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Abstract: The development of micromechanical models to predict the effective properties of multi-
phase composites is important for the design and optimization of new materials, as well as to improve
our understanding about the structure–properties relationship. In this work, the two-scale asymptotic
homogenization method (AHM) is implemented to calculate the out-of-plane effective complex-value
properties of periodic three-phase elastic fiber-reinforced composites (FRCs) with parallelogram unit
cells. Matrix and inclusions materials have complex-valued properties. Closed analytical expressions
for the local problems and the out-of-plane shear effective coefficients are given. The solution of
the homogenized local problems is found using potential theory. Numerical results are reported
and comparisons with data reported in the literature are shown. Good agreements are obtained.
In addition, the effects of fiber volume fractions and spatial fiber distribution on the complex effective
elastic properties are analyzed. An analysis of the shear effective properties enhancement is also
studied for three-phase FRCs.

Keywords: multiphase fiber-reinforced composites; asymptotic homogenization method; effective
complex properties; elastic composite

1. Introduction

Multiphase elastic fiber-reinforced composites (FRCs) are still important in applica-
tions because their yields exceed those of their constituents and they offer very interesting
properties compared to more conventional materials. Improved levels of functionality
can be achieved through the manipulation of physical properties by means of structure
optimization [1–3]. Therefore, the effective properties prediction for FRCs by means of
micromechanical models and numerical approaches is a useful tool for technological
innovation [4–10].

Periodic multiphase elastic FRCs have found applications related to transport prob-
lems (conductivity, shear elasticity, dielectric constant, thermal expansion, and others).
In this sense, different micromechanical and experimental models have been developed to
analyze elastic FRCs. For example, the elastic effective properties of two-phase elastic FRCs
with periodic square [11] and hexagonal [12] cells were found by applying the asymptotic
homogenization method (AHM). Jiang et al. [13] calculated the effective elastic moduli
of FRCs with cylindrical inclusions under longitudinal shear by means of the Eshelby
equivalent inclusion concept [14], combining the results of a doubly quasiperiodic Rie-
mann boundary value problem [15]. Artioli et al. [16] applied the AHM to determine the

Technologies 2021, 9, 12. https://doi.org/10.3390/technologies9010012 https://www.mdpi.com/journal/technologies

https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-0687-0993
https://orcid.org/0000-0002-6057-0879
https://orcid.org/0000-0002-3093-6948
https://doi.org/10.3390/technologies9010012
https://doi.org/10.3390/technologies9010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/technologies9010012
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/2227-7080/9/1/12?type=check_update&version=1


Technologies 2021, 9, 12 2 of 13

effective longitudinal shear properties of elastic FRCs with radially graded fibers, assuming
imperfect interface conditions. Shu and Stanciulescu [17] proposed an analytical approach
using multiscale homogenization to characterize FRCs with imperfect interphase through
the shear-lag model. Dhimole et al. [18] implemented a multiscale modeling based on
homogenization method to predict the accurate mechanical behavior of 3D four-directional
braided composites.

In addition, Bisegna and Caselli [19] investigated the effective complex conductiv-
ity for a periodic FRC with interfacial impedance and hexagonal symmetry by AHM.
Godin computed the complex effective dielectric properties for two-phase FRCs with circu-
lar inclusions [20] and for periodic tubular structures [21]. These tubular structures were
modeled as a three-phase FRC. Analytic bounds on the complex dielectric constant were
reported by the authors of [22]. A correspondence between orthotropic complex-value
dielectric media and non-orthotropic elastic media was developed by the authors of [23]
through an affine transformation. Mackay and Lakhatia [24] reported the gain and loss
enhancement for particulate homogenized composite materials whose active constituents
have complex values. Guild et al. [25] analyzed the enhancement of homogenized dielectric
effective properties for acoustic waves using multiscale sonic crystals. Luong et al. [26]
estimated the complex shear modulus using the least mean square/algebraic helmholtz
inversion (LMS/AHI) algorithm for 1D heterogeneous tissue. On the other hand, fiber-
matrix interaction region has also been studied for multiphase FRCs. In this case, a thin
mesophase is added between the fiber and the matrix in a three-phase FRC. This contact
zone is commonly defined as imperfect contact region, see, for instance, [17,27–30].

The AHM has proved to be advantageous in the description of the multiscale me-
chanics of composite materials. Many studies have dealt with the theoretical bases of
the AHM [31–35]. In general, the AHM makes it possible to obtain an effective char-
acterization of the heterogeneous system or phenomenon under study by encoding the
information available at the microscale into the so-called effective coefficients. In particular,
multiscale AHM take advantage of the information available at the smaller scales of a
given heterogeneous medium to predict the effective properties at its larger scales, see,
for instance, [36–39]. This, in turn, dramatically reduces the computational complexity
of the resulting boundary problems. However, the main disadvantage of AHM is that
the analytical solution of the local problems has been derived for only a few composite
structures [40,41].

