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Abstract: In this paper, a chaotic three dimansional dynamical system is proposed, that is a modifica-
tion of the system in Volos et al. (2017). The new system has two hyperbolic sine nonlinear terms, as
opposed to the original system that only included one, in order to optimize system’s chaotic behav-
ior, which is confirmed by the calculation of the maximal Lyapunov exponents and Kaplan-Yorke
dimension. The system is experimentally realized, using Bi-color LEDs to emulate the hyperbolic
sine functions. An extended dynamical analysis is then performed, by computing numerically the
system’s bifurcation and continuation diagrams, Lyapunov exponents and phase portraits, and
comparing the numerical simulations with the circuit simulations. A series of interesting phenomena
are unmasked, like period doubling route to chaos, coexisting attractors and antimonotonicity, which
are all verified from the circuit realization of the system. Hence, the circuit setup accurately emulates
the chaotic dynamics of the proposed system.

Keywords: Bi-color LED; nonlinear circuit; chaos; antimonotonicity; coexisting attractors

1. Introduction

During the last six decades, the theory of chaotic systems has been a prominent field
of study for physicists, mathematicians, and analog circuit design engineers. By knowing
the set of differential equations describing a system, a circuit that emulates its behavior can
be constructed, to experimentally verify the chaotic behavior. Many works on how to build
chaotic circuits are available, see for example [1–3], as well as the works referenced therein.

Chaos has so far been observed in systems related to mechanics, physics, chemistry,
biology, circuits, economics and more, and the chaotic behavior has been verified via
well-known theoretical and numerical tools, such as the bifurcation diagrams and the
algorithm for calculating the Lyapunov Exponents (LEs). Chaotic attractors were observed
and numerically confirmed in the case of Colpitts [4], Hartley [5], Wien-bridge [6] harmonic
oscillator, Chua circuit [7] and other memristive systems [8], Van der Pol oscillator [9],
phase-locked loops [10], dc-dc converters [11], and more.

In addition to the emergence of chaos in modelling physical phenomena, as indicated
above, chaotic systems have found use in applications related to encryption, like random
bit generators, signal masking, secure communications and more [12–14]. The suitability of
chaotic systems for such applications is attributed to their simple structure that can yield
complex dynamics with high unpredictability. Thus, many research teams are constantly
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working on developing new chaotic systems with rich dynamics. This is often done by
considering existing systems and enriching their dynamics by modifying the differen-
tial/difference equations that describe them. The aim is to derive systems with more
complex behavior, which can be indicated by higher values of the Maximum Lyapunov
Exponent (MLE), Kaplan-Yorke dimension, and also the emergence of phenomena like
multistability, coexisting attractors and antimonotonicity.

In the existing literature, the approaches for optimizing a system’s chaotic behavior
can be summed up in three basic methodologies:

• In the first method, one of the system’s nonlinear terms can be replaced by a higher
order one, for example by changing a product term to an exponential or logarithmic
function [15,16].

• In the second method an existing nonlinear term is adjusted, without affecting its
order [17,18].

• In the third approach, additional nonlinear terms and variables are added in the
system, increasing its complexity and order [19,20].

Recently, many chaotic circuits with a hyperbolic sine term as a nonlinearity, have been
developed [14,21–26]. To implement this nonlinear term in a circuit, two antiparallel diodes
can be used. Due to the nature of the i− v characteristic of this term, phenomena like a
period doubling route to chaos, coexisting attractors, antimonotonicity and intermittency
have been observed in the above systems.

In this work, the third method mentioned above is adopted for enhancing the com-
plexity of the system proposed in [21]. The original system had a hyperbolic sine term in
its third differential equation. The modified system is enhanced by adding a hyperbolic
sine term in the second differential equation as well. The linear terms are also multiplied
by control parameters, so the system now is in its general parametric form. The system is
then emulated in a circuit, where the hyperbolic sine nonlinearities are implemented with
simple Bi-color LEDs, in contrast to using antiparallel diodes. The use of Bi-color LEDs is
very promising, since the resulting circuit has a simple structure, which can make it more
suitable in the aforementioned chaos related applications.

