
technologies

Article

An Investigation into the Application of Deep Learning in the
Detection and Mitigation of DDOS Attack on SDN Controllers

James Dzisi Gadze , Akua Acheampomaa Bamfo-Asante, Justice Owusu Agyemang * , Henry Nunoo-Mensah
and Kwasi Adu-Boahen Opare

����������
�������

Citation: Gadze, J.D.; Bamfo-Asante,

A.A.; Agyemang, J.O.; Nunoo-

Mensah, H.; Opare, K.A.-B. An

Investigation into the Application of

Deep Learning in the Detection and

Mitigation of DDOS Attack on SDN

Controllers. Technologies 2021, 9, 14.

https://doi.org/10.3390/technologies

9010014

Received: 17 December 2020

Accepted: 20 January 2021

Published: 11 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electrical and Computer Engineering, Kwame Nkrumah University of Science and Technology,
Kumasi AK-039-5028, Ghana; jdgadze@gmail.com (J.D.G.); aquisante10@yahoo.com (A.A.B.-A.);
hnunoo-mensah@knust.edu.gh (H.N.-M.); opare@knust.edu.gh (K.A.-B.O.)
* Correspondence: justiceowusuagyemang@gmail.com

Abstract: Software-Defined Networking (SDN) is a new paradigm that revolutionizes the idea of a
software-driven network through the separation of control and data planes. It addresses the problems
of traditional network architecture. Nevertheless, this brilliant architecture is exposed to several
security threats, e.g., the distributed denial of service (DDoS) attack, which is hard to contain in such
software-based networks. The concept of a centralized controller in SDN makes it a single point
of attack as well as a single point of failure. In this paper, deep learning-based models, long-short
term memory (LSTM) and convolutional neural network (CNN), are investigated. It illustrates their
possibility and efficiency in being used in detecting and mitigating DDoS attack. The paper focuses
on TCP, UDP, and ICMP flood attacks that target the controller. The performance of the models was
evaluated based on the accuracy, recall, and true negative rate. We compared the performance of
the deep learning models with classical machine learning models. We further provide details on
the time taken to detect and mitigate the attack. Our results show that RNN LSTM is a viable deep
learning algorithm that can be applied in the detection and mitigation of DDoS in the SDN controller.
Our proposed model produced an accuracy of 89.63%, which outperformed linear-based models
such as SVM (86.85%) and Naive Bayes (82.61%). Although KNN, which is a linear-based model,
outperformed our proposed model (achieving an accuracy of 99.4%), our proposed model provides
a good trade-off between precision and recall, which makes it suitable for DDoS classification. In
addition, it was realized that the split ratio of the training and testing datasets can give different
results in the performance of a deep learning algorithm used in a specific work. The model achieved
the best performance when a split of 70/30 was used in comparison to 80/20 and 60/40 split ratios.

Keywords: SDN; DDoS; machine learning; deep learning

1. Introduction

With the current surge in the number of devices with networking capabilities, complex
management strategies are required to provide a good quality of service (QoS). Achieving
a good QoS becomes a hurdle in current traditional networks due to the vertical integration
of the control and data planes. Furthermore, network optimization becomes difficult due
to a high dependence on vendor-specific hardware and software.

Software-Defined Networking (SDN) is a new paradigm that solves the issues existing
in traditional Internet architectures. It provides flexibility in management by making the
networking programmable from a logically centralized control point. SDN decouples the
control plane from the data plane present in traditional networks and deploys it in a remote
device called the controller or control layer, as shown in Figure 1. It comes with the benefits
of the centralized control functionalities, applications running on the network operating
system, the unique capture of the global view of the architecture, the public interface of the
north and south bounds, and its dynamic programmability in forwarding packets. Devices

Technologies 2021, 9, 14. https://doi.org/10.3390/technologies9010014 https://www.mdpi.com/journal/technologies

https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0003-0550-9431
https://orcid.org/0000-0002-9949-3823
https://orcid.org/0000-0002-8965-4371
https://doi.org/10.3390/technologies9010014
https://doi.org/10.3390/technologies9010014
https://doi.org/10.3390/technologies9010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/technologies9010014
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/2227-7080/9/1/14?type=check_update&version=2

Technologies 2021, 9, 14 2 of 22

in the data plane, such as switches, forward the packets according to the control decisions
or rules sent from the controller. The controller communicates with the application layer
through the northbound application programming interface (API) and communicates with
the data plane through the southbound API. Controller–switch communication is carried
out using the OpenFlow protocol [1].

Figure 1. A Simplified SDN architecture consisting of the southbound and northbound APIs and the
application layer [2].

Due to the flexibility in network control it offers, SDN has become an alternative
approach for traditional security infrastructures. However, absolute security of the system
is at stake if the SDN framework itself gets compromised. The controller is always prone to
a single point of failure. Hence, an attack on the controller can lead to the failure of the
entire network [3].

