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Abstract: It is critical to analyze the performance of enterprises to achieve sustainable agricultural 

development. Several studies have been conducted to assess farm performance. However, the 

studies have been criticized for failing to account for farm heterogeneity (which is frequently 

unobserved) in their evaluation of Norwegian agricultural performance. Technically, a farm is 

efficient if it can produce a certain amount of output with the fewest possible inputs and no input 

waste. In this paper, efficiency scores are calculated using a production function with both a random 

intercept and a random slope parameter, addressing the issue of unobserved heterogeneity in 

stochastic frontier analysis. Using Norwegian dairy and crop farms as a case study, we demonstrate 

the viability of improving the agriculture industry and reducing resource waste. The case study was 

established on data collected from 5884 dairy farms and 1880 crop farms from the years 2000 to 2019. 

According to the empirical findings of the case study, dairy and crop producers used inefficient 

technologies and squandered production resources. If all farmers follow a sustainable and efficient 

path to produce agricultural output, they could increase output by 15–18%. Farmers must follow 

sustainable paths, and politicians must encourage farm experience exchange so that less efficient 

dairy and crop-producing farms can learn from the most efficient farms to achieve sustainable 

development. 
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1. Introduction 

The optimal utilization of resources is one of the stated goals of Norwegian 

agricultural policy, which aspires to food self-sufficiency (Alem 2021b). As a result, 

analyzing the use of agricultural inputs is essential for putting policies and practices in 

place that are aimed at creating long-term farming systems (Latruffe et al. 2016). In 

Norway, farmland accounts for 3.3% of the total land area (SSB 2021). Livestock 

dominates Norwegian agriculture in all regions, with dairy farming accounting for 

around 30% of all farmers in Norway (Alem et al. 2019). Due to the country’s geography, 

farms are usually small-scale and dispersed, contributing to food production costs. 

Because most of the country has a long winter and a short growing season, cultivating 

feed, particularly grass, provides a competitive edge. Long summer days, on the other 

hand, accompanied by adequate rainfall, are beneficial for crop production. There are two 

basic reasons for monitoring agricultural performance: first, producers can learn from the 

top-performing farms how to effectively utilize their resources. Second, decision-makers 

can identify opportunities for resource conservation. 

Farm performance can be measured using panel data in two ways: parametric 

(econometric) methods, such as those involving SF models, and non-parametric methods, 

such as data envelopment analysis (DEA). Both approaches rely on the radial 
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contraction/expansion connection between the observed inefficiency points and the 

reference points on the frontier (unobserved). Each method has advantages and 

disadvantages for evaluating a farm’s performance (Alem 2018). The difference between 

the two approaches is in how measurement error is handled. SF models can account for 

stochastic noise, such as measurement errors caused by weather, disease, and pest 

infestation, which are common in farming. Since the model ignores measurement error, 

the non-parametric (DEA) approach is sensitive to outliers. The non-parametric frontier 

technique has an advantage over the parametric frontier approach in that the underlying 

technology is not subject to a prior parametric constraint. It assumes that there are no 

functional linkages between them and restricts enclosing linear piecewise functions from 

empirical observations of inputs and outputs to a single dimension. As a result, the non-

parametric technique is easier to implement, but it has drawbacks because it is a 

deterministic approach that overlooks stochastic components. Due to its capacity to 

consider misspecification, stochastic effects, and single-step estimation of inefficiency 

effects, the parametric technique seems to be the most suitable one for agricultural 

research (see for details Kumbhakar et al. 2015; Alem 2021a). Since Aigner et al. (1977) and 

Meeusen and Van den Broeck (1977) launched the parametric approach which separates 

the error into two components, a lot of research has been conducted to expand it (see for 

a detailed review Kumbhakar et al. 2015; Alem 2018). Several studies have been carried 

out utilizing the parametric approach to evaluate Norwegian agriculture performance 

(see, e.g., Kumbhakar and Lien 2009; Kumbhakar et al. 2008; Alem et al. 2018, 2019; Lien 

et al. 2018; Sipiläinen et al. 2013; Alem 2020, 2021a). The previous studies yielded useful 

farm performance reports. The following are some ways that this study adds to the 

literature in economics. Unlike earlier Norwegian farm-level data-based research, we 

employ Greene’s (2005b) procedure which controls farm-level heterogeneity and is 

explained in Section 2. Furthermore, a comprehensive farm-level data collection from 2000 

to 2019 helped us predict the performance of the Norwegian crop and dairy farms. 

The following is how the rest of the article is organized. A theoretical review of SFA 

is described in Section 2. The empirical model is discussed in Section 3, and data sources 

are discussed in Section 4. The main results of the analysis are presented in Section 5, 

followed by the conclusion in Section 6. 