The main aim of this work is the estimation by AHM of the effective elastic complex-
values properties for periodic three-phase elastic FRC with complex-valued constituent
properties and a parallelogram cell. The out-of-plane case for three-phase composite is
considered. Both matrix and fibers have isotropic or transversely isotropic properties, and
they are in welded contact. The mathematical statement is presented, and the associated
local problems are derived. Simple closed formulas are provided for the shear effective
coefficients of three-phase FRCs. Validations of the present model with results reported
in literature are shown. The AHM accuracy and convergence is analyzed based on the
truncations of the infinite system from the local problems solutions. Also, the effect of
volume fraction and spatial fiber distribution on the complex effective elastic properties
is analyzed. An example of longitudinal shear enhancement is considered as a function
of reinforcement volume fractions for three-phase FRCs with complex-value constituents.
Good agreements are obtained.

The novelty of this work is to calculate by AHM the out-of-plane effective properties
of periodic three-phase elastic FRC with parallelogram unit cell whose constituents have
complex-valued properties. It generalizes earlier works in which the same method has been
applied to two- and three-phase FRCs with real-values constituents and square, hexagonal,
and parallelogram unit cells, see, for instance, [11,12,40,42]. This generalization allows the
study of the shear effective properties enhancement for three-phase FRCs.
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2. Statement of the Problem and Method of Solution
2.1. Mathematical Formulation for the Elastic Heterogeneous Media

A heterogeneous periodic three-phase elastic FRC Ω ⊂ R3 (fiber/mesophase/matrix)
with a doubly periodic microstructure is studied, which consisted of a parallelepiped array
of two concentric and unidirectional cylinders within a homogeneous matrix (Figure 1a).
The fibers are infinitely long in the Ox3−direction and periodically distributed. At the
microstructural level, the composite cross-section (periodic unit cell Y) is defined by a
matrix with two concentric circles of different radii located at the parallelogram center, see
Figure 1c. The constituent elastic properties, belonging to a crystal symmetry class of 6mm,
are assumed to be complex numbers. In addition, as a unidirectional FRC, the composite
microstructure is considered to remain constant along the reinforcement’s direction (i.e.,
perpendicular to Oy1y2−plane of cross-section).
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The periodic parallelogram-like unit cell Y is characterized by a principal angle θ

and the periods ω1 and ω2 in the Oy1y2−plane. Also, it is satisfied that Y =
3
∪

γ=1
Sγ

and Si ∩ Sj = ∅, i 6= j, where S1 is the region occupied by matrix phase defined by a
parallelogram Σ with a central circular hole of radius R1, contour Γ1, and volume V1.
S2 represents the mesophase of volume V2 and is surrounded by two circular interfaces
Γ1 and Γ2 of radius R1 and R2 (R1 > R2), respectively, and S3 is the central fiber with
circular boundary Γ2 of radius R2 and volume V3. The volume V of the cell satisfies that
V = V1 + V2 + V3 = 1.

In the out-of-plane mechanical deformation state, the mechanical displacement
u = (u1, u2, u3) of a media Ω satisfies that u1(x1, x2) = u2(x1, x2) = 0, u3(x1, x2) 6= 0,
and the non-null stresses involved in this problem are σ13(x1, x2) and σ23(x1, x2). Thus,
the static governing equation for an elastic FRC Ω is defined by the partial differential
equations system:

∂

∂xη

(
Cη3β3(x/ε)

∂u3

∂xβ

)
= 0, in Ω, (1)

where the absence of body forces is considered. Here, Cη3β3(x/ε) are Y-periodic and rapidly
oscillating coefficients which denotes the elastic stiffness modulus, and η, β = 1, 2.

The Equation (1) subject to the prescribed boundary conditions:

σ3j(x)nj
∣∣
∂Ω1

= t0(x), (j = 1, 2, 3) on ∂Ω 1 (2)

u3(x)|∂Ω2
= g1(x), on ∂Ω 2 (3)
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represent the out-of-plane classical elliptic boundary value problem associated with the
linear elasticity theory for heterogeneous structures. Here, t0(x) is the traction vector on
∂Ω 1, g1(x) is an infinitely differentiable function on the external boundary ∂Ω2, and nj is
the component of the outward unit normal vector on ∂Ω 1. The boundary of the composite
is partitioned in such a way that ∂Ω = ∂Ω1 ∪ ∂Ω2 and ∂Ω1 ∩ ∂Ω2 = ∅. In Equations (1)–(3),
σ3j and u3 are the out-of-plane mechanical stresses and displacements.

In addition to Equations (1)–(3), perfect contact conditions at the circular interfaces Γs
(s = 1, 2) are assumed, i.e.,[[

σ3j nj
]]∣∣

Γs
= 0, [[u3(x)]]|Γs

= 0, on Γs (4)

where [[ f ]]|Γs
= f (s) − f (s+1) means jump of f across Γs, see for instance [11].