Major security problems in the SDN are issues of unauthorized controller access
(intrusion), man-in-the-middle attack, and a flow rule change that modifies packets. Other
pertinent issues are malicious packets hijacking the controller, denial of service by switch–
controller communication flood, and configuration problems. Distributed denial of service
(DDoS) is one the most common and dreadful threats that are aimed at successfully
disrupting regular traffic from arriving at the controller. The attack is achieved by flooding
the controller with more malicious packets than it can accommodate, thus rendering it
inoperable. The attack is made possible by making use of multiple compromised switches
(bot) for the production of malicious packets. The attacker forms a botnet, a group of

Technologies 2021, 9, 14 3 of 22

bots, from the switches connected to the controller and then gains control over the entire
network to operate after rendering the controller inoperable, as depicted in Figure 2.

Figure 2. SDN DDoS attack resulting from compromised nodes [4].

It is, therefore, necessary to implement a system that addresses this security threat.
Traditional methods are insufficient, so machine learning based DDoS detection techniques
have received more attention. In this paper, the feasibility and efficiency of applying
variants of deep neural networks, namely convolutional neural network (CNN) and long
short-term memory (LSTM), in training an ML model to detect and mitigate DDoS attack
on SDN controllers are investigated. LSTM is an artificial recurrent neural network (RNN)
architecture which is well-suited for data classification, processing and making predictions.
According to the literature, many machine learning algorithms such as Support Vector
Machine (SVM), K Nearest Neighbor (KNN), Artificial Neural Network (ANN), and Naïve
Bayes (NB) have been explored in detecting DDoS attacks in the various layers of the SDN
architecture. However, only the deep reinforcement learning-based algorithm has been
applied in the application layer of the SDN to mitigate such attacks.

The main contribution of this work include:

• A new dataset comprising of normal and malicious (DDoS) traffic developed using
Mininet and the Floodlight controller is collated.

• A DDoS defence mechanism based on the trained model for the identification and
mitigation of DDoS attacks on the SDN controller is introduced.

• The performance of the selected deep learning candidate is compared with that of other
machine learning linear models. These models are k-nearest neighbor (KNN), logistic
regression, linear support vector classifier (LinearSVC), support vector classifier (SVC),
decision tree, random forest, gradient boosting, Gaussian naïve Bayes (NB), Bernoulli
NB, and multinomial NB. These models and the selected candidate model are trained
based on the same generated dataset.

• The performance analysis of linear-based ML and neural network models in the
detection and mitigation of DDoS flood attacks was done using various train–test split
ratios (60/40, 70/30, and 80/20).

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
presents the proposed model and methodology. Section 4 discusses the results. Section 5
concludes the paper.

2. Related Work

In the field of network security, the advent of SDN has provided researchers’ un-
paralleled control over network infrastructure by establishing a single control point for

Technologies 2021, 9, 14 4 of 22

data flows that routes the entire network [5]. A range of literature was reviewed that is
relevant to this current work and highlights from them are stated in the subsequent texts.
To handle the issue of DDoS attack in SDN, researchers have proposed and implemented
DDoS identification mechanisms based on artificial intelligence, mainly machine learning.

In [6], the authors used KNN, SVM, and Naïve Bayes to detect DDoS packets. KNN
was most suitable with 97% accuracy, while SVM had 82% and Naïve Bayes 83%. The
authors in [7] used Support Vector Machine (SVM) together with their own proposed
algorithm, idle timeout adjustment (IA). They showed that their proposed approach dif-
fered from previous works and did better than the initial methods used. Neural network,
Naive Bayes and SVM have been used in [3]. The neural network and Naive Bayes models
provided 100% accuracy, while SVM presented 99% accuracy.

In [8], the authors used a support vector machine (SVM), and their results showed an
average accuracy of 95.24%. The authors in [9] used Linear regression, Naïve Bayes, KNN,
Decision Tree, Random Forest, SVM, and ANN. Their linear regression model achieved
the highest accuracy, precision, and recall results at 98.65%. Naïve Bayes, on the other
hand, showed the worst result at 97.45%. All others had accuracy between that of linear
regression and naïve Bayes. In [10], the authors used Naïve Bayes. They had an average
precision of 0.98 for training dataset with all features inclusive. They also recorded an
average precision of 0.81 for training dataset with seven of the features removed. SVM has
been used in detecting DDoS attacks; the model produced an accuracy of 99.8% [11].

In [12], the authors used Naïve Bayes, SVM, and Neural network. Naïve Bayes had
an accuracy of up to 70% while SVM and the neural network had the same accuracy of
80%. The authors in [13] used SVM for DDoS attack detection. It was observed that the
SVM algorithm achieved more than 98% accuracy on both the attacker and victim side for
SYN flooding, ICMP flooding, and DNS reflection attacks. In [14], the authors used a deep
neural network signature-based Intrusion Detection System (IDS). Their results show that
the collaborative detection mechanism developed produced a true-positive rate of more
than 90% with less than 5% false positives.

In [15], the authors worked on a reinforcement learning-based smart DDoS flood
mitigation agent. Their findings demonstrate that the agent could effectively mitigate
DDoS flood attacks of various protocols. Deep learning algorithms have also been used in
SDN-based architectures to solve the problem of intrusion detection [16–18]. Other deep
learning algorithms [19,20] have been applied in non-SDN architectures to detect DDoS
and intrusion detection.