2. Review of Stochastic Frontier (SF) Analysis 

The general SF model in terms of the production function is: 

ln(yit) = 𝛽0 +  𝑓(𝑥𝑖 ; 𝛽) + 𝑣𝑖 − 𝑢𝑖  (1) 

where ln(yit) is the actual output in the log earned by farm i, 𝑓(𝑥𝑖; 𝛽) is the function form 

(for instance, quadratic or transcendental), 𝑥𝑖  is the input vector, and 𝛽  is a set of 

parameters to be estimated. Then, 𝑢𝑖 ≥ 0  is efficiency assumed to be half-normal, 

exponential, and gamma-distributed. The  𝑣𝑖  component is the error term assumed 

𝑣𝑖
𝑖𝑖𝑑~𝑁(0, 𝜎𝑣

2), 𝑣𝑖 ⊥  𝑢𝑖 . When  𝑢𝑖 = 0 , the neoclassical production economists’ model, 

which is a particular application of the SF model, assumes that all farms are efficient (see 

Alem 2018). The inefficiency score is assessed as the ratio of the farm’s estimated output 

(𝑒𝑥𝑝 𝑓(𝑥𝑖; 𝛽) + 𝑣𝑖) to its actual output (𝑒𝑥𝑝 𝑓(𝑥𝑖 ; 𝛽) + 𝑣𝑖 − 𝑢𝑖). 

Pitt and Lee (1981), in a key early study employing panel data, suggested a method 

for capturing the time-invariant (consistent/persistent) part of inefficiency. Schmidt and 

Sickles (1984) employed a fixed estimating technique, allowing inefficiency to be 

associated with the frontier regression and avoiding the need to make a distributional 

assumption about the inefficiency factor. As a result, it is assumed that while inefficiency 

levels may differ between farms, the extent of inefficiency does not change over time; that 

is, it is persistent or time-invariant. 

Recalling (1), the Schmidt and Sickles (1984) model specification can be as follows: 

ln(yit) = 𝛽0 +  𝑓(𝑥𝑖 ; 𝛽) + 𝑣𝑖 − 𝑢𝑖  (2) 
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= 𝛼𝑖 + 𝑓(𝑥𝑖 ; 𝛽) + 𝑣𝑖𝑡  

where 𝛼𝑖 ≡ 𝛽0 − 𝑢𝑖 , 𝑖 = 1, 2 … , 𝑁. In the Schmidt and Sickles (1984) model, we assume 

that 𝑢𝑖 and 𝛼𝑖 are fixed parameters that will be estimated alongside 𝛽. We can estimate 

(2) using the standard fixed effect model estimated with panel data without distribution 

assumptions for 𝑢𝑖 . Alternatively, the model may be estimated using ordinary least 

squares (OLS) after including farm-specific dummy variables for the intercept terms. 

Schmidt and Sickles (1984) also recommend a model with random-effect (RE) time-

invariant efficiency by assuming that 𝛼𝑖 is random and uncorrelated with the regressors. 

Such RE models can be estimated using generalized least squares (GLS). Following a 

transformation approach developed by Schmidt and Sickles (1984), inefficiency scores can 

be estimated as 𝑢�̂� = 𝛼�̂� −min
𝑖

{𝛼�̂�}  ≥ 0 ;  𝑖 = 1, … 𝑁. The model is specified in log form, so 

the inefficiency term (𝑢𝑖) shows the percentage of deviation of observed performance 

from the best-practice farms; that is, the sample’s most effective unit has a 100% efficiency 

rate. The main drawback of the time-invariant models covered above is the potential 

inclusion of unobserved heterogeneity in the inefficiency score, which could lead to an 

overestimation of persistent inefficiency. 

To accommodate for inefficiency changes over time, time-varying (transient) 

inefficiency models have been devised; that is, 𝑢𝑖𝑡 = 𝑢𝑖𝑓(𝑡) in (2). Based on this general 

specification, various models have been developed, for example, by Cornwell et al. (1990), 

Kumbhakar (1990), Battese and Coelli (1992), and Battese and Coelli (1995) (see Alem 2018 

for a detailed review). The primary flaw in time-varying models is the assumption that 

unobserved factors change over time at random (see Greene 2005a, 2005b; Alvarez et al. 

2012; Agrell et al. 2014 for details). The error term is divided into three parts (see Equation 

(3)) in the Greene (2005b) model which distinguish between the unobserved heterogeneity 

and the inefficiency component. 

ln(yit) = 𝛽0 +  𝑓(𝑥𝑖 ; 𝛽) + 𝜃𝑖 − 𝑢𝑖 + 𝑣𝑖   (3) 

where 𝑣𝑖, 𝑢𝑖 , and 𝜃𝑖  denote the error, inefficiency, and unobserved heterogeneity (farm 

effects), respectively. 

