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Abstract: The purpose of this paper was to propose a complete analysis and parameter estimations
of a new simplified and highly nonlinear hafnium dioxide memristor model that is appropriate for
high-frequency signals. For the simulations; a nonlinear window function previously offered by the
author together with a highly nonlinear memristor model was used. This model was tuned according
to an experimentally recorded current–voltage relationship of a HfO2 memristor. This study offered
an estimation of the optimal model parameters using a least squares algorithm in SIMULINK and
a methodology for adjusting the model by varying its parameters overbroad ranges. The optimal
values of the memristor model parameters were obtained after minimizing the error between the
experimental and simulated current–voltage characteristics. A comparison of the obtained errors
between the simulated and experimental current–voltage relationships was made. The error derived
by the optimization algorithm was a little bit lower than that obtained by the used methodology.
To avoid convergence problems; the step function in the considered model was replaced by a
differentiable tangent hyperbolic function. A PSpice library model of the HfO2 memristor based on
its mathematical model was created. The considered model was successfully applied and tested in a
multilayer memristor neural network with bridge memristor–resistor synapses

Keywords: hafnium dioxide memristor; memristor–resistor synapse; nonlinear drift memristor
model; parameter estimation; step function; window function

1. Introduction

The memristor is a very important electricone-port element, together with the capacitor, resistor,
and inductor [1,2]. It is a passive electronic component. The memristor is a highly nonlinear electronic
element with many possible applications in reconfigurable analogue and digital devices, nonvolatile
memories, neural networks, and many others [1–3]. It relates the electric charge q, described as a
time integral of the current, and the flux linkage Ψ, expressed as a time integral of the memristor
voltage v [1,2]. The idealized memristor was forecasted by L. Chua in 1971 [1], in agreement
withsymmetry considerations and the relationships between the main electrical variables (voltage v,
current i, electric charge q, and magnetic flux linkage Ψ). Its current–voltage characteristic is a pinched
hysteresis loop and the respective charge–flux relationship is a monotonically increasing nonlinear
curve. The memristor has a salient and very beneficial property, namely retaining its state (and the
respective resistance) after turning the electric sources off [2,4]. Several basic material realizations
of memristors exist in the scientific literature, such as those made using transition metal oxides,
polymeric materials, ferroelectric structures, and others. The memristor realizations usingHfO2 or
other perspective amorphous metal-oxide materials [2,4] have physical sizes in the nanoscale range. Its
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energy consumption is several times lower than that of conventional microelectronic components [4,5].
The first physical memristor prototype based on titanium dioxide was created in Hewlett Packard’s
scientific laboratories by Stanley Williams’ research team in 2008 [2,4]. Many scientific papers on
memristors and memristor-based circuits have been published and several corresponding memristor
models have been offered [6–10]. The linear ionic drift memristor model [2] is applied for low-level
voltage signals. The nonlinear ionic drift models proposed by Biolek [4] and Joglekar [3] are capable
of expressing the memristor nonlinear behavior for high-level voltage signals according to the
memristor state variable x. The highly nonlinear Lehtonen–Laihomemristor model [7,8] is based
on physical measurements and on the mechanism of the electric current flow through amorphous
semiconducting transition-metal oxides [8]. It has a good precision, is adjustable, and can be described
using mathematical equations [7,8]. This memristor model was applied after a tuning procedure
according to the experimental current–voltage relationships of an HfO2 memristor element [10] in the
present investigation [7,8]. The main interest in the present case is associated with new and not very
well analyzed types of memristors, such as transition-metal oxide memristors, especially hafnium
oxide memristors [10–12]. Several basic models of HfO2-based memristors exist in the technical
literature [10–13]. To the best of the author’s knowledge, some of them are either very complex [10]
or not sufficiently precise [11]. Other models, such as Biolek’s [4] and Joglekar’s [3], are not able to
correctly express the corresponding i–v relationship due to the low nonlinearity of the current–voltage
characteristic. The motivation for the present investigation was to offer a simple nonlinear ionic drift
model for a HfO2memristor with a strongly nonlinear window function [14,15],parameter estimations
of the model using the least squares algorithm in MATLAB-Simulink [15,16], to minimize the root
mean square error and provide a simulation the memristor model with the obtained parameters,
to compare the derived errors with those obtained using the applied methodology, to compare the
errors with those derived using the best existing memristor models [10,11], and to replace the step
function in the considered model using a differentiable tangent hyperbolic function [17]. For this
aim, the tunable modified nonlinear memristor model proposed in References [7,8] is very suitable,
in combination with the highly nonlinear window function, offered by Mladenov and Kirilov [14].
After tuning the considered model according to the experimental current–voltage characteristics of a
HfO2 memristor [10] in MATLAB-Simulink [18], a PSpice library memristor modelwas created using
the proposed mathematical model; then, it was analyzed in OrCAD PSpice [15,19]. The considered
memristor model was tested in a simple multilayer neural network for function fitting [20] with bridge
resistor–memristor synapses [21–23]. The capability of the used memristor model [7,8,14] for operation
in complex circuits was confirmed.