From the related works discussed, it is evident that machine learning has been used to
identify DDoS attacks at all levels of the SDN architecture. Deep learning has been used in
both SDN and non-SDN architectures for intrusion detection but not DDoS classification in
SDN [17,18]. This circumstance makes it necessary to explore the feasibility and efficiency
of applying CNN or RNN LSTM algorithms in the identification and mitigation of DDoS
attacks on the controller. Table 1 shows a summary of the related works.

Technologies 2021, 9, 14 5 of 22

Table 1. Summary of related works.

No. Paper Title Research Method Results Strengths and Limitations

1.

OpenflowSIA: An optimized
protection scheme for
software-defined networks
from flooding attacks [7]

Support Vector Machine
(SVM) combined with their
own proposed algorithm,
idle timeout adjustment (IA)

They showed that their
proposed approach differs
from previous works and
did better than the initial
methods used to save the
SDN resources

• Used only TCP and
ICMP flood attacks.

• Training and testing
split ratio not
mentioned.

2.
A DDoS attack detection
method based on SVM in a
software-defined network [5]

Support Vector Machine
(SVM)

Their results show an
average accuracy rate of
95.24%

• Used 6-tuple
characteristic valued
related to DDOS.

• Training and testing
split ratio not
mentioned.

3.
A machine learning
approach for detecting DoS
attacks in SDN switches [3]

Neural Network, Naïve
Bayes, SVM

Neural network and naive
Bayes provided 100%
accuracy with extracted
features in their tests, while
SVM provided 99%
accuracy

• Used 60/40 training
and testing dataset
ratio.

• Used to detect DDOS
in the data plane.

4.

A machine learning
approach for predicting
DDoS traffic in
software-defined
networks [9]

Linear regression, Naïve
Bayes, KNN, Decision tree,
Random forest, SVM, ANN

Linear regression achieved
high accuracy, precision,
and recall results at 98.65%.
Naïve Bayes showed the
worst results at 97.45%. All
others had accuracy
between those of linear
regression and naïve Bayes.

• Used only UDP and
ICMP flood attacks.

• Used 90/10, 80/20
and 70/30 split ratios.

5.

A machine learning-based
collaborative DDoS
mitigation mechanism in the
software-defined
network [10]

Naïve Bayes

They had an average
precision of 0.98 for
training dataset with all
features inclusive and had
an average precision of 0.81
for training dataset with
seven features removed.

• Used a 41 feature
DDOS dataset.

• Training and testing
split ratio not
mentioned.

6.
An intelligent
software-defined network
controller for DDoS attack [6]

KNN, SVM, Naïve Bayes

KNN was most suitable
with 97% accuracy than the
other two algorithms
deployed. SVM had 82%,
and Naïve Bayes had 83%

• Used 67/33 training
and testing dataset
ratio.

• Specific flood
protocols used in
research work not
mentioned.

7.

DDoS attack identification
and defence using SDN
based on machine learning
method [11]

SVM The algorithm produced an
accuracy of 0.998.

• Used 75/25 training
and testing dataset
ratio.

• Eight feature dataset.

8.

Deep reinforcement
learning-based smart
mitigation of DDoS flooding
in software-defined
networks [15]

Deep reinforcement learning

Their findings
demonstrated that the
agent could effectively
mitigate DDoS flooding
attacks of various
protocols.

• Eight feature dataset.
• Used TCP, UDP, and

ICMP floods.

Technologies 2021, 9, 14 6 of 22

Table 1. Cont.

No. Paper Title Research Method Results Strengths and Limitations

9.

Detection of distributed
denial of service attacks
using machine learning
algorithms in
software-defined
networks [12]

Naïve Bayes, SVM, Neural
network.

The naïve Bayes had an
accuracy of up to 70% and
SVM and the neural
network had the same
accuracy of 80%

• Two feature
processed dataset.

• Used only TCP flood.

10.
Multi-SDN based
cooperation scheme for
DDoS attack defence [13]

SVM

It was observed that the
SVM algorithm would
achieve more than 98%
accuracy on both the
attacker and victim side of
SYN flooding, ICMP
flooding, and DNS
reflection attack.

• Used TCP, UDP, and
ICMP floods

• Training and testing
split ratio not
mentioned.

3. Methodology

Our anomaly detection technique is based on gathering certain parameters of the
network when operating in a normal and also when subjected to a DDoS attack. These
features include:

• The number of packets received at each switch
• The number of packets transmitted at each switch
• Packet count (number of packets of each flow)
• Protocol type (TCP, UDP or ICMP)
• Source IP
• Destination IP

The following assumptions were made in this research:

• The normal operation of the network is constant (the exchange of information between
nodes has a particular profile), which forms the basis of our anomaly detection and
defence mechanism.

• The training of the detection engine is done off-device; the model is only exported
and used on the controller.

3.1. Architecture

A three-tier architecture consisting of seven switches, eight hosts (two hosts per switch)
and an external controller (the single host connected to a switch) was used in this research.
Figure 3 shows the three–tier topology implementation in Mininet.

Technologies 2021, 9, 14 7 of 22

Figure 3. The three-tier topology deployed using Mininet.