The SF models discussed above provide estimates of either time-invariant or time-

varying components of farm inefficiency. A four-component SF model, which is the most 

recent, enables the simultaneous estimation of the time-invariant (persistent) and time-

variant (transient) parts of inefficiency using the same data. The first element is denoted 

as the error term; the second component captures unobserved heterogeneity. The third 

component depicts persistent/time-invariant and the last component denotes transient 

inefficiency (see for details Kumbhakar et al. 2014). Because separating persistent and 

transitory inefficiency was beyond the scope of this study, the empirical analysis for this 

study used the Greene (2005b) model to predict the performance of dairy and crop farms 

while accounting for farm heterogeneity. 

3. Empirical Model 

Greene’s (2005b) model approaches, which can account for farm heterogeneity, are 

used to estimate a transcendental log (TL). The TL function is: 

ln(yit) = 𝛽0 + ∑ 𝛽𝑘ln𝑥𝑘𝑖𝑡
4
𝑘=1 + ∑ ∑ 𝛽𝑘𝑙ln𝑥𝑘𝑖𝑡

4
l=1

4
𝑘=1 ln𝑥𝑙𝑖𝑡 + 𝛽𝑡𝑡 +  

1

2
𝛽𝑡𝑡𝑡2  

+
1

 2
∑ 𝛽𝑘𝑘

4
𝑘=1 (ln𝑥𝑘𝑖𝑡)2 + ∑ 𝛽𝑘𝑡

4
𝑘=1 ln𝑥𝑘𝑖𝑡𝑡 + 𝜃𝑖 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡  

(4) 

where ln(yit) denotes the dairy and crop outputs vector in log and lnxi denotes the inputs 

vector in log. 𝑣𝑖𝑡  is the error term and we assume 𝑣𝑖𝑡
𝑖𝑖𝑑~𝑁(0, 𝜎𝑣

2). 𝑢𝑖𝑡 ≥ 0 is a technical 

inefficiency and 𝜃𝑖 captures latent heterogeneity (mostly unobserved). Greek letters are 

variables that must be estimated, and t is the time trend. We used Jondrow et al. (1982)’s 

approach to calculate the farm inefficiency score, i.e., E [𝑢𝑖𝑡 𝑣𝑖𝑡 + 𝑢𝑖𝑡⁄ ]. 
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4. Data 

The Norwegian Institute of Bioeconomy Research provided the data used in our 

analysis. The analysis for the case study was based on data collected for the years 2000–

2019 with a total of 5884 for dairy farms and 1880 for crop farms. Performance analysis 

and production technology were modeled in terms of revenue from selling the dairy and 

crop outputs and four inputs (land, labor, material, and capital inputs). The dairy and 

crop revenue are estimated in the Norwegian kroner (NOK). Land (X1) is described as the 

farmland calculated in hectares. The total number of hours spent working on the farm, 

including hired help, owners’ help, and family help, is defined as labor (X2). Fertilizers; 

feed; oil and fuel items; power, crop, and animal protection expenditures; building 

supplies; and other expenses are examples of variable inputs (X3). The expenses 

associated with capital inputs (X4) include both fixed-cost items and the depreciation and 

maintenance associated with farm capital secured by animals, buildings, and machinery. 

All monitoring values are expressed in NOK and are CPI-adjusted for 2019 values. We 

analyzed the two farming systems separately. Table 1 shows the descriptive statistics of 

variables used for the analysis. Figures 1 and 2 show the trend of inputs and outputs for 

dairy and crop-producing farms. Except for labor inputs in the crop sector, both farm 

types of input–output levels grow over time. The decrease in labor inputs indicates that 

Norway’s agriculture in the crop sector is becoming increasingly capital- and technology-

intensive. 

 

Figure 1. Dairy farm inputs and output (revenue) for the years 2000–2019. 
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Table 1. Dairy and agricultural farm descriptive statistics (mean value) from 2000 to 2019. 

Region  N 
Output  

NOK *  

Land 

(hectare) 

Labor 

(h) 

Materials 

NOK 

Capital Inputs 

NOK  

Dairy       

Mean 
5884 

1,564,994 34 3534 499,085 477,652 

Stand. Dev (955,094) (18) (1032) (359,437) (300,762) 

Crop       

Mean 
1880 

489,228  35 929 117,249  196,021 

Stand. Dev (353,439) (22) (676) (88,190) (141,701) 

* NOK = Norwegian Kroner and Ca. I NOK = 0.1 USD. 