2.2. Method of Solution: Local Problems and Effective Coefficients

The two-scale AHM [32,33,43] is used to solve the elliptic boundary value problem
(Equations (1)–(4)). The solution is found by means of a two-scale asymptotic representation
of u3 in powers of the small geometrical parameter ε by the ansatz:

u3(x) = u(0)
3 + εu(1)

3 (x, y) + O(ε2), (5)

where the macroscale or fast variable ′′x′′ and the microscale or slow variable ′′y′′ are
related by x = εy, and the parameter ε = l/L is the ratio between the periodic unit
cell length (l) and the macroscopic dimension of the composite (L). In Equation (5), the
second term u3

(1)(x, y) is a periodic function of y, which represents a correction of the term
u(0)

3 ≡ u3(x). Also, it is satisfied that u(1)
3 (x, y) = α3N(y)

(
∂u(0)

3 \∂xα

)
, where α3N(y) ≡ α3N

is a Y-periodic local function, which is the solution of the local problems. It is possible
to obtain an asymptotic solution of the problem (Equations (1)–(4)) when ε→ 0 . More
details and the rigorous theoretical background of AHM have been described in classical
works [31,33,43] and are omitted here.

The out-of-plane local problems on Y, denoted as α3L (α = 1, 2) for a three-phase
elastic FRC (see Figure 1), is stated as follows:

∂

∂yβ

(
C1313 + C1313

∂α3N
∂yβ

)
= 0, in Sγ(γ = 1, 2, 3), (6)

α3N(s)
∣∣∣
Γs

= α3N(s+1)
∣∣∣
Γs

, on Γs (7)[(
C(s)

1313
∂α3N(s)

yβ
− C(s+1)

1313
∂α3N(s+1)

yβ

)
nβ

]∣∣∣∣
Γs

= −
[(

C(s)
1313 − C(s+1)

1313

)
(δ1α n1 + δ2α n2)

]∣∣∣
Γs

, on Γs, (8)

where δ1α and δ2α are the Kronecker’s delta functions related to the 13L and 23L local
problems, respectively. To guarantee the uniqueness of the local problems solutions,
the local functions should satisfy the null average condition

〈
α3N

〉
= 0 on Y, where

〈F〉 = (1/|Y|)
∫
Y

F(y) dy and |Y| is the area of Y.

Once the α3L out-of-plane local problems (Equations (6)–(8)) are solved, the corre-
sponding effective elastic coefficients can be calculated by the formulas:

C∗1313 =
〈
C1313(y) + C1313(y)13N ,1(y)

〉
,

C∗2313 =
〈
C1313(y)13N ,2(y)

〉
,

associate with 13L local problem, (9)

C∗1323 =
〈
C1313(y)23N ,1(y)

〉
,

C∗2323 =
〈
C1313(y) + C1313(y)23N ,2(y)

〉
,

associate with 23L local problem. (10)

Notice that the out-of-plane effective elastic coefficients (Equations (9) and (10)) de-
pend on the local functions 13N(y) and 23N(y) relative to the 13L and 23L local problems,



Technologies 2021, 9, 12 5 of 13

respectively. Then, 13N(y) and 23N(y) need to be found. Therefore, an analytical solution
of Equations (6)–(8) is determined.

On the other hand, the homogenized elastic problem equivalent to the boundary value
problem (Equations (1)–(3)) is defined by the equation system

C∗3α3β

∂2u(0)
3

∂xα∂xβ
= 0, (α, β = 1, 2) on Ω, (11)

subject to the homogenized boundary conditions

u(0)
3

∣∣∣
∂Ωu

= g1(x), σ
(0)
3j nj

∣∣∣
∂Ωσ

= t0, on ∂Ω = ∂Ωu ∪ ∂Ωσ (12)

where u(0)
3 is the solution of the homogenized problem, and C∗3α3β are the out-of-plane

effective elastic coefficients defined in Equations (9) and (10).

2.3. Analytical Solution of the Local Problems

By means the potential methods of a complex variable theory, the solution α3N of the

α3L local problem (Equations (6)–(8)) is calculated. Here, the doubly periodic Weierstrass’
elliptic functions are used to obtain an analytical solution, i.e., the double periodic solution

α3N is found in terms of Laurent and powers expansions as a function of z = y1 + iy2, see,
for instance, [44,45], as follows

α3N(1) = Re

{
α3a0z R−1

1 +
∞
∑

p=1

o
∞
∑

k=1

o
α3akηkpR−p

1 zp +
∞
∑

p=1

o
α3a p Rp

1 z−p

}
, at matrix region S1, (13)

where ηkp = − (k+p−1)!
p!(k−1)! Rk+pSk+p with Sk+p =

∞
∑

m,n
β
−(k+p)
mn =

∞
∑

m,n
(mw1 + nw2)