3.2. Simulation Test Bed

The work was simulated using Mininet and floodlight as an external controller. The
SDN Mininet simulator software was used in creating the three-tier data center topology
(shown in Figure 3). The floodlight controller and OpenFlow switches were deployed using
a virtual machine running Ubuntu. After setting up the network, a specialized tool known
as hping3 [21] was used to generate data traffic. Using the hping3 tool, we simulated a
normal TCP, UDP, and ICMP traffic between two endpoints in the network. Afterwards,
we simulated a DoS for TCP, UDP, and ICMP flood attacks. The statistics of the various
switches were collected; these include:

• Number of hosts connected to each OpenFlow switch
• Number of packets (transmit and receive) of each OpenFlow switch
• Delay in millisecond (Round-Trip Time)
• Type of Transmission Protocol (TCP, UDP, or ICMP)
• Throughput
• Source IP
• Destination IP

The three different kinds of traffic generated by the hping3 tool were UDP, TCP, and
ICMP. The initial regular data generated were labeled as normal traffic. Afterwards,
malicious traffic was generated using hping3 for the various UDP, TCP, and ICMP floods,
which was labeled as malicious traffic. In total, 10,031 data collected, 4270 being malicious
traffic (approximately 43%) and 5761 (approximately 57%) normal traffic.

Technologies 2021, 9, 14 8 of 22

3.3. Scenarios Considered

The data gathered were used to build binary classification models using the following
ML models: K-neighbor nearest (KNN), Logistic Regression, Linear SVC, SVC, Decision
Tree, Random Forest, Gradient Boosting, and Naïve Bayes classifiers such as Gaussian,
Bernoulli, and multinomial, as well as the main algorithms being investigated for the
purpose of this work, namely RNN LSTM and CNN. The model summary for LSTM and
CNN is shown in Figures 4 and 5, respectively.

Figure 4. LSTM model summary.

Figure 5. CNN model summary.

The performance of each model was evaluated based on the following key perfor-
mance indicators: recall, accuracy, true negative rate, and the time used for identifying
and mitigating the DDoS attacks. Accuracy is the proportion of correct predictions from
the total dataset given. Recall is the percentage of predicted normal data against the total
amount of normal data presented. The true-negative rate, on the other hand, measures the
sum of true-negative against the sum of the condition of negative. It relates to the test’s
ability to detect malicious data against the total amount of malicious data presented.

Three scenarios were considered in the research. In the first scenario, 80% of the data
were used in training and the remaining 20% for testing. The second scenario utilized 70%
of the data for training and 30% for testing. In the third scenario, 60% of the data were
used for training, while 40% were used for testing.

3.4. Detection and Defence Mechanism

The model was exported after evaluations were made and used in an application
that runs on the controller. The application was used to measure the detection time when
the controller was subjected to a DDoS attack. If the model detects a DDoS attack, its
output is fed into the defence engine. The defence/mitigation engine is built on top of
NetFilterQueue [22], a Linux system implementation that matches packets as accepted,
dropped, altered, or given a mark. The rules to match packets have to be manually set,
which does not make it scalable. Leveraging this, we implemented the defence mechanism
by automatically matching packets based on the output of the detection algorithm.

Technologies 2021, 9, 14 9 of 22

4. Results and Discussion

The performance of the models in terms of precision and recall is shown in Figures 6–11.
In terms of precision, the linear regression models (GradientBoosting, KNN, DecisionTree,
GaussianNB, MultinomialNB, SVC, and LinearSVC) outperformed the LSTM model (a
marginal difference of 1.4%) for the variants of split-ratios considered. Nonetheless, the
LSTM model achieved a good tradeoff between a high recall and precision, as shown in
Figures 12–14, which makes it suitable for DDoS classification.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Scenario

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (%
)

The Precision of the models (80/20 Train-Test Split Ratio) for 10 Scenarios
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 6. A comparison of the precision of the models for an 80/20 train–test split ratio.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Scenario

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (%
)

The Precision of the models (70/30 Train-Test Split Ratio) for 10 Scenarios
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 7. A comparison of the precision of the models for a 70/30 train–test split ratio.

Technologies 2021, 9, 14 10 of 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Scenario

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (%
)

The Precision of the models (60/40 Train-Test Split Ratio) for 10 Scenarios
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 8. A comparison of the precision of the models for a 60/40 train–test split ratio.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Scenario

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll
(%

)

The Recall rate of the models (80/20 Train-Test Split Ratio) for 10 Scenarios
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 9. A comparison of the recall of the models for a 80/20 train–test split ratio.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Scenario

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll
(%

)

The Recall rate of the models (70/30 Train-Test Split Ratio) for 10 Scenarios
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 10. A comparison of the recall of the models for an 70/30 train–test split ratio.

Technologies 2021, 9, 14 11 of 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Scenario

0.6

0.7

0.8

0.9

1.0

Re
ca

ll
(%

)

The Recall rate of the models (60/40 Train-Test Split Ratio) for 10 Scenarios
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 11. A comparison of the recall of the models for a 60/40 train–test split ratio.