The paper is organized as follows: A description of the memristor model considered in this
research is presented in Section 2. Its adjustment to the experimental data and parameters estimation
are presented in Section 3. The analysis of the respective PSpice memristor library model in the OrCAD
PSpice environment is given in Section 4. The application of the considered memristor model in a
simple memristor-based multilayer neural network is described in Section 5. The concluding remarks
are given in Section 6.

2. A Description of the Proposed Hafnium Dioxide Memristor Model

The considered memristor element is based on HfO2material [9,10]. In References [7,8], a model
based on physical measurements for transition metal oxide memristors is presented. It is founded on
experimentally recorded current–voltage characteristics [10]. This model was applied for the description
of the considered HfO2-based memristor. The approximated current–voltage relationship [6,7] is
expressed using Equation (1):

i = χ[exp(γv) − 1] + xnβsinh(αv), (1)
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where α = 1.65 V−1, β = 100 µA, γ = 0.008 V−1, and χ = 1500 µA are the adjusting parameters, and n = 5
is a parameter that describes the influence of the memristor state variable x on the current. The first
term in Equation (1) describes the rectifying properties of the memristor for high-level signals. The
second term includes a hyperbolic sine term and represents the memorizing effect of the memristor
element. The parameters β and χ are used for the expression of both symmetric and non-symmetric
current–voltage characteristics. The parameter α determines the area of the current–voltage pinched
hysteresis loop. The coefficient γ represents the exponentially increasing nonlinear ionic dopant drift
for higher voltage signals.

In this memristor model described in References [7,8], the state variable x is a normalized parameter
in the range [0,1]. This memristor model illustrates an asymmetric switching behavior. When the
memristor is in a highly conductive ON state, the state variable is near unity and the electric current
is dominated by the second term in Equation (1), which represents a tunneling effect [7,8]. If the
memristor element is in a low conductive OFF state, the state variable x is close to zero and the current
is primarily represented by the first term in Equation (1), which represents a diode equation [7,8]. The
considered memristor model [7,8] uses a nonlinear relation between the time derivative of the state
variable x and the voltage v in the state differential equation [7,8] in accordance with Equation (2):

dx
dt

= a · f (x) · vs, (2)

where a = 0.9 is a constant adjusting parameter, s = 5 is an odd integer exponent, and f (x) is a window
function used for the approximate illustration of the nonlinear ionic dopant drift and the specific
boundary effects for the hard-switching mode [3,4,14,23]. If the state variable does not reach its limiting
values, namely zero and unity the memristor operations in a soft-switching mode, then the pinched
hysteresis loop of the current–voltage characteristic is a symmetric curve around the origin. When the
state variable reaches its limiting values, then the memristor operates in a hard-switching mode. If the
state variable is equal to unity, then the boundary between the doped and the undoped regions of the
memristor coincides with the cathode of the element. If the voltage increases, then the state variable
remains equal to unity and cannot increase due to physical limitations. When the voltage changes
its direction, the state variable immediately decreases. When the state variable is equal to zero, then
the boundary between the doped and the undoped regions coincides with the anode. If the voltage
decreases, then the state variable remains equal to zero and cannot decrease due to physical restrictions.
If the voltage changes its direction, then the state variable immediately increases. If the memristor
operates in a hard-switching mode, then it behaves as a rectifying diode [23]. Its current–voltage
relationship is a non-symmetrical one.