−(k+p),m2 +

n2 6= 0, k + p > 2, and k, p = 1, 3, 5, · · · . By

α3N(2) = Re

{
∞

∑
p=1

o
α3b p R−p

2 zp +
∞

∑
p=1

o
α3b−p Rp

1 z−p

}
, at mesophase region S2, (14)

and

α3N(3) = Re

{
∞

∑
p=1

o
α3c p R−p

2 zp

}
, at fiber region S3. (15)

In Equations (13)–(15), the coefficients α3a0, α3a p, α3b p, α3b−p, and α3c p are complex
and undetermined numbers. They need to be determined in order to find the α3L local
problems solution and the out-of-plane effective elastic coefficients (Equations (9) and
(10)). Here, it can be highlighted that the summation symbol with superscript ∑ o means
that the sum only runs over odd integers, and the symbols Re and Im represent the real
and imaginary parts of complex numbers, respectively. Details of Laurent and powers
expansions and its relationship with the double periodic elliptic Weierstrass function
℘(ω1, ω2; z) of periods ω1 and ω2, and related expressions can be found in [45,46].

From the double periodicity condition of α3N, it is satisfied that:

α3N(z + wα)− α3N(z) = Re
{

α3a0R−1
1 wα + α3a1δαR1

}
, (16)

see, for instance, [45]. Then, it can be proved that α3a0 is linked with α3a1 by the equation:

α3a0 = −R2
1H1α3a1 − R2

1H2α3a1, (17)

where H1 =
(
δ1w2 − δ2w1

)
/(w1w2 − w2w1), H2 = (δ1w2 − δ2w1)/(w1w2 − w2w1) and

α3a1 is the complex conjugate of α3a1. In addition, δα = 2ζ(wα/2) is the quasiperiodic
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condition and ζ(z) is the Weierstrass quasiperiodic Zeta function defined by ζ(z) = z−1 +

∑
m,n

′
[
(z− βmn)

−1 + β−1
mn + zβ−2

mn

]
where ∑

m,n

′ means that the summation does not include

the point (0, 0), see [45].
Finally, replacing Equations (13)–(15) into the interface conditions (Equations (7) and

(8)) and after some mathematical manipulations, we obtain the normal infinity system of
linear equations [47] with unknown complex constants α3a p, in compact form:

α3a p + χ1R2
1H1δ1pα3a1 + χ1R2

1H2δ1pα3a1 + χp

∞

∑
k=1

∗
α3akWkp = ER1δ1p[δ1α − iδ2α], (18)

where χp =
(V2+V3)

p(k1+k2)(1−k1)+Vp
3 (k1−k2)(1+k1)

(V2+V3)
p(k1+k2)(1+k1)+Vp

3 (k1−k2)(1−k1)
, E = χ1, and ks = C(s+1)

1313 /C(1)
1313 (s = 1, 2).

In Equation (18), Wkp =
√

pk−1 ηkp, V2 and V3 are the volume fractions of the mesophase
and the central fiber, and the symbol δ1p is the Kronecker’s delta function. Also, the system
solution of each local problem α3L (α = 1, 2) depends on the elastic constituent properties,
the phase volume fractions and the fibers spatial distribution within the matrix. Details
of the system construction can be found in [40] and are omitted here. Once the unknown
constants α3a p(p = 1, 3, 5, · · · ) are calculated, the local problem solution and the effective
coefficients can be determined. Details on the system solution is given in Appendix A.

The non-null out-of-plane effective properties for three-phase elastic FRC are listed
as follows:

C∗1313 − iC∗2313 = 〈C1313〉 − [[C1313]]2
V2+V3
χ1R1

[(χ1 + 1)13a1 − R1E]− [[C1313]]3
V3
R2 13c1, (19)

C∗1323 − iC∗2323 = −i〈C1313〉 − [[C1313]]2
V2+V3
χ1R1

[(χ1 + 1)23a1 + iR1E]− [[C1313]]3
V3
R2 23c1, (20)

where 〈C1313〉 = C(1)
1313V1 + C(2)

1313V2 + C(3)
1313V3 is the Voigt’s average, A21 =

[
R2

1(k1 + k2)
+R2

2(k1 − k2)
]
/2R1R2, and the constant is defined by

α3c1 = (k1(χ1 + 1)/χ1 A21)α3a1 −
{[

2k2
1R2

1 − k1(k1 − k2)
(

R2
1 − R2

2
)]

/(2A21k1R1)
}
[δ1α − iδ2α]. (21)

Simple closed-form formulas for the effective properties equivalent to Equations (19)
and (20) are given in Appendix B.

3. Numerical Results

The accuracy of the AHM model is determined through comparisons with other
results reported in the literature for three-phase elastic FRC (fiber/mesophase/matrix)
with complex-values constituent properties. In addition, the effect of the volume fraction
of inclusions and the spatial fiber distribution on the complex effective elastic properties
is investigated. Also, an example of shear enhancement is reported as a function of
reinforcement volume fractions.

Limit cases for the present model can be determined when Equations (19) and (20)
and system (18) are reduced to those that represent a two- and three-phase FRC with
parallelogram-like unit cell. In these cases, isotropic or transversely isotropic constituents
are considered with real-values elastic properties, as reported by the authors of [11,40,42].