0.5 0.6 0.7 0.8 0.9 1.0
Recall (%)

0.6

0.7

0.8

0.9

1.0

Pr
ec
isi
on

 (%
)

Precision against Recall for 80/20 Train-Test Split Ratio
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 12. A comparative analysis of the precision and recall of each model using an 80/20 train–test
split ratio.

0.5 0.6 0.7 0.8 0.9 1.0
Recall (%)

0.6

0.7

0.8

0.9

1.0

Pr
ec
isi
on

 (%
)

Precision against Recall for 70/30 Train-Test Split Ratio
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 13. A comparative analysis of the precision and recall of each model using a 70/30 train–test
split ratio.

Technologies 2021, 9, 14 12 of 22

0.6 0.7 0.8 0.9 1.0
Recall (%)

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (%
)

Precision against Recall for 60/40 Train-Test Split Ratio
KNN
LogisticRegression
LinearSVC
SVC
DecisionTree
RandomForest
GradientBoosting
GaussianNB
BernoulliNB
MultinomialNB
LSTM
CNN

Figure 14. A comparative analysis of the precision and recall of each model using a 60/40 train–test
split ratio.

A summary of the performance of the models in shown in Table 2. The values in bold
indicate the highest accuracy, recall and true-negative rate of each model.

Table 2. A Summary of the performance of the models in terms of accuracy, recall and true-
negative rate.

ACCURACY RECALL TRUE-NEGATIVE RATE

MODEL 80/20 60/40 70/30 80/20 60/40 70/30 80/20 60/40 70/30

KNN 99.40 99.35 99.17 99.50 99.24 98.98 99.30 99.40 99.30

LOGISTIC REGRESSION 90.33 72.00 72.00 77.30 34.73 34.52 99.60 99.13 99.26

LINEAR SVC 86.85 87.49 87.04 80.20 81.70 81.76 91.60 91.69 90.88

SVC 70.85 68.95 69.53 29.80 26.26 27.56 100.00 100.00 100.00

DECISION TREE 99.20 99.23 99.24 99.80 99.88 99.88 98.80 98.75 98.79

RANDOM FOREST 100.00 100.00 99.97 100.00 100.00 100.00 100.00 100.00 99.94

GRADIENT BOOSTING 99.95 99.93 99.93 100.00 99.95 100.00 99.90 99.90 99.88

G. NAÏVE BAYES 73.49 74.76 74.75 90.30 91.12 91.08 61.50 62.80 62.90

B. NAÏVE BAYES 64.08 63.42 63.36 77.90 76.68 76.62 54.30 53.76 53.73

M. NAÏVE BAYES 82.61 82.16 82.26 86.90 85.32 86.66 79.60 79.85 79.06

RNN LSTM 86.60 89.51 89.63 81.75 75.08 75.34 90.0 100.00 100.00

CNN 66.00 66.00 66.00 0.00 0.00 0.00 100.00 100.00 100.00

4.1. Detection of DDoS Attack Using LSTM Model

This section of the experiment was aimed at creating scenarios of DDoS in the form
of ICMP, UDP, and TCP flood attacks on the controller. It also determined how long it
took the trained LSTM model to detect the attacks. Ten scenarios were considered, and
Figure 15 shows the time it took the trained model to detect each flood attack, using a
60/40 train–test ratio.

Technologies 2021, 9, 14 13 of 22

Figure 15. LSTM model detection time using a 60/40 train–test split ratio for TCP, UDP, and ICMP
flood attacks.

In Figure 15, the highest time it took the LSTM model to detect TCP DDoS flood
among the 10 attempts was 18.70 s and the least time was 12.83 s. It took 11.73 and 15.90 s,
respectively, as the lowest and highest times to detect the UDP DDoS flood attack. In
addition, it took 11.76 and 15.73 s, respectively, as the lowest and highest times to detect
ICMP flood attack among the 10 scenarios considered.

Figure 16 shows the detection time of the LSTM model when a 70/30 train–test ratio
was used.

Figure 16. LSTM model detection time using a 70/30 train–test split ratio for TCP, UDP, and ICMP
flood attacks.

In Figure 16, the highest time it took the LSTM model to detect the TCP flood among
the 10 scenarios was 18.71 s and the least time was 12.84 s. It took 11.81 and 15.89 s,
respectively, as the lowest and highest times to detect UDP flood attack. In addition, it took
11.68 and 15.76 s, respectively, as the lowest and highest times to detect ICMP flood attack.

Figure 17 shows the detection time of the LSTM model when a 80/20 train–test ratio
was used.

Technologies 2021, 9, 14 14 of 22

Figure 17. LSTM model detection time using an 80/20 train–test split ratio for TCP, UDP, and ICMP
flood attacks.

In Figure 17, the highest time it took the LSTM model to detect the TCP flood was
18.55 s and the least time was 12.67 s. It took 11.62 and 15.70 s, respectively, as the lowest
and highest times to detect the UDP flood attack. In addition, it took 11.56 and 15.63 s,
respectively, as the lowest and highest times to detect the ICMP flood attack.

Table 3 gives a summary of the detection time of the LSTM model.

