0.569 0.198 0.277 0.145

GD

Forecast Exports Imports Exports Imports

Short-term 0.608 0.656 0.663 0.860 0.887 0.882 0.938 0.720 0.797 0.244 0.172 0.124
Long-term 0.279 0.282 0.356 0.086 0.155 0.133 0.417 0.596 0.530 0.544 0.703 0.651

OECD

Forecast Exports Imports Exports Imports

Short-term 0.509 0.320 0.492 0.045 0.103 0.086 0.065 0.060 0.142 0.290 0.442 0.247
Long-term 0.091 0.158 0.145 0.002 0.001 0.001 0.056 0.019 0.038 0.357 0.204 0.129

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.

Recent research in the forecasting area has focused on possible effects of the 2007/2008 financial
crisis on macroeconomic forecasting (see, for instance, Drechsel and Scheufele 2012; Frenkel et al.
2011; Müller et al. 2019). Table 11 reports results for a scenario, in which forecasts from the years
2007 and 2008 are deleted from the sample (I follow Behrens et al. 2018c, in this approach). In doing
so, I check whether severe forecast errors made in these years affect the results of the entire sample.
However, there are no qualitative changes in the results of the permutation tests. Only for OECD, one
specification (250 trees) of their longer-term import growth forecasts under flexible loss, for which I
cannot reject forecast optimality in the basic specification, now becomes significant.
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Table 11. Excluding the years of the financial crisis.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Short-term 0.881 0.891 0.916 0.136 0.245 0.165 0.701 0.781 0.908 0.433 0.402 0.411
Long-term 0.326 0.130 0.184 0.022 0.038 0.054 0.151 0.308 0.265 0.126 0.259 0.185

HWWI

Forecast Exports Imports Exports Imports

Short-term 0.283 0.443 0.539 0.365 0.408 0.349 0.269 0.289 0.278 0.342 0.496 0.450
Long-term 0.019 0.024 0.020 0.019 0.011 0.025 0.806 0.490 0.670 0.182 0.119 0.141

ifo

Forecast Exports Imports Exports Imports

Short-term 0.880 0.755 0.835 0.952 0.935 0.963 0.790 0.884 0.855 0.635 0.443 0.087
Long-term 0.036 0.019 0.024 0.002 0.009 0.004 0.196 0.286 0.175 0.360 0.195 0.281

IfW

Forecast Exports Imports Exports Imports

Short-term 0.010 0.048 0.040 0.367 0.459 0.495 0.034 0.029 0.035 0.557 0.215 0.301
Long-term 0.246 0.260 0.080 0.235 0.185 0.163 0.610 0.374 0.493 0.066 0.218 0.052

GD

Forecast Exports Imports Exports Imports

Short-term 0.502 0.463 0.391 0.571 0.517 0.820 0.635 0.932 0.950 0.196 0.160 0.158
Long-term 0.283 0.391 0.409 0.095 0.060 0.070 0.782 0.429 0.531 0.200 0.354 0.628

OECD

Forecast Exports Imports Exports Imports

Short-term 0.339 0.281 0.348 0.229 0.286 0.145 0.071 0.077 0.127 0.356 0.362 0.262
Long-term 0.094 0.062 0.053 0.001 0.002 0.001 0.170 0.081 0.044 0.042 0.089 0.075

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.

In the same vein, I delete forecasts for the years 1992 and 1993 to check for possible biases
due to large forecast errors in the time of German reunification (see also Behrens 2019, the German
statistical office changed national accounts statistics from west Germany to reunified Germany in
1992.). The results documented in Table 12 are especially interesting for ifo, as forecast optimality
for both longer-term trade forecasts under quadratic loss cannot be rejected anymore. This result
documents the high volatility of results obtained from a scenario under the assumption of a quadratic
loss function.

Finally, I report results for a scenario, in which I pool the data across forecast institutes, in order
to enlarge the sample size. However, a disadvantage of this approach is that it is no longer possible
to study the heterogeneity of the forecast institutes. Table 13 shows results for a pooled version of
the basic specification computed by means of random forests consisting of 500 trees. In this scenario
I add dummy variables for each institute to the list of predictors. In case of a classification problem,
I report results for an alternative dependent variable, lFEt+1<0, since it is possible that some forecast
errors are exactly equal to zero, as the institutes’ forecasts and the realizations of export and import
growth are published as rounded two-digit numbers. I strongly reject forecast optimality for both
trade aggregates, forecast horizons, types of loss function, and dependent variables.
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Table 12. Excluding the years of German reunification.