After the circuit is designed, extensive simulations are performed with respect to three
different bifurcation parameters. First, the dynamical characteristics are studied, like dissi-
pation, symmetry, and equilibria. Then, calculation of the bifurcation diagrams, Lyapunov
exponents diagram and phase portraits unmask interesting phenomena for the system,
like period doubling route to chaos, antimonotonicity, coexisting attractors and a higher
Kaplan-Yorke dimension compared to the original system. The numerical simulations are
compared with the experimental circuit simulations and it is seen that the circuit accurately
emulates the dynamics of the system. The present paper extends the results of [27], with a
more detailed dynamical analysis and a plethora of new simulations performed.

The rest of the work is structured as follows: In Section 2 the dynamical system and
its corresponding circuit are presented. In Section 3, the dynamical characteristics of the
system are studied. Section 4 presents extensive simulation results regarding the behavior
of the system with respect to different parameters. Finally, Section 5 closes the paper with
a note on future topics of study.

2. The Proposed Chaotic Circuit
2.1. The Chaotic System of Differential Equations

In 2017, the following three dimensional chaotic jerk system was proposed in [21]:
ẋ = −y
ẏ = −z
ż = −x− bz + a sinh(y)

(1)

This was one of the first chaotic systems to use a hyperbolic sine function as a nonlin-
earity. Here, a modification of the system is proposed by adding one more hyperbolic sine
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function (c sinh(z)) in the second equation of (1), and also multiplying the linear terms by
adjustable parameters d, e. 

ẋ = −y
ẏ = −dz− c sinh(z)
ż = −ex− bz + a sinh(y)

(2)

The system now has two nonlinear hyperbolic sine functions, and five parameters
a, b, c, d, e.

2.2. The Chaotic Circuit

The developed circuit that emulates (2) consists of three capacitors, ten resistors
and five operational amplifiers (TL084CN), three of which (U1 −U3) are configured as
integrators. The nonlinear elements used are two Bi-color LEDs. The current, through each
of the Bi-color LEDs, is given by:

I = 2IS sinh
(

υ

nVT

)
(3)

This is derived by applying Kirchhoff’s current law and the known Shockley diode
equation for the two antiparallel LEDs that consists the Bi-color LED. In (3), n is a diode
ideality factor, IS is the reverse bias saturation current, υ is a voltage over the LEDs and VT
is a thermal voltage.

The designed circuit is presented in Figure 1. Figure 2 shows the experimental realization
of the circuit. The mathematical model of (2) is obtained by applying Kirchhoff’s laws into the
circuit of Figure 1, as

dυC1
dt = 1

RC (−υC2)
dυC2

dt = 1
RC

(
− R

Rd
υC3 − 2RIS sinh

(
υC3
nVT

))
dυC3

dt = 1
RC

(
− R

Re
υC1 + 2Ra IS sinh

(
υC2
nVT

)
− R

Rb
υC3

) (4)

by applying scale transformation for the variables and physical parameters, as follows

x =
υC1

nVT
, y =

υC2

nVT
, z =

υC3

nVT
, τ =

t
RC

, a =
2Ra Is

nVT
, b =

R
Rb

, c =
2RIS
nVT

, d =
R
Rd

, e =
R
Re

(5)

Figure 1. Schematic of the proposed circuit of system (2).
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Using Bi-color LEDs, the parameter values a, c are fixed as: a = 4 × 10−4, c =
3.846× 10−4, according to the Bi-color LEDs specifications (IS = 1 nA, VT = 26 mV and
n = 2), while parameters d = e = 1. Note that the system’s behavior can be controlled
by changing parameters b, d, e, which does not affect the Bi-color LEDs (3). The rest of the
circuit’s elements are: C1 = C2 = C3 = 10 nF, R = 10 kΩ, R1 = 1 MΩ, Ra = 10.4 kΩ,
Rd = Re = 10 kΩ and Rb: variable resistor, while the power supply is ±15 V.

Figure 2. (a) The experimental setup and (b) the realization of the proposed circuit of Figure 1.
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3. Theoretical Study of The System

The divergence of system (2) is defined as:

∇V =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

= −b (6)

where V is the phase volume. Since ∇V < 0, ∀x, y, z and ∀b > 0, the system is bounded.
So system (2) is dissipative and converges in the index

dV
dt

= e−bt (7)

The interpretation of this index is that each volume, containing the trajectories of (2),
will reduce to zero as time approaches infinity, at an exponential rate of V0e−bt. Thus, each
trajectory of (2) is ultimately confined to a particular subset having zero volume, and its
asymptotic motion of (2) is arranged to an attractor.