Table 3. A summary of LSTM model’s detection time for TCP, UDP, and ICMP flood attacks.

Split Ratio TCP UDP ICMP

60/40 Highest time 18.70 15.91 15.73

Lowest time 12.83 11.73 11.76

70/30 Highest time 18.71 15.89 15.76

Lowest time 12.84 11.81 11.68

80/20 Highest time 18.55 15.70 15.63

Lowest time 12.67 11.62 11.56

From Table 3, It is observed that the 80/20 split had the lowest values (indicated in
bold) for the detection of ICMP, TCP and UDP flood attacks .

4.2. Mitigation of DDoS Attack Using LSTM Model

This section of the experiment was aimed at creating scenarios of DDoS in the form of
ICMP, UDP, and TCP flood attacks on the controller. It also determined how long it took for
the trained LSTM model to mitigate the attack after detection. After the controller detects
the DDoS attack, the IP, protocol type, and destination port are sent to the mitigation engine,
which instantly drops all packets from that particular source IP. Ten scenarios (attempts)
were considered. The train–test ratios used were 60/40, 70/30, and 80/20.

Figure 18 shows the mitigation time of the LSTM model when a 60/40 train–test ratio
was used.

Technologies 2021, 9, 14 15 of 22

Figure 18. LSTM model mitigation time using a 60/40 train–test split ratio for TCP, UDP, and ICMP
flood attacks.

In Figure 18, the highest time it took the LSTM model to mitigate the TCP DDoS flood
attack was 4.75 s and the least time was 3.01 s. It took 3.28 and 4.51 s, respectively, as the
lowest and highest times to mitigate the UDP flood attack. In addition, it took 3.18 and
4.45 s, respectively, as the lowest and highest times to mitigate the ICMP flood attack.

Figure 19 shows the mitigation time of the LSTM model when a 70/30 train–test ratio
was used.

Figure 19. LSTM model mitigation time using a 70/30 train–test split ratio for TCP, UDP, and ICMP
flood attacks.

In Figure 19, the highest time it took the LSTM model to mitigate the TCP flood attack
was 4.68 s and the least time was 2.99 s. It took 3.28 and 4.54 s, respectively, as the lowest
and highest times to mitigate the UDP flood attack. In addition, it took 3.16 and 4.45 s,
respectively, as the lowest and highest times to mitigate the ICMP flood attack.

Figure 20 shows the mitigation time of the LSTM model when a 80/20 train–test ratio
was used.

Technologies 2021, 9, 14 16 of 22

Figure 20. LSTM model mitigation time using an 80/20 train–test split ratio for TCP, UDP, and ICMP
flood attacks.

In Figure 20, the highest time it took the LSTM model to mitigate the TCP flood attack
was 4.86 s and the least time was 3.16 s. It took 3.42 and 4.65 s, respectively, as the lowest
and highest times to mitigate the UDP flood attack. In addition, it took 3.36 and 4.57 s,
respectively, as the lowest and highest times to mitigate the ICMP flood attack.

Table 4 gives a summary of the mitigation time of the LSTM model.

Table 4. A summary of LSTM model’s mitigation time for TCP, UDP, and ICMP flood attacks.

Split Ratio TCP UDP ICMP

60/40 Highest time 4.75 4.51 4.45

Lowest time 3.01 3.28 3.18

70/30 Highest time 4.68 4.54 4.45

Lowest time 2.99 3.28 3.16

80/20 Highest time 4.86 4.65 4.57

Lowest time 3.16 3.42 3.36

It can be observed that the 70/30 split had the lowest values (indicated in bold) in
time for mitigating ICMP, TCP, and UDP flood attacks.

4.3. Comparison of the LSTM Model with the Best Performing Linear-Based ML Models

We compared the best performing linear-based ML models with the LSTM model in
terms of detection and mitigation time. According to the observed detection times for all
the three different ratio splits, the 80/20 split had the best time values for detecting DDoS
attacks. Hence, these values were compared with that of the best performing linear models
in the sample split ratio. This is shown in Figures 21–24.

Technologies 2021, 9, 14 17 of 22

Figure 21. Comparison of the LSTM model with the best performing linear-based ML models:
detection time for ICMP flood attack.

Figure 22. Comparison of the LSTM model with the best performing linear-based ML models:
detection time for UDP flood attack.

Figure 23. Comparison of the LSTM model with the best performing linear-based ML models:
detection time for TCP flood attack.

Technologies 2021, 9, 14 18 of 22

Figure 24. Comparison of the LSTM model with the best performing linear-based ML models:
average detection time for ICMP, UDP, and TCP flood attacks.

It was observed that the LSTM model had a higher time in detecting DDoS attacks
on the SDN controller. However, it was not more than 4 s from the highest time for the
linear-based models, which makes it a good result.

In addition, from the mitigation time for all the three different ratio splits, it was
observed that the 70/30 split had the best time values for mitigating the DDoS attacks.
Hence, these values were compared to that of the best performing linear models in the
sample split ratio. This is shown in Figures 25–28.

Figure 25. Comparison of the LSTM model with the best performing linear-based ML models:
mitigation time for ICMP flood attack.