The applied window function adds nonlinearity to the model according to the state variable x of
the memristor element [14]. Equations (1) and (2) fully define the corresponding applied physics-based
memristor model [7,8]. The ionic transport is linked to the ionic dopant drift and the electron motion
in the respective hafnium dioxide material [10–12]. The applied window function is a modification of
the standard Biolek window function [4]:

fB(x, i) = 1− [x− stp(−i)]2p, (3)

and it is described in detail in Mladenov and Kirilov [14]. The step function stp is expressed as
follows [4]:

stp(i) =
{

0, i < 0
1, i ≥ 0

. (4)

This step function is a non-differentiable one, and if it is directly applied in the corresponding
PSpice memristor library model, sometimes convergence problems are expected [17]. To avoid such
problems in the present research, the step function stp is replaced by its differentiable analogue:
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g(i) =
1 + tanh(r i)

2
, (5)

where the coefficient r determines the steepness of the considered function, whereits value is between
30 and 70. The modified window function is:

fBM(x, i)
1− [x− g(−i)]2p + m sin2(π x)

m + 1
. (6)

This window function could be also described using Equation (7):

fBM(x) =
[

m[sin2(πx)]
1+m +

1−(x−1)2p

1+m

]
, v(t) ≤ vthr

fBM(x) =
[

1−x2p

1+m +
m[sin2(πx)]

1+m

]
, v(t) > vthr

fBM(x) = 0,
∣∣∣v(t)∣∣∣ < vthr

(7)

where m = 0.23 is a tuning coefficient describing the domination of the introduced sinusoidal component,
p is a positive integer exponent, fBM is the modified Biolek window function [14], and vthr is the
activation threshold of the memristor [23]. If the absolute value of the applied voltage v is lower than
the activation threshold vthr, then the memristor state variable does not change and the memristance is
a constant. If the voltage is higher than the activation threshold, then the memristor has a memorizing
effect. The applied modified memristor model is based on Equations (1), (2), and (7), and it is described
using Equation (8):

dx
dt = a ·

[
1−(x−1)2p

1+m +
m[sin2(πx)]

1+m

]
· vs, v(t) ≤ vthr

dx
dt = a ·

[
1−x2p

1+m +
m[sin2(πx)]

1+m

]
· vs, v(t) > vthr

dx
dt = 0,

∣∣∣v(t)∣∣∣ < vthr
i = χ[exp(γv) − 1] + xnβsinh(αv)

(8)

where the last equation in Equation (8) is the current–voltage relationship of the memristor element given
in Equation (1). The applied modified mathematical Biolek’s memristor model is fully described by
Equation (8) [7,8,14]. The corresponding current–voltage characteristic of the memristor element [7,8,14]
is acquired after several simulations and adjusting the modified memristor model according to
the [10]. This relationship is found using computer simulations in the MATLAB environment [18]
and is plotted in Figure 1a to illustrate the closeness between the simulated and the experimental
current–voltage characteristics.
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3. Parameter Estimations of the Considered Memristor Model

The applied methodology for memristor model parameter estimations is founded on altering
the memristor fitting parameters and searching for a global minimum of the root mean square error
between the experimental and the obtained simulated current–voltage characteristics [15,16]. All the
tuning coefficients of the model in Equation (8) were changed independently from one another. In the
beginning of this procedure, very large intervals for varying the adjusting parameters were chosen
(from 0 to 1000), and their minimal limits were used for initial values of the needed fitting parameters.
One of the adjusted parameters was changed using constant step sizes between the values of the
considered model parameter. The corresponding root mean square error between the experimentally
recorded and the derived simulated current–voltage characteristics was calculated. The altering of the
other adjusted memristor model parameters followed independently of one another [16].