Trees 250 500 750 | 250 500 750 | 250 500 750 | 250 500 750
Loss Function Quadratic | Flexible

DIW

Forecast Exports Imports Exports Imports

Short-term 0.983 0.953 0.956 0.486 0.222 0.375 0.836 0.488 0.375 0.136 0.334 0.137
Long-term 0.255 0.137 0.070 0.079 0.042 0.032 0.227 0.243 0.208 0.099 0.116 0.205

HWWI

Forecast Exports Imports Exports Imports

Short-term 0.303 0.242 0.298 0.609 0.382 0.386 0.074 0.334 0.475 0.550 0.546 0.487
Long-term 0.010 0.034 0.056 0.012 0.008 0.008 0.902 0.455 0.848 0.239 0.164 0.142

ifo

Forecast Exports Imports Exports Imports

Short-term 0.869 0.738 0.822 0.970 0.885 0.824 0.740 0.821 0.542 0.445 0.248 0.371
Long-term 0.477 0.547 0.383 0.255 0.380 0.399 0.251 0.237 0.167 0.653 0.858 0.751

IfW

Forecast Exports Imports Exports Imports

Short-term 0.005 0.010 0.003 0.104 0.137 0.145 0.116 0.128 0.178 0.423 0.421 0.324
Long-term 0.781 0.530 0.610 0.367 0.234 0.303 0.742 0.616 0.589 0.050 0.024 0.057

GD

Forecast Exports Imports Exports Imports

Short-term 0.274 0.335 0.312 0.241 0.079 0.131 0.392 0.607 0.391 0.141 0.076 0.129
Long-term 0.430 0.516 0.600 0.148 0.108 0.158 0.495 0.385 0.297 0.493 0.215 0.293

OECD

Forecast Exports Imports Exports Imports

Short-term 0.534 0.545 0.656 0.050 0.156 0.104 0.208 0.274 0.266 0.379 0.291 0.383
Long-term 0.435 0.525 0.488 0.013 0.006 0.001 0.107 0.033 0.030 0.215 0.138 0.080

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.

Table 13. Data pooled across forecasters.

Specification - | lFEt+1≤0 lFEt+1<0 | lFEt+1≤0 lFEt+1<0
Loss Function Quadratic | Flexible

Forecast Exports Imports Exports Imports

Short-term 0.001 0.001 <0.001 <0.001 <0.001 <0.001
Long-term 0.001 0.001 <0.001 <0.001 <0.001 <0.001

Notes: Reported p-values are obtained by a permutation test with 1000 replications. Bold numbers indicate
significance at the 5%-level.

5. Conclusions

I build on research by Behrens (2019) on the nonparametric evaluation of German trade forecasts.
I extend the Behrens et al. (2018c) nonparametric adaption of the Patton and Timmermann (2007)
approach to testing forecast optimality when the forecaster’s loss function is unknown. By means
of random forests, I evaluate the optimality of German export growth and import growth forecasts,
both under flexible and quadratic loss. To this end, I study annual trade forecasts from 1970 to 2017
published by four major German economic research institutes, one collaboration of German economic
research institutes, and one international forecaster. A forecast is considered as optimal if a set of
predictors, which models the information set of a forecaster at the time of forecast formation, has no
explanatory power of the corresponding forecast error, in case of a regression problem under quadratic
loss. For a classification problem, under flexible loss, the set of predictors should not have explanatory
power for the sign of the forecast error, if the forecast is optimal.
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For all but one forecaster, I cannot reject the optimality of export or import growth forecasts,
neither under quadratic nor under flexible loss, at a forecast horizon of half-a-year. For longer-term
forecasts, at a forecast horizon of one year, the results are more heterogeneous. For two forecasters,
optimality of their longer-term trade forecasts is rejected under quadratic loss, whereas under flexible
loss, forecast optimality cannot be rejected for these forecasters. Hence, the loss function plays a crucial
role in the evaluation of these forecasters. Overall, an underlying flexible loss function results in a
more favorable assessment of the trade forecasts with respect to forecast optimality. This analysis lends
support to the study of Behrens (2019), who finds that macroeconomic predictors, other than typical
trade aggregates, are not optimally incorporated in multivariate trade forecasts under quadratic loss.
Variable importance plots show that, under quadratic loss, top predictors for the (sign of the) forecast
error are not typical trade aggregates; however, under flexible loss, this finding cannot be confirmed.
For these plots, the shares of predictors as splitting variables are more evenly distributed. Possibly, this
is because, under quadratic loss, outliers are punished more severely, which in turn causes regression
trees to split the feature space more often. Thus, top predictors are chosen more often as splitting
variables than under flexible loss.

It needs to be mentioned that the results computed under flexible loss only hold if the assumptions
underlying the Patton and Timmermann (2007) test for forecast optimality are fulfilled. It is, for instance,
possible that the forecasters’ loss functions depend on other variables than the forecast error or that
the loss functions are not homogeneous in the forecast error. It is, therefore, interesting for future
research to see if these results hold for a multivariate analysis of both export and import growth
forecasts under flexible loss. A multivariate analysis combining export and import growth forecasts
would also be interesting when analyzing forecasts of a country’s trade balance, since this aggregate is
often the subject of political debates. Furthermore, the nonparametric application of the Patton and
Timmermann (2007) test of forecast optimality, brought forward by Behrens et al. (2018c), could be
applied to other macroeconomic forecasts and/or countries.
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