Moreover, the coordinate transformation (x, y, z)→ (−x,−y,−z) leaves the system
invariant. So, if (x, y, z) is a solution of (2) for a choice of parameters, then (−x,−y,−z) is
also a solution for the same parameter values. This means that the shape of the attractors
is symmetrically inverted with respect to the origin. This symmetry could justify the
phenomenon of several coexisting attractors in the state space.

Finally, for a = 4× 10−4, c = 3.846× 10−4, d = e = 1, the system’s equilibria are
computed as Eq1 = (−10.946b, 0,−10.946), Eq2 = (0, 0, 0) and Eq3 = (10.946b, 0, 10.946).

4. Circuit’s Dynamical Analysis

In this section, the system (2) is studied with respect to the bifurcation parameters
b, d, e is performed.

4.1. Dyncamical Behavior with Respect to b

For the analysis of system (2) with respect to b, the other parameter values are chosen
as: a = 4× 10−4, c = 3.846× 10−4 and d = e = 1, with initial conditions (x0, y0, z0) =
(0, 0.1, 0). For this study, system (2) is solved using the 4th order Runge-Kutta algorithm,
with fixed time step ∆t = 0.001. The continuation diagram with respect to parameter
b is shown in Figure 3. The continuation diagram differs from the bifurcation diagram
as to the choice of initial conditions. In the bifurcation diagram, the initial conditions in
each iteration are kept the same, while in the continuation diagram, the last values of the
variables in each iteration play the role of initial conditions in the next iteration.

The diagram is plotted both for increasing, and decreasing values of b. The diagram of
Lyapunov Exponents (LE) spectrum is also shown in Figure 4, from which the chaotic behavior
of the system is verified by the positive values of the Maximal Lyapunov Exponent (MLE).

The experimental phase portraits of υC2 versus υC1 , for various values of the resistor
Rb are produced and displayed using a digital oscilloscope, in order to verify the behaviors
observed from the continuation diagram of Figure 3. In Figure 5 the agreement between
the numerical simulation and the experimental observation of the circuit for the phase
portrait for b = 0.625 is verified.
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Figure 3. Continuation diagrams of system (2), when parameter b is increased (red) and decreased (blue).

Figure 4. Spectrum of Lyapunov exponents of system (2), when varying b, for a = 4 × 10−4,
c = 3.846× 10−4 and d = e = 1.

Figure 5. Chaotic phase portraits of y versus x, for a = 4× 10−4, c = 3.846× 10−4, d = e = 1 and b = 0.625 (Rb = 16 kΩ),
produced (a) from system’s (2) simulation and (b) experimentally from the circuit of Figure 2.
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Additionally, the maximum value of the MLE of the proposed system (2) is MLEmax =
0.3904, which is computed for b = 0.625, while the max MLE value of the original system [21],
was MLEmax = 0.2250 for b = 0.634. So, it can be seen that the MLE achieves a higher value
in the modified system. Also, the maximum value of Kaplan-Yorke dimension [28] of the
chaotic system (2) is calculated, for b = 0.287, as:

DKY = 2 +
LE1 + LE2

|LE3|
= 2.4464 (8)

while, in the case of the system with one hyperbolic sinusoidal term the respective maxi-
mum value of Kaplan-Yorke dimension is DKY = 2.2168, for b = 0.508. Indeed, a significant
increase of the system’s chaoticity is verified. So, it is concluded that adopting the third
method mentioned in the Introduction for modifying an existing system by adding more
terms, leads to increase in the system’s complexity.

As for the chaotic phenomena observed from the continuation diagrams of Figure 3,
first it must be noted that the period doubling route to chaos as the value of d decreases is
observed in both diagrams. This phenomenon is the most common example of route to
chaos, appearing in many well known systems, like the logistic map.