During this procedure, a visual observation of the obtained current–voltage characteristic and
its proximity to the experimental one was established. The basic criterion for stopping the described
calculation procedure was the minimization of the root mean square error between the current–voltage
relationships of the memristor element. Additional experiments were made around the derived
optimal values of the fitting parameters using reduced steps for their changes [15]. The optimal
values of the fitting model parameters were further used for testing the memristor model in memristor
circuits and devices, and for analysis of the basic characteristics, namely current–voltage and state–flux
relationships. In Mohammad et al. [9], several tentative values of the adjusting parameters α, β, γ, and
χ are given. They were applied to start a multi-factor analysis [15,16] of the derived current–voltage
characteristics of the hafnium dioxide memristor model. This analysis was made in the vicinity of
the initial values of the adjusting parameters. In the beginning of the factor analysis, the change of
the fitting model parameters was about 10% of their respective initial values, and when a proximity
between the simulated and the experimental current–voltage curves was recognized, the change in
these adjusting parameters was decreased to 2%. After a comparison of the derived i–v relationship
of the memristor with the experimental current–voltage characteristics for the combinations of the
adjusting parameters, the above presented values were derived for the best approximate matching
between the simulated and the experimental current–voltage relationships [15].

The best possible memristor model parameters were also estimated using the least squares
algorithm in the Simulink Design Optimization Toolbox and the Global Optimization Toolbox in the
MATLAB environment [18]. The last toolbox was applied for finding the global minimum of the cost
function, having in mind the assumption that it could contain several local minima [24]. A simulated
annealing method was used for finding the global minimum of the cost function [25].

The least squares algorithm applied here was as follows. In the beginning of the simulation,
the initial values of the adjusting model parameters were chosen. They were placed between their
previously determined minimal and maximal limits. All the applied signals were formerly sampled in
the time domain. The input signal of the algorithm was the memristor voltage u1. The experimental
value of the output signal (the memristor current) was denoted by imes. The calculated output signal
was the derived value of the memristor current icalc, in accordance with the hafnium dioxide memristor
model. The cost function Scost was defined as a sum of the squares of the differences between the
computed and the experimental output signal’s samples [15,16]:

Ŝcos t =
N∑

k=1

[
îcalc(k) − imes(k)

]
2, (9)

where N is the number of signal samples. In the first iteration, the cost function was computed using
the model parameters’ initial values. The criterion for stopping the described algorithm was the
minimization the value of the cost function. Its minimum was reached when its partial derivatives
with respect to all the memristor model parameters were zero [16]:
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∂

∂[ε]

N∑
k=1

[
îcalc(k) − imes(k)

]
2 = 0, (10)

where ε is the vector of the adjusting parameters [14]:

ε = [α β γ χ a m p s n] T. (11)

For the next iteration of the considered algorithm, the model parameters’ values were changed
by very low increments. The defined cost function was calculated again. Its derivatives according to
the memristor model parameters were expressed. The parameters’ increments were chosen such that
the cost function was decreasing. The optimal model parameters’ values were derived when the cost
function was minimized [5,16].

The errors for the applied memristor model according to the used methodology were 4.2% for
the considered modified model versus 4.6% for the original Lehtonen–Laiho model with the standard
Biolek window [4,5]. The derived error according to the estimated parameters was 3.81% for the
modified hafnium dioxide model. The simulation time of the considered model was 0.104 s, and for
the existing model [11], it was 0.127 s. The obtained errors found using the applied methodology
and using the least squares algorithm were almost equal. This confirmed the ability of the applied
methodology to efficiently extract the memristor model parameters. An advantage of the considered
modified model is the lower error with respect to the classical hafnium dioxide memristor model [5].
Another advantage of the modified model is its ability for realistic representation of the nonlinear ionic
drift for high-level and high-frequency signals [5].

The change of the fitting parameters for the modified hafnium oxide memristor model during
the estimation procedure realized in the MATLAB environment is presented in Figure 1a to visualize
the estimating processes till the optimal values were found. The decreasing cost function during the
parameter extraction process is presented in Figure 1b.