The real and imaginary parts of the complex effective elastic properties are given
for some biological applications, for example, the behaviors of biological tissues, skeletal
muscle, sclera, and other ones in which material properties depends on time [48–51].
This behavior can be analyzed in viscoelastic materials in which the shear wave speed is
connected to the enhancement and lessening of the shear modulus. Besides, in the context
of transport properties, the mathematical statement for shear linear responses is identical
to conductivity, dielectric permittivity, and so on in equivalent media [52].

In the literature, to the authors’ knowledge, the longitudinal shear homogenization
problem has not been reported with complex-values coefficients. A comparison with
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Godin [21] is possible because the governing equation for both models has the same
mathematical formula, although they model different physical magnitudes. Both models
find an infinity equation system to solve the problem. However, there are differences
between the model implementations. The Godin model goes directly to a representative
element of analysis and the governing equation is directly solved. The effective properties
are proposed as a linear relation between averaged physical magnitudes. The AHM
described herein in previous sections is based on a procedure that ends up in the solutions
of local problems, the boundary conditions, and the effective properties.

In Table 1, the real (Re) and imaginary (Im) parts of complex effective property
C∗1313 are illustrated for two different three-phase FRCs as a function of normalized radius
h = R1/l with a square and hexagonal unit cell, respectively. Here, h ≤ 1/2, R1 is the outer
interface radius, and l represents the minimum distance between the centers of the fibers. In
addition, an analysis of the relative error is shown: Error = [(AHM −Godin)/AHM]×
100% [21]. Hence, the numerical values of the effective property C∗1313 is compared with
the complex effective dielectric constant ε∗ provided by the authors of [21]. The numerical
calculations are carried out considering that the matrix, the mesophase, and the fiber have
the complex-values properties C(1)

1313 = 5− 4i, C(2)
1313 = 80− 2i, and C(3)

1313 = 2− 4i for

the FRC with the square array and C(1)
1313 = 1, C(2)

1313 = 8− 40i, and C(3)
1313 = 2− 4i for

the FRC with the hexagonal array. In both three-phase FRCs, the concentric fibers radius
relation is R2

2/R2
1 = 0.81. As can be seen, good agreements are achieved by AHM for only

a system truncation (Equation (18)) to a finite order N0 = 2. Only a very slight discrepancy
is observed near the close-packing condition, although the relative error is below 0.27% in
every case.

Table 1. Real and imaginary parts of the complex effective property C∗1313 as a function of normalized
radius for two three-phase FRCs with a square and hexagonal unit cell, respectively.

h

C∗1313 (GPa) (Square Unit Cell, θ = 90◦)

Re (C∗1313) Im (C∗1313)

AHM Godin [21] Error (%) AHM Godin [21] Error (%)

0.1 5.12292 5.12291 0 −4.02626 −4.02626 0
0.2 5.50633 5.50633 0 −4.10103 −4.10103 0
0.3 6.19810 6.19810 0 −4.20863 −4.20863 0
0.4 7.29680 7.29682 0.0003 −4.30363 −4.30364 0.0007

0.499 9.00105 8.99915 0.0568 −4.21080 −4.22202 0.2663

h

C∗1313 (GPa) (Hexagonal Unit Cell, θ = 60◦)

Re (C∗1313) Im (C∗1313)

AHM Godin [21] Error (%) AHM Godin [21] Error (%)

0.1 1.06782 1.06782 0 −0.01569 −0.01569 0
0.2 1.29996 1.29996 0 −0.07777 −0.07777 0
0.3 1.81491 1.81491 0 −0.26416 −0.26416 0
0.4 2.97891 2.97891 0 −0.99392 0.99393 0

0.499 3.85417 3.85517 0.0261 −6.27906 −6.27919 0.0021

In Table 2, the variations of the real and imaginary parts of the complex effective shears
C∗1313, C∗1323, and C∗2323 in terms of system truncate orders N0 (N0 = 1, 2, 3, 5, 7, 9, 11) are
presented for a three-phase elastic FRC with a parallelogram unit cell of θ = 75◦. In
addition, two different normalized radii h = 0.4 and h = 0.499 (close to percolation value)
are also considered. For the analysis, the material properties of matrix, mesophase, and
fiber have isotropic complex properties, such as C(1)

1313 = 5 − 4i, C(2)
1313 = 80 − 2i, and
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C(3)
1313 = 2− 4i. The relation between the concentric fiber’s radius is R2

2/R2
1 = 0.81. Notice

that the AHM convergence is achieved quickly when low values of h ≤ 0.4 are assumed,
i.e., only smaller values of N0 ≤ 3 are needed. Therefore, truncations of higher order N0
must be considered for high values of h, as well as for higher contrast among the matrix
mesophase and fiber properties, in order to obtain a better accuracy. For example, N0 ≥ 9
is required to obtain the effective properties values with at least five accuracy digits when
h = 0.499. Similar conclusions are achieved when the same analysis is developed for a
three-phase elastic FRC with a parallelogram unit cell of θ = 75◦ and complex-values
constituent properties C(1)

1313 = 1, C(2)
1313 = 8− 40i, and C(3)

1313 = 2− 4i.