Technologies 2021, 9, 14 19 of 22

Figure 26. Comparison of the LSTM model with the best performing linear-based ML models:
mitigation time for UDP flood attack.

Figure 27. Comparison of the LSTM model with the best performing linear-based ML models:
mitigation time for TCP flood attack.

Figure 28. Comparison of the LSTM model with the best performing linear-based ML models:
average mitigation time for ICMP, UDP, and TCP flood attacks.

Technologies 2021, 9, 14 20 of 22

In Figure 28, all the classification models (both the linear models and the LSTM model)
after detecting a DDoS flood attack, took almost the same time to mitigate the attack. Hence,
it can be concluded that the LSTM model performs exceptionally just as linear models will
in the mitigation of DDoS attacks on the SDN controller. It was also observed that, aside
KNN and GB, the RNN LSTM model performed better in some protocols than the three
remaining linear models.

Table 5, shows a comparison of the classification models from this research and other
related works.

Table 5. Comparison of the classification models with other related works.

Classification Model Accuracy from Other Works Accuracy from This
Research

1. KNN (DDoS, SDN) 97% [6] 99.40%
2. SVM (DDoS, SDN) 82% [6] 86.85%
3. Naive Bayes (DDoS, SDN) 83% [6] 82.61%
4. SVM (DDoS, SDN) 98% [13] 86.85%

In Table 5, it can be observed that the LSTM model (which achieved an accuracy of
89.63%) is quite good in comparison to the linear-based ML models. Furthermore, the
LSTM model has a good tradeoff between precision and recall rates which makes it a good
classification model for DDoS detection (Figures 12–14).

5. Conclusions and Future Work

In this research, we demonstrated that RNN LSTM is a viable deep learning algorithm
that can be applied in the detection and mitigation of DDoS in the SDN controller. In
addition, it was observed that the split ratio of the training and testing dataset could give
different results in the performance of a deep learning algorithm used in a specific work.
Thus, a 70/30 split produces a better model accuracy when compared to 80/20 and 60/40
split ratios. It can be concluded that RNN LSTM is also a good model for the identification
and mitigation of DDoS attacks in the SDN architecture. The software-defined network
used in this work was designed and tested within a virtual environment which simulates a
software running on a set of network devices. Thus, future works may be carried out in a
real SDN architecture to test how this application works in real-time. Future works will
also explore the gathering of a larger dataset with in depth feature selection analysis and
tuning of hyper-parameters to achieve better performance when using the neural network
models.

Author Contributions: Conceptualization, J.D.G. and A.A.B.-A.; methodology, A.A.B.-A. and J.O.A.;
validation, H.N.-M.; formal analysis, K.A.-B.O.; investigation, H.N.-M. and K.A.-B.O.; resources,
J.D.G.; data curation, A.A.B.-A. and J.O.A.; writing—original draft preparation, A.A.B.-A., writing—
reviewing and editing, J.O.A. and H.N.-M.; project administration, J.D.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study is available at https://github.com/
jayluxferro/SDN-DoS/blob/master/README.md.

Conflicts of Interest: The authors declare no conflict of interest.

 https://github.com/jayluxferro/SDN-DoS/blob/master/README.md.
 https://github.com/jayluxferro/SDN-DoS/blob/master/README.md.

Technologies 2021, 9, 14 21 of 22

References
1. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling

innovation in campus networks. SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]
2. Sangodoyin, A.; Sigwele, T.; Pillai, P.; Hu, Y.F.; Awan, I.; Disso, J. DoS Attack Impact Assessment on Software Defined Networks.

In Proceedings of the International Conference on Wireless and Satellite Systems, WiSATS 2017: Wireless and Satellite Systems,
Oxford, UK, 14–15 September 2017; pp 11–22.

3. Abhiroop, T.; Babu, S.; Manjo, B.S. A Machine Learning Approach for Detecting DoS Attacks in SDN Switches. In Proceedings of
the Twenty Fourth National Conference on Communications (NCC), Hyderabad, India, 25–28 February 2018; pp. 1–6. ISBN
978-1-5386-1224-8.

4. Conti, M.; Gangwal, A.; Gaur, M.S. A comprehensive and effective mechanism for DDoS detection in SDN. In Proceedings of the
IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy,
9–11 October 2017; pp. 1–8. [CrossRef]

5. Dotcenko, S.; Vladyko, A.; Letenko, I. A fuzzy logic-based information security management for software-defined networks.
In Proceedings of the 16th International Conference on Advanced Communication Technology, Pyeongchang, Korea, 16–19
February 2014; pp. 167–171. [CrossRef]

6. Prakash, A.; Priyadarshini, R. An Intelligent Software defined Network Controller for preventing Distributed Denial of Service
Attack. In Proceedings of the Second International Conference on Inventive Communication and Computational Technologies
(ICICCT), Coimbatore, India, 20–21 April 2018; pp. 585–589. [CrossRef]

7. Phan, T.V.; Toan, T.V.; Tuyen, D.V.; Huong, T.T.; Thanh, N.H. OpenFlowSIA: An optimized protection scheme for software-defined
networks from flooding attacks. In Proceedings of the IEEE Sixth International Conference on Communications and Electronics
(ICCE), Ha Long, Vietnam, 27–29 July 2016; pp. 13–18. [CrossRef]