Also, another interesting behavior can be observed in the continuation diagrams of
Figure 3. For lower and higher values of parameter b, coexisting attractors appear, which
are experimentally verified from the phase portraits of Figure 6, for Rb = 50 kΩ (b = 0.2),
in which two symmetric coexisting periodic attractors have been produced by turning on
and off the power supply. As mentioned in Section 3, this coexistence is a consequence of
system’s symmetry under the transformation (x, y, z) → (−x,−y,−z). So starting from
different initial conditions, the attractor is positioned differently in the phase plane.

Moreover, taking a look at Figure 3, the phenomenon of antimonotonicity is observed.
Antimonotonicity, introduced by Dawson et al. [29], is the phenomenon where the system
traverses to chaotic behavior as the bifurcation parameter increases, starting from a period
of 1 and following a period doubling route to chaos (i.e., period-1→ period-2→ period-4
→ ... → chaos) and then leaves the chaotic region, falling back into period-1, by following
a reverse period halving route (i.e., chaos→ ... → period-4→ period-2→ period-1). This
phenomenon is distinctly depicted in the continuation diagram by a bubble shape. This
behavior is again confirmed from the circuit implementation in Figure 7 as the circuit
enters chaos by following a period doubling sequence (Figure 7a–d and exits from chaos
by following a reverse period halving sequence Figure 7h–j.

Finally, a periodic window appears in the continuation diagram around b = 0.55. This
is experimentally captured in Figure 7f. This periodic behavior appears in-between two
chaotic regions, which are also captured in Figure 7e,g.

Figure 6. (a,b) Experimentally observed coexisting period-1 phase portraits of υC1 versus υC2 , for
a = 4× 10−4, c = 3.846× 10−4, d = e = 1 and b = 0.2 (Rb = 50 kΩ).
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Figure 7. Experimental observation of υC2 versus υC1 , of (a) period-1 phase portrait for Rb = 50 kΩ (b = 0.2), (b) period-2 phase
portrait for Rb = 40 kΩ (b = 0.25), (c) period-4 phase portrait for Rb = 38.16kΩ (b = 0.262), (d) chaotic phase portrait for Rb = 38 kΩ
(b = 0.263), (e) chaotic phase portrait for Rb = 25 kΩ (b = 0.4), (f) period-2 phase portrait for Rb = 19.05 kΩ (b = 0.525), (g) chaotic
phase portrait for Rb = 14.3 kΩ (b = 0.699), (h) chaotic phase portrait for Rb = 11 kΩ (b = 0.909), (i) period-2 phase portrait for
Rb = 10.1 kΩ (b = 0.99), and (j) period-1 phase portrait for Rb = 9.09 kΩ (b = 1.1). The rest of parameters are a = 4× 10−4,
c = 3.846× 10−4 and d = e = 1.

4.2. Dynamical Behavior with Respect to d

Considering the dynamical behavior with respect to d, the rest of the parameters
are chosen as: a = 4× 10−4, b = 1, c = 3.846× 10−4 and e = 1, with initial conditions
(x0, y0, z0) = (0, 0.1, 0), while d plays the role of the control parameter.

Figure 8 shows the bifurcation and continuation diagram of variable x versus parame-
ter d, which takes values in the range d ∈ [1, 20]. By studying this figure the route to chaos
through the mechanism of period doubling as the value of parameter d is decreased, is
observed from both the diagrams.

Also, comparing the bifurcation and continuation diagrams of variable x versus
parameter d (Figure 8), another interesting feature arises. The coexistence of different
system’s attractors in two ranges ([10.02, 10.61] and [12.89, 20]) of values of parameter d
can be observed. In Figures 9–13 five different couples of attractors for various values in
the aforementioned ranges and for different initial conditions are depicted, confirming the
phenomenon of coexisting attractors. The coexisting attractors, as well as their values of d,
have been cited in Table 1.
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Figure 8. Bifurcation diagram (cyan) and continuation diagram (red) of system (2), when parameter
d is increased, for a = 4× 10−4, b = 1, c = 3.846× 10−4 and e = 1, when parameter d is increased.

Figure 9. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, e = 1 and
d = 10.1. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a chaotic attractor, while with red color and
(x0, y0, z0) = (−5.7896825, 0, 2.9007334) a period-6 attractor.

Figure 10. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, e = 1 and
d = 10.5. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a chaotic attractor, while with red color and
(x0, y0, z0) = (−5.7439696, 0, 2.8417025) a period-6 attractor.
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Figure 11. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, e = 1 and
d = 13. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a period-4 attractor, while with red color and
(x0, y0, z0) = (−6.5697976, 0, 2.5822365) a symmetric period-4 attractor.