Table 2. Real and imaginary parts of the complex effective shears C∗1313, C∗1323, and C∗2323 obtained by
AHM in term of order system N0 for a three-phase FRC with a parallelogram unit cell of θ = 75◦ and
for two different normalized radii h = 0.4 and h = 0.499.

N0

Effective complex shears C∗1313, C∗1323 and C∗2323 (in GPa) for a three-phase
FRC with parallelogram unit cell of θ = 75◦ and h = 0.4.

Re (C∗1313) Im (C∗1313) Re (C∗1323) Im (C∗1323) Re (C∗2323) Im (C∗2323)

1 7.394470 −4.308182 0.022871 0.0098056 7.382213 −4.313437
2 7.395010 −4.307804 0.022972 0.0099212 7.382699 −4.31312
3 7.395020 −4.307797 0.022966 0.0099148 7.382713 −4.31311
5 7.395021 −4.307796 0.022966 0.0099150 7.382714 −4.313109
7 7.395021 −4.307796 0.022966 0.0099150 7.382714 −4.313109
9 7.395021 −4.307796 0.022966 0.0099150 7.382714 −4.313109

11 7.395021 −4.307796 0.022966 0.0099150 7.382714 −4.313109

N0

Effective complex shears C∗1313, C∗1323, and C∗2323 (in GPa) for a three-phase
FRC with a parallelogram unit cell of θ = 75◦ and h = 0.499.

Re (C∗1313) Im (C∗1313) Re (C∗1323) Im (C∗1323) Re (C∗2323) Im (C∗2323)

1 9.156983 −4.231357 0.052276 0.016613 9.128968 −4.240260
2 9.174364 −4.209425 0.063003 0.033689 9.140601 −4.227480
3 9.175411 −4.205838 0.061539 0.029078 9.142432 −4.221421
5 9.176241 −4.201475 0.062230 0.031106 9.142892 −4.218145
7 9.176080 −4.200378 0.062254 0.031390 9.142718 −4.21720
9 9.175964 −4.200090 0.062271 0.031380 9.142593 −4.216907

11 9.175904 −4.199996 0.062285 0.031371 9.142526 −4.216808

Table 3 shows the real and imaginary parts of the overall out-of-plane shear properties
C∗1313, C∗1323, and C∗2323 for two three-phase FRCs with different parallelogram-like unit
cells. The numerical values are computed considering four different parallelogram-like unit
cells (i.e., parallelogram cells characterized by a principal angle θ equal to 45◦, 60◦, 75◦,
and 90◦), a system order truncation N0 = 10, and h = 0.38 (value of the normalized
radius near to the percolation point volume 0.38268, for 45◦). In addition, the composite
structure-property relationship is also analyzed. From Table 3, it is noticed that, when
the periodic unit cells are characterized by parallelograms with θ different to (60◦) and
(90◦), the composites belong to monoclinic symmetric class, i.e., 13 non-null effective
elastic constants are attained. However, in the out-of-plane case, only C∗1313 6= C∗2323 and
C∗1323 = C∗2313 6= 0 are remained. In the case of the periodic hexagonal (60◦) and square
(90◦) unit cells, the composite behavior is transversely isotropic, i.e., C∗1313 = C∗2323 and
C∗1323 = C∗2313 = 0. These results have also been satisfied in elastic FRCs with real effective
properties, see, for instance, [40]. In addition, it can be concluded that a decrease (increase)
in the real (imaginary) part of the complex effective shears C∗1313 and C∗2323 resulted as the
angle of the periodic unit cell increased. Higher values for the real and imaginary parts of
C∗1313 and C∗2323 are obtained when θ = 30◦ and the normalized radius is the same. Besides,



Technologies 2021, 9, 12 9 of 13

for the composite with complex-value constituents C(1)
1313 = 5− 4i, C(2)

1313 = 80− 2i, and

C(3)
1313 = 2− 4i, the real and imaginary parts of C∗1323 are negative for 30◦ ≤ θ < 60◦ and

positive for 60◦ < θ < 90◦. In a composite with complex-value constituents C(1)
1313 = 1,

C(2)
1313 = 8− 40i, and C(3)

1313 = 2− 4i, the real (imaginary) part of C∗1323 run from negative
(positive) to positive (negative) when 30◦ ≤ θ < 90◦. It should be noted that there are three
different effective behaviors.

Table 3. Real and imaginary parts of the complex effective shears C∗1313, C∗1323, and C∗2323 for two three-phase FRCs with
different parallelogram-like unit cells and a normalized radius h = 0.38.