 

Figure 2. Crop farm inputs and output (revenue) for the years 2000–2019. 
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5. Results and Discussion 

Table 2 displays the findings for estimated technical efficiency. For most farmers, the 

efficiency ranges from 0.82 to 0.92. With a mean technical efficiency score of 0.85, dairy 

farms are generally considered to be technically inefficient. According to the efficiency 

rating, Norwegian dairy farms could boost output by 15% while using the same input if 

the process becomes technically efficient. Our results are in line with those of other studies 

that have been conducted in the past; for example, Alem et al. 2019 reported an average 

technical efficiency of 0.90% using farm-level balanced panel data from 1992 to 2014. 

Sipiläinen et al. (2013) reported 0.95% technical efficiency for Norwegian dairy farms from 

1991 to 2008. 

Table 2. Dairy and crop farms’ technical efficiency score distribution. 

Percentile  
Technical Efficiency 

Dairy Farms  

Technical Efficiency 

Crop Farms 

1% 0.65 0.57 

5% 0.73 0.71 

10% 0.77 0.73 

25% 0.82 0.78 

Mean 0.85 0.82 

75% 0.87 0.86 

90% 0.89 0.88 

95% 0.90 0.90 

99% 0.92 0.91 

Standard Deviation  0.05 0.06 

Observation 5884 1880 

Source: Own calculation. 

Estimates of the crop farms’ technical efficiency scores are shown in Table 2. The 

findings indicate that from 2000 to 2019, the technical efficiency was 82% on average. 

Additionally, Table 2 displays the distribution of the sample farms based on their 

technical efficiency. For example, 1% of the farms are only 57% efficient, whereas 10% of 

the sample farms are 73% efficient. The results suggest that there is a possibility of 

increasing crop production on average by 18% if all farmers are efficient enough to use 

the production resources. Our findings are consistent with previous research; see, for 

example, Lien et al. (2018), who reported 0.82% for Norwegian crop-producing farms 

observed from 1993 to 2014, while Alem (2020) reported mean efficiency of 92% for crop-

producing farms observed from 1991 to 2013. The range of mean technical efficiency for 

dairy and crop farms is shown in Figure 3. 
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Figure 3. Dairy and crop farms’ technical efficiency score distribution.  

The performance of dairy farms was relatively improving over time while crop 

farms’ performance fluctuated over time (Figures 4 and 5). 

 

Figure 4. Dairy farms’ technical efficiency score distribution. 
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Figure 5. Crop farms’ technical efficiency score distribution. 

A detailed per-year efficiency score is reported in Table 3. The tables show that the 

mean technical efficiency value has fluctuated over the past 20 years. 

Table 3. Mean technical efficiency scores per year for dairy and crop farms. 

 Dairy Farms Crop Farms  

Year  Mean Std. Dev. Freq. Mean Std. Dev. Freq. 

2000 0.807 0.079 114 0.814 0.074 90 

2001 0.808 0.077 108 0.817 0.069 92 

2002 0.812 0.074 124 0.816 0.068 89 

2003 0.816 0.072 126 0.820 0.068 87 

2004 0.820 0.072 127 0.822 0.064 90 

2005 0.834 0.064 439 0.822 0.067 89 

2006 0.837 0.062 401 0.820 0.067 89 

2007 0.840 0.058 398 0.821 0.062 94 

2008 0.842 0.059 378 0.821 0.064 90 

2009 0.843 0.059 351 0.819 0.068 97 

2010 0.844 0.058 333 0.821 0.066 95 

2011 0.849 0.055 344 0.819 0.066 98 

2012 0.847 0.053 347 0.821 0.069 97 

2013 0.849 0.054 342 0.825 0.064 92 

2014 0.854 0.050 347 0.826 0.061 96 

2015 0.852 0.050 335 0.826 0.062 94 

2016 0.852 0.048 332 0.830 0.059 97 

2017 0.853 0.048 315 0.827 0.058 99 
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2018 0.854 0.050 314 0.827 0.063 101 

2019 0.855 0.049 309 0.828 0.063 104 

Total 0.849 0.059 5884 0.822 0.064 1880 

6. Conclusions and Policy Implications 

The study employed case studies from Norwegian agriculture to measure the 

performance of dairy and crop farms with farm heterogeneity control. The empirical 

analysis of the case study was based on data collected from 2000 to 2019, with a total of 

5884 dairy farms and 1880 crop farms. The findings reveal that dairy and crop growers 

used suboptimal technology. According to the findings, if all farmers pursue an efficient 

and sustainable path, there is a chance of increasing output by 15% and 18% for crop and 

dairy farms, respectively. Allowing farm experience sharing, for example, allows less 

experienced dairy and crop-producing farms to learn from the highest-performing farms. 

Farmers with more years of experience are more likely to use production resources more 

effectively than farmers with fewer years of experience, so policy makers should 

encourage experience sharing to increase the efficiency of underperforming farms. The 

technical efficiency analysis is predicated on a static framework. The efficiency of resource 

use may be dynamic, which is beyond the scope of this study and should be investigated 

further in the future. 
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