4. Analysis of the Considered Hafnium Oxide Memristor Model in the PSpice Environment

After finishing the tuning procedures and acquiring a good similarity between the experimental
data [11] and the derived simulated current–voltage relationship (Figure 2a), an analysis of the
considered memristor model was made in the OrCAD PSpice environment [5]. A PSpice substituting
macro-model of the present mathematical memristor model was derived using Equation (8). The
schematic of the memristor model was based on the mathematical operations in Equation (8) and it was
created using the standard functional blocks in PSpice [5,19]. The PSpice library model of the hafnium
dioxide memristor given in Appendix A was based on the considered substituting macro-model.
Several i–v curves of the HfO2 memristor derived in the PSpice environment for different frequencies
(5 Hz, 10 Hz, and 20 Hz) are presented in Figure 2b to illustrate the decrease of the area of the pinched
hysteresis loop for higher-frequency signals. The observed result confirmed the main properties of
the hafnium dioxide memristor element that were expressed using the applied mathematical model,
namely passivity [26], memory effect [27], and high nonlinearity [28]. Although the memristor operated
in a soft-switching mode, the state variable changed in broad range between 0.1 and 0.65.

According to the previously described PSpice model of the hafnium dioxide memristor, several
current–voltage relationships derived for different voltage amplitudes using a frequency of 3 kHz and
sinusoidal mode are presented in Figure 3. They provide confirmation of the performance and the
correct operation of the considered PSpice memristor model, where increasing the signal’s amplitude
caused the area of the current–voltage pinched hysteresis loop to increase too. The considered hafnium
dioxide memristor model was simulated using sine-wave voltage signals with several different
amplitudes and frequencies, and convergence problems were not observed. The derived i–v curves
were symmetrical for soft-switching mode and non-symmetrical for states near the hard-switching
mode due to the internally applied non-symmetrical current–voltage relationship and the presence of
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the corresponding two terms in Equation (1), namely the hyperbolic sine and exponential terms that
describe tunneling and semiconducting effects, respectively. The corresponding state–flux relations are
presented in Figure 4 to demonstrate their almost single- and multi-valuedness for the soft-switching
and hard-switching modes, respectively.
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5. Application and Testing of the Proposed Hafnium Oxide Memristor Model

The considered hafnium oxide memristor model was used in a simple multilayer neural network
for function fitting [20]. It used memristor-resistor synaptic bonds [21,23,26]. The schematic of the
neural network is presented in Figure 5. The considered multilayer neural network was used for
fitting the input signal x according to the desired signal d. The input signal applied to the network and
expressed in the time domain was x = 0.055[1 –exp(t + 0.4)] + 0.02exp(−4t)sin(2π × 40t) V. This signal
was sampled using a short rectangular pulse sequence with a frequency of 50 Hz [14]. The respective
desired signal was d = 0.025[1 – exp(1.5t)] − 0.17 V and it was sampled with the same sampling pulses.
The pauses between the corresponding values of the used signals were applied for tuning the synaptic
weights [20]. These signals were applied for a time interval with a duration of 1 s such that it could be
concluded that an epoch had a length of 1 s. The considered neural network contained five neurons in
the hidden layer and one neuron with a linear activation function in the output layer [5]. The principle
of operation of the considered memristor-based neural network was based on a supervised learning,
backpropagation error correction algorithm, and on tuning the synaptic weights [5,20]. The neurons
in the hidden network’s layer used a sigmoid activation function [5]. The synapses in the neural
network were based on hafnium dioxide memristors and they were made according to the bridge
schematic topology expressed in Mladenov [21]. A schematic of the applied memristor-based synapses
is presented in Figure 6a to display their structure and principle of operation. This type of synapse was
made using a bridge schematic topology and it was suitable for storing synaptic weights, both with
positive, zero, and negative values. The synapses in the hidden layer are denoted by V1, V2, V3, V4,
and V5. The synaptic bonds in the output layer are denoted by W1, W2, W3, W4, and W5, respectively.
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The input and output signals of the considered memristor-based synapses were denoted using vin

and vout, respectively. The transfer function (synaptic weight) of the described synapse (Figure 6a)
was [14,21]:

w =
vout

vin
= −

M
M + R2

+
R3

R3 + R4
. (12)

Based on the value of the resistance of the memristor M, the synaptic weight w could have a
positive, zero, or negative value [21]. The resistances of the used resistors were R2 = 550 Ω, R3 =