θ

Real and imaginary parts of the effective complex shears C∗1313, C∗1323 and C∗2323 (in GPa) of a

three-phase FRC with constituent properties C(1)
1313 = 5− 4i, C(2)

1313 = 80− 2i, and C(3)
1313 = 2− 4i.

Re (C∗1313) Im (C∗1313) Re (C∗1323) Im (C∗1323) Re (C∗2323) Im (C∗2323)

45◦ 7.959917 −4.365499 −0.137684 −0.079617 8.235285 −4.206265
60◦ 7.402436 −4.315333 0 0 7.402436 −4.315333
75◦ 7.123041 −4.295037 0.018346 0.007566 7.113210 −4.299092
90◦ 7.036910 −4.290163 0 0 7.036910 −4.290163

N0

Real and imaginary parts of the effective complex shears C∗1313, C∗1323, and C∗2323 (in GPa) of a

three-phase FRC with constituent properties C(1)
1313 = 1, C(2)

1313 = 8− 40i, and C(3)
1313 = 2− 4i.

Re (C∗1313) Im (C∗1313) Re (C∗1323) Im (C∗1323) Re (C∗2323) Im (C∗2323)

45◦ 2.947561 −1.280780 −0.001267 1.090406 2.950095 −3.461592
60◦ 2.659276 −0.741382 0 0 2.659276 −0.741382
75◦ 2.412547 −0.589351 0.044877 −0.044002 2.388498 −0.565770
90◦ 2.332192 −0.538175 0 0 2.332192 −0.538175

In Figure 2, an analysis of enhancement of the real part of the shear effective property
C∗1313 is illustrated for a three-phase FRC with periodic hexagonal unit cell. Notice that,
for this type of unit cell, C∗2323 = C∗1313 and C∗1323 = C∗2313 = 0. Here, the enhancement
is studied as function of reduced mesophase filling fraction V2, i.e., the enhancement of
C∗1313 i obtained for four configurations of the annular inclusion (mesophase and fiber
inclusions) with fixed volume fraction V2 + V3. For this analysis, two different three-phase
FRCs are considered with complex-values constituents C(1)

1313 = 1− 1i, C(3)
1313 = 1.02− 1i,

and C(2)
1313 = 0.99− 0.5i (Figure 2a) or C(2)

1313 = 1.01− 0.5i (Figure 2b). These properties are
considered assuming that the mesophase properties attain an interval of realistic physical
properties as a combination of the matrix and fiber phases. From Figure 2, it is important
to note that the real part of C∗1313 increase as V2 + V3 increase when 0 < V3 < 1, and that
higher values of C∗1313 are always obtained in comparison when V3 = 0 (two-phase FRC—
solid black line). In the figures, the red dashed dot and the blue dashed lines represent the
real part values of the matrix and mesophase properties, respectively. In addition, it can be
concluded that the imaginary part values of both three-phase FRCs vary monotonically
between the values of the matrix and mesophase phases. This picture, in which the three-
phase FRCs are considered with distinct constituents, is different than Figure 2 reported by
the authors of [7]. In this reference, the enhancement was analyzed for a three-phase FRC
with the same values of matrix and fiber and different mesophase, as an annular inclusion.
Besides, it should be noted that the volume fraction interval where enhancement appeared
is much larger. In one case, it is the whole interval.



Technologies 2021, 9, 12 10 of 13
Technologies 2021, 9, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 2. Enhancement of the real part of effective shear property *
1313C  as a function of reduced 

mesophase filling fraction 2V  for two three-phase FRCS with hexagonal unit cell and mesophase 

complex-values property (a) (2)
1313C 0.99 0.5i= −  and (b) (2)

1313C 1.01 0.5i= − . 

4. Conclusions 
In this work, the effective shear properties of periodic three-phase fiber-reinforced 

composites with complex-values constituent properties and parallelogram unit cells are 
calculated by AHM. Easy-to-handle formulas and fast numerical implementation are de-
rived for all shear effective properties. We conclude that: 
(i) The fiber spatial distribution, represented as parallelogram-like unit cell, is capable 

of describing three class of symmetry point group: tetragonal 4 mm (square unit cell), 
hexagonal 6 mm (hexagonal unit cell), and monoclinic 2 (other parallelogram unit 
cells) structures. 

(ii) The enhancement in the shear effective property *
1313C  is more remarkable for three-

phase FRC than two-phase FRC. 
(iii) The volume fraction interval where enhancement appeared is larger for a three-phase 

FRC than the interval for the two-phase FRC. 
(iv) The presence of negative values for the real and imaginary parts of *

1323C  appears for 
some parallelogram unit cells. 

(v) The manipulation of the mesophase can be used as a way to enhance the real and 
imaginary parts of the shear elastic properties. 

(vi) The numerical results prove that the AHM is an accurate and efficient approach for 
the study of FRC with a mesophase and for different spatial fiber distributions in a 
matrix. 