Figure 12. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, e = 1 and
d = 15. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a period-2 attractor, while with red color and
(x0, y0, z0) = (−5.3107692, 0, 1.7241613) a symmetric period-2 attractor.

4.3. Dynamical Behavior with Respect to e

The same behavior has been observed from the comparison of the bifurcation diagram
with the respective continuation diagram of variable x versus the parameter e (Figure 14).
As parameter e increases the system is driven to chaos through the mechanism of period
doubling. However, the coexistence of different attractors is revealed in some regions of
values of the parameter e, especially at its route to chaos (Figures 15–18). Table 2 presents
the coexisting attractors in four different values of parameter e.
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Figure 13. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, e = 1 and
d = 19. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a period-1 attractor, while with red color and
(x0, y0, z0) = (−5.5160634, 0, 1.737452) a symmetric period-1 attractor.

Figure 14. Bifurcation diagram (cyan) and continuation diagram (red) of system (2), when parameter
e is increased, for a = 4× 10−4, b = 1, c = 3.846× 10−4 and d = 1, when parameter e is increased.

Figure 15. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, d = 1 and
e = 0.50. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a period-1 attractor, while with red color
and (x0, y0, z0) = (−10.969297, 0, 4.5870237) a symmetric period-1 attractor.
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Figure 16. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, d = 1 and
e = 1.15. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a period-1 attractor, while with red color
and (x0, y0, z0) = (−5.3168311, 0, 4.9638148) a period-2 attractor.

Figure 17. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, d = 1 and
e = 1.20. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a period-2 attractor, while with red color
and (x0, y0, z0) = (−4.7922951, 0, 4.3626296) a period-4 attractor.

Figure 18. Coexisting attractors of system (2), for a = 4× 10−4, b = 1, c = 3.846× 10−4, d = 1 and
e = 1.26. With cyan color and for (x0, y0, z0) = (0, 0.1, 0) a chaotic attractor, while with red color and
(x0, y0, z0) = (−4.6300732, 0, 4.5716944) a different chaotic attractor.
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Table 1. Coexisting attractors as they are observed from the comparison of the bifurcation diagram
with the respective continuation diagram of variable x versus the parameter d, for a = 4× 10−4,
b = 1, c = 3.846× 10−4, e = 1.

Value of Parameter d Behavior from the
Bifurcation Diagram

Behavior from the
Continuation Diagram

10.1 Chaos Period-6

10.5 Chaos Period-3

13.0 Period-4 Period-4 (symmetric)

15.0 Period-2 Period-2 (symmetric)

19.0 Period-1 Period-1 (symmetric)

Table 2. Coexisting attractors as they are observed from the comparison of the bifurcation diagram
with the respective continuation diagram of variable x versus the parameter e, for a = 4× 10−4,
b = 1, c = 3.846× 10−4, d = 1.

Value of Parameter e Behavior from the
Bifurcation Diagram

Behavior from the
Continuation Diagram

0.50 Period-1 Period-1 (symmetric)

1.15 Period-1 Period-2

1.20 Period-2 Period-4

1.26 Chaos Chaos (symmetric)

5. Conclusions

In this work, an optimization method of a circuit’s chaoticity was presented. For this
reason an autonomous chaotic circuit, with a single nonlinear element, which was a bi-color
LED described by a hyperbolic sine function, was used. In this circuit one more bi-color LED
was added. The three dimensional dynamical system, which described the new nonlinear
autonomous circuit, presented a collection of chaotic phenomena, like antimonotonicity,
period doubling route to chaos and coexisting attractors. Also, the addition of the second
nonlinear term in the system has as a consequence the increase of system’s chaoticity,
which was confirmed by the calculation of the maximal Lyapunov exponents and the
Kaplan-Yorke dimension. Finally, the resulting circuit, having complex dynamics, albeit a
simple structure, is suitable for use in applications related to chaos synchronization and
secure communications. Thus, it is among our future research interests to utilize the system
in such a design. Firing phenomena can also be explored [30]. Also, fractional versions of
the system can be developed and also implemented in circuits, which is another promising
field of study [3,31].
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