120 Ω, andR4 = 120 Ω. The weight of the memristor synapse was altered by applying input voltage
impulses. The considered neural network was first simulated and the synaptic weights were tuned
in MATLAB [18]. After the teaching of the neural network, the resistances of the memristors in the
synapses obtained stable and constant values [5]. After the learning process, the neural network was
able to fit the input data. The input, desired, and output signals are presented in Figure 6b for the
comparison of the output and the desired signals of the multilayer neural network after the learning
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procedure. These signals were almost equal one to another when the elapsed time was longer than
0.5 s; the difference between them was 0.002 V or 1.82% of the value of the desired signal. In the initial
moment of the investigation of the network, all the synaptic weights were zeros. After finalizing the
learning procedure, they obtained the correct and constant values. The biases of the input layer b1n; the
weights of the bias of the hidden layer of the neural network b2; the synaptic weights for the input layer
v1n; the synaptic weights for the hidden layer w; and the respective resistances Mb1, Mb2, and Mw of
the memristors are presented in Table 1. The number n presents the respective synapse in the network.Technologies 2019, 7, x FOR PEER REVIEW 9 of 13 
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Figure 6. (a) The applied synaptic circuit based on resistors and a memristor; the bridge structure of this
circuit ensured negative, zero, and positive synaptic weights could be obtained. (b) Signal convergence
over time of the input signal, desired signal, and output signal of the neural network, derived after the
learning procedure; the desired and the output signal of the considered device, derived after learning
using the neural network, almost matched each other when the elapsed time was longer than 0.5 s.

Table 1. Values of the synaptic weights and the corresponding memristances.

n 1 2 3 4 5

b1n −0.45 −0.45 0.01 0.05 0.31

b1 −0.0052 - - - -

v1n 0.5997 0.9652 −0.1571 0,1110 0.3220

w1n 0.0744 0.0720 −0.2898 0.5309 0.1276

Mb1n 10450 10450 528.4 450 129.01

Mb2 561.6 - - - -

Mv1n 149.8 174.62 1053.96 350.16 119.09

Mw1n 407.52 411.53 2066.55 160.48 326.35

The learned neural network with tuned memristor synapses was simulated in the PSpice
environment. The variation in time of the signals derived in PSpice are presented in Figure 7a to
illustrate their similarity to those obtained in the MATLAB environment (Figure 6). A zoomed diagram
is presented in Figure 7b for a detailed comparison of the signals. If the time was t = 0.5 s, then the
difference between the output and the desired signals was about 1.9 mV, or about 1.8% of the value of
the desired signal. The average value of the relative error was near 3%.

A good closeness between the obtained signals was obtained (Figures 6 and 7). This confirmed the
capability of the considered memristor neural network for function fitting and the proper operation of
the used hafnium oxide memristor model for the memristors in the synapses. The considered model is
applicable not only for hafnium-dioxide memristors but also for titanium dioxide memristors because
it was based on the Lehtonen–Laiho model [8]. The main advantages of the considered model with
respect to the existing hafnium dioxide models are its capability for operation at signals with high
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amplitudes and frequencies, the possibility for tuning, the higher accuracy, and realistic representation
of the ionic motion for high signal levels. An advantage of the presented memristor model according
to several other modified author’s models [23] is the use of a continuous and differentiable function
instead of the step function, and therefore the reduced occurrence of convergence problems. According
to the main existing models [28], the considered model more realistically represents the ionic dopant
drift and the switching effects for high-amplitude and high-frequency signals.
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6. Conclusions