8. Ye, J.; Cheng, X.; Zhu, J.; Feng, L.; Song, L. A DDoS Attack Detection Method Based on SVM in Software Defined Network. Secur.
Commun. Netw. 2018, 2018, 1–8. [CrossRef]

9. Sahoo, K.S.; Iqbal, A.; Maiti, P.; Sahoo, B. A Machine Learning Approach for Predicting DDoS Traffic in Software Defined Networks.
In Proceedings of the International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2018;
pp. 199–203. [CrossRef]

10. Mohammed, S.S. A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network.
In Proceedings of the 14th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), Limassol, Cyprus, 15–17 October 2018; pp. 1–8. [CrossRef]

11. Yang, L.; Zhao, H. DDoS Attack Identification and Defense Using SDN Based on Machine Learning Method. In Proceedings of
the 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN), Yichang, China, 16–18 October
2018; pp. 174–178. [CrossRef]

12. Meti, N.; Narayan, D.G.; Baligar, V.P. Detection of distributed denial of service attacks using machine learning algorithms in
software defined networks. In Proceedings of the International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 1366–1371. [CrossRef]

13. He, B.; Zou, F.; Wu, Y. Multi-SDN Based Cooperation Scheme for DDoS Attack Defense. In Proceedings of the Third International
Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC), Shanghai, China, 18–19 October
2018; pp. 1–7. [CrossRef]

14. Ujjan, R.M.A.; Pervez, Z.; Dahal, K. Suspicious Traffic Detection in SDN with Collaborative Techniques of Snort and Deep
Neural Networks. In Proceedings of the IEEE 20th International Conference on High Performance Computing and Commu-
nications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 915–920. [CrossRef]

15. Liu, Y.; Dong, M.; Ota, K.; Li, J.; Wu, J. Deep Reinforcement Learning based Smart Mitigation of DDoS Flooding in Software-
Defined Networks. In Proceedings of the IEEE 23rd International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), Barcelona, Spain, 17–19 September 2018; pp. 1–6. [CrossRef]

16. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep Recurrent Neural Network for Intrusion Detection in
SDN-based Networks. In Proceedings of the 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal,
QC, Canada, 25–29 June 2018; pp. 202–206. [CrossRef]

17. Dey, S.K.; Md Rahman, M. Flow Based Anomaly Detection in Software Defined Networking: A Deep Learning Approach With
Feature Selection Method. In Proceedings of the 4th International Conference on Electrical Engineering and Information &
Communication Technology (iCEEiCT), Dhaka, Bangladesh, 13–15 September 2018; pp. 630–635. [CrossRef]

18. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. (2016) Deep learning approach for Network Intrusion
Detection in Software Defined Networking. In Proceedings of the International Conference on Wireless Networks and Mobile
Communications (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 258–263. [CrossRef]

http://doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/WiMOB.2017.8115796
http://dx.doi.org/10.1109/ICACT.2014.6778942
http://dx.doi.org/10.1109/ICICCT.2018.8473340
http://dx.doi.org/10.1109/CCE.2016.7562606
http://dx.doi.org/10.1155/2018/9804061
http://dx.doi.org/10.1109/ICIT.2018.00049
http://dx.doi.org/10.1109/WiMOB.2018.8589104
http://dx.doi.org/10.1109/I-SPAN.2018.00036
http://dx.doi.org/10.1109/ICACCI.2017.8126031
http://dx.doi.org/10.1109/SSIC.2018.8556830
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00152
http://dx.doi.org/10.1109/CAMAD.2018.8514971
http://dx.doi.org/10.1109/NETSOFT.2018.8460090
http://dx.doi.org/10.1109/CEEICT.2018.8628069
http://dx.doi.org/10.1109/WINCOM.2016.7777224

Technologies 2021, 9, 14 22 of 22

19. Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access
2017, 5, 21954–21961. [CrossRef]

20. Asad, M.; Asim, M.; Javed, T.; Beg, M.O.; Mujtaba, H.; Abbas, S. DeepDetect: Detection of Distributed Denial of Service Attacks
Using Deep Learning. Comput. J. 2019, bxz064. [CrossRef]

21. Hping3. Available online: https://github.com/antirez/hping (accessed on 27 April 2020).
22. NetFilterQueue. Available online: https://github.com/kti/python-netfilterqueue (accessed on 27 April 2020).

http://dx.doi.org/10.1109/ACCESS.2017.2762418
http://dx.doi.org/10.1093/comjnl/bxz064
https://github.com/antirez/hping
https://github.com/kti/python-netfilterqueue

	Introduction
	Related Work
	Methodology
	Architecture
	Simulation Test Bed
	Scenarios Considered
	Detection and Defence Mechanism

	Results and Discussion
	Detection of DDoS Attack Using LSTM Model
	Mitigation of DDoS Attack Using LSTM Model
	Comparison of the LSTM Model with the Best Performing Linear-Based ML Models

	Conclusions and Future Work
	References