Figure 2. Enhancement of the real part of effective shear property C∗1313 as a function of reduced mesophase filling fraction

V2 for two three-phase FRCS with hexagonal unit cell and mesophase complex-values property (a) C(2)
1313 = 0.99− 0.5i and

(b) C(2)
1313 = 1.01− 0.5i.

4. Conclusions

In this work, the effective shear properties of periodic three-phase fiber-reinforced
composites with complex-values constituent properties and parallelogram unit cells are
calculated by AHM. Easy-to-handle formulas and fast numerical implementation are
derived for all shear effective properties. We conclude that:

(i) The fiber spatial distribution, represented as parallelogram-like unit cell, is capable of
describing three class of symmetry point group: tetragonal 4 mm (square unit cell),
hexagonal 6 mm (hexagonal unit cell), and monoclinic 2 (other parallelogram unit
cells) structures.

(ii) The enhancement in the shear effective property C∗1313 is more remarkable for three-
phase FRC than two-phase FRC.

(iii) The volume fraction interval where enhancement appeared is larger for a three-phase
FRC than the interval for the two-phase FRC.

(iv) The presence of negative values for the real and imaginary parts of C∗1323 appears for
some parallelogram unit cells.

(v) The manipulation of the mesophase can be used as a way to enhance the real and
imaginary parts of the shear elastic properties.

(vi) The numerical results prove that the AHM is an accurate and efficient approach for
the study of FRC with a mesophase and for different spatial fiber distributions in
a matrix.
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Appendix A

The infinite system (Equation (18)) is solved by truncation to a finite order N0 through
4× 4 blocks for different values of k and p (odd natural numbers) with the unknown
complex coefficients α3a p. The sub-matrix systems (4× 4 blocks) are solved by the Gauss’s
method. A fast convergence of successive truncations is assured due to the system regular-
ity, hence, the method of successive approximations can be applied, see for instance [47].

The above infinite system (Equation (18)) can be rewritten in matrixial form as follows:[
I + χ1R2

1 Jδ1p + W
]

X = R1Eδ1pB, (A1)

where I is the unit matrix, J =
(

h11 + h12 h21 − h22
−h21 − h22 h11 − h12

)
, W ≡W(wkp) = χp

(
w1kp −w2kp
−w2kp −w1kp

)
is made up of different blocks of order 2 and the infinite vectors X and B are defined by
X = (x1, y1, x3, y3, . . .)T and B = (δ1α, δ2α)

T, respectively.
In order to find the solution of system (A1), it is reduced by means of two sepa-

rate systems of real and imaginary magnitudes, considering that α3ak = α3xk + iα3yk,
Wkp = w1kp + iw2kp and Hα = h1α + ih2α where α3xk, α3yk, w1kp, w2kp, h1α and h2α are real
numbers and i2 = −1, see for instance [40].

Consequently, following the same procedure applied in examples of alike systems [7,40,53],
the solution of Equation (18) can be computed in the matrixial form by

X = R1E
[

I + χ1 R2
1 J − χ1N1 (I + W)−1N2

]−1
B, (A2)

where N1 = χ1

(
w1k1 −w2k1
−w2k1 −w1k1

)
and N2 = χp

(
w11p −w21p
−w21p −w11p

)
are infinite matrices

of 2× 2 blocks of by rows and by columns, respectively. Here, k = 2t + 1, p = 2t1 + 1, and
the usual index sum is applied by t, t1 = 1, 2, 3, · · · .

Therefore, the system solution α3a1 associated to the local problem α3L (α = 1, 2) is
explicitly determined as follows:

13a1 = R1E
(

1 i
)
Z−1

(
1
0

)
=

R1E(z22 − iz21)

z11z22 − z12z21
, (A3)

23a1 = R1E
(

1 i
)
Z−1

(
0
1

)
= −R1E(z12 − iz11)

z11z22 − z12z21
, (A4)

where the matrix Z ≡
(

z11 z12
z21 z22

)
=
[

I + χ1 R2
1 J − χ1N1 (I + W)−1N2

]
and Z−1 is the

inverse matrix of Z.
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Appendix B

An equivalent representation of the effective coefficients Equations (19) and (20) can
be obtained replacing Equations (21), (A3) and (A4) into Equations (19) and (20), such as:

C∗1313 = 〈C1313〉 −C(1)
1313 B1[(χ1 + 1)z22 − |Z|]−C(1)

1313 C1, (A5)

C∗2313 = C(1)
1313 B1(χ1 + 1)z21, (A6)

C∗1323 = C(1)
1313B1(χ1 + 1)z12, (A7)

C∗2323 = 〈C1313〉 −C(1)
1313 B1[(χ1 + 1)z11 − |Z|]− C(1)

1313 C1 (A8)

where B1 = (V2+V3)[(k1+k2)(1−k1)V2+2k1(1−k2)V3]
2

χ1|Z|[(k1+k2)(1+k1)V2+2k1(1+k2)V3][(k1+k2)V2+2k1V3]
and C1 = (k1−k2)

2V2V3
(k1+k2)V2+2k1V3

.
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