The highly nonlinear drift memristor model with a modified window function used in this research,
which was proposed by the author in another paper, was successfully adjusted to experimentally
record the current–voltage characteristic of a HfO2-based memristor element. For the fitting procedure,
a minimization of the root mean square error between the current–voltage characteristics was applied.
The comparison between the experimental and the simulated current–voltage relations produced a
reasonable closeness between the corresponding relationships. After a tuning procedure, the considered
hafnium dioxide memristor model was simulated in the OrCAD PSpice environment for voltage
signals with different magnitudes and frequencies. The considered hafnium dioxide memristor model
was successfully applied and tested in a simple multilayer neural network for function fitting with
memristor–resistor bridge synapses. The correct operation of the memristor-based neural network
was confirmed for both the learning and the fitting processes analyzed in the time domain. The main
advantages of the proposed modified HfO2memristor model are its relative simplicity for realization
in the PSpice environment, the lack of convergence problems due to the use of a differentiable tangent
hyperbolic function instead of the non-differentiable step function, and the realistic representation of
the nonlinearity of the ionic dopant drift in the memristor element due to the higher nonlinearity of
the modified window function used and the corresponding current–voltage relation.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

*PSpice code of the considered memristor model
.subckthfo a c
V_CONST10HI 0 DC 30e-6
V_CONST1A 0 DC 230
E_ABM4FW1 0 VALUE {
+(((1-pwrs((V(x)-V(st)),V(dvepe))))+(V(mm)*(sin(3.14*V(x)))*(sin(3.14*V(x)))))/(V(mm)+1)
+}
G_ABMII1A C VALUE { (V(IM))}
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V_CONST4C 0 DC 3
E_DIFF2N12206 0 VALUE {V(N12130,N12164)}
R_R1A N110561 TC=0,0
V_CONST8BETA 0 DC 90e-6
E_ABM6GPLUS 0 VALUE { 1/((1+exp(-50*(V(TT)))))}
E_MULT2N11926 0 VALUE {V(N11854)*V(N11904)}
V_CONST7FW2 0 DC 0
E_EXP1N12130 0 VALUE {EXP(V(N12092))}
V_CONST6ALFA 0 DC 1.9
E_ABM9ST 0 VALUE { 1/((1+exp(-50*(V(U)))))}
V_CONST11N12164 0 DC 1.000
E_ABM7GMINUS 0 VALUE { 1/((1+exp(50*(V(TT)))))}
X_INTEG1N11330 X SCHEMATIC1_INTEG1
E_ABM10N11854 0 VALUE { (exp((V(N11818)))-exp(-(V(N11818))))/(2)}
E_MULT4N12092 0 VALUE {V(GAMA)*V(U)}
V_CONST9GAMA 0 DC 0.5
R_R3C 01g TC=0,0
X_INTEG2U PSI SCHEMATIC1_INTEG2
E_PWRS1N11904 0 VALUE {PWRS(V(X),5)}
E_ABM8N11330 0 VALUE {
+V(a)*pwrs(V(u),V(m))*(V(FW1))*V(gplus)+V(gminus)*V(fw2)}
E_MULT1N11818 0 VALUE {V(ALFA)*V(U)}
V_CONST2M 0 DC 5
V_CONST5THR 0 DC 0.2
E_ABM5TT 0 VALUE { (abs(V(U))-V(thr))}
E_MULT5N12250 0 VALUE {V(HI)*V(N12206)}
E_DIFF1U 0 VALUE {V(N11056,C)}
V_CONST3B 0 DC 20
R_R2N11056 C1g TC=0,0
E_SUM1IM 0 VALUE {V(N11990)+V(N12250)}
E_MULT3N11990 0 VALUE {V(BETA)*V(N11926)}
V_CONST12DVEPE 0 DC 10
V_CONST13MM 0 DC 0.7
.ends
.subckt SCHEMATIC1_INTEG1 in out
G_INTEG10 $$U_INTEG1 VALUE {V(in)}
C_INTEG1$$U_INTEG1 0 {1/1.0}
R_INTEG1$$U_INTEG1 0 1G
E_INTEG1out 0 VALUE {V($$U_INTEG1)}
.ICV($$U_INTEG1) = 0.3
.ends SCHEMATIC1_INTEG1
.subckt SCHEMATIC1_INTEG2 in out
G_INTEG20 $$U_INTEG2 VALUE {V(in)}
C_INTEG2$$U_INTEG2 0 {1/1.0}
R_INTEG2$$U_INTEG2 0 1G
E_INTEG2out 0 VALUE {V($$U_INTEG2)}
.ICV($$U_INTEG2) = 0V
.ends SCHEMATIC1_INTEG2
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