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Abstract: The fabrication of macroscopic self-standing architectures plays a key role in the practical
applications of nanomaterials. A facile strategy to assemble MnO2 nanowires into macroscopic
self-standing architectures via hydrothermal reaction followed by ambient pressure drying was
developed. The obtained sample was robust and showed excellent mechanical strength with a
Young’s modulus of 127 MPa, which had the possibility for practical applications. In order to promote
the catalytic activity for propane oxidation, Ni or Co doping into MnO2 was studied. The results
showed that the obtained macroscopic self-standing Ni-MnO2 and Co-MnO2 architectures exhibited
enhanced catalytic activities for propane oxidation. Specifically, the conversions of propane over
Co-MnO2 and Ni-MnO2 samples at 400 ◦C were 27.3% and 25.7% higher than that over pristine
MnO2 sample.

Keywords: macroscopic self-standing architectures; Ni-doped MnO2; Co-doped MnO2; propane
oxidation; mechanical properties

1. Introduction

Amongst various transition metal oxides, manganese dioxide has been considered as one of
the most potential low-temperature catalysts due to its environmental friendliness as well as its low
cost [1]. In order to further improve the catalytic activity of MnO2, one of the most common strategies
is doping with a different cation, such as Ni [2,3] and Co [4,5]. On the other hand, self-assembly
of nanomaterials into macroscopic architectures provides the possibility for exploring the practical
applications. However, the method to assemble nanomaterials into macroscopic architectures remains
a challenge [6,7].

Long et al. [8] obtained a macro-assembly with MnO2 nanowires via a hydrothermal method
followed by a freeze-drying process, which showed selective adsorption of cationic dyes. Jung et al. [9]
constructed MnO2 nanowire hydrogel/aerogels via hydrothermal synthesis (over four days) and
supercritical drying, which could be used to remove heavy metal ions and toxic organic contents in
water. Suib et al. [10] constructed macroscopic free-standing OMS-2 sponges through hydrothermal
reaction (250 ◦C for four days) and freeze-drying process, which could be used to separate oil and
water. Rong et al. [11] fabricated a three-dimensional manganese dioxide framework combining
δ-MnO2 nanosheets and α-MnO2 nanowires, which had interconnected network structures and showed
excellent oxidation activity for ppm-level HCHO to CO2 at low temperatures (≤120 ◦C). However,
the reported process was time-consuming and high cost, and the catalytic application at higher
temperature was rarely concerned. Therefore, it is necessary to explore simpler preparation methods
and study the catalytic performance at higher reaction temperatures.
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This research aims to fabricate macroscopic self-standing architectures with metal doped MnO2

nanomaterials via facile hydrothermal reaction followed by ambient pressure drying and study the
catalytic activity for propane oxidation. To the best of our knowledge, the study of macroscopic
architectures with metal doped MnO2 nanowires as catalysts for propane oxidation has been
scarcely reported.

2. Materials and Methods

The macroscopic self-standing MnO2 architectures were prepared by a modified hydrothermal
process followed by ambient pressure drying. Typically, the A aqueous solution consisting of
manganese acetate (Mn(CH3COO)2·4H2O, 1.18 g) and ammonium sulfate ((NH4)2SO4, 3 g) was added
slowly into the B aqueous solution consisting of potassium permanganate (KMnO4, 0.506 g) and cetyl
trimethylammonium bromide (C19H42BrN, 0.09 g) with continuous stirring. Afterwards, the resultant
slurry was treated under hydrothermal conditions at 140 ◦C and kept for 6 h. Then the produced wet
gel was washed in distilled water at 50 ◦C repeatedly. After ambient pressure drying, the macroscopic
free-standing MnO2 with the specific shape of the drying vessel was obtained. The schematic diagram
of the preparation process for macroscopic self-standing architectures was shown in Figure 1.
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The macroscopic self-standing Ni- or Co-doped MnO2 architectures were prepared by a similar
procedure including the addition of nickel nitrate or cobalt nitrate precursors. The doping amounts of Ni
(Ni/Mn molar ratio of 3/5) or Co (Co/Mn molar ratio of 1/5) were optimized in previous research [12,13]
and the obtained samples were designated as Ni-MnO2 and Co-MnO2, respectively.

An X-ray diffractometer (XRD, D8 Advance A25, Bruker, Germany) was employed to identify
the phase structure. The morphologies were investigated with Scanning Electron Microscopy (SEM,
SUPRATM 55, Carl Zeiss, Germany). An Instron 5940 universal testing machine (Shanghai, China)
was employed for compression testing of pristine MnO2, Ni- or Co-doped MnO2 samples.

The catalytic activities of propane oxidation over pristine MnO2, Ni- or Co-doped MnO2 samples
were evaluated in a fixed-bed reactor with continuous flow. The feed gas consisted of 1000 ppm
propane, 5% oxygen in a nitrogen balance gas, and total flow rate was 300 mL/min. A mixture of
0.4 g sample and quartz sands was used, and the heating rate of the oxidation reaction was 5 ◦C/min.
The maximum pressure reached inside the reactor was 103 kPa. The propane concentration in the
outlet gas was on-line monitored with a MultiGas analyzer (MKS MultiGas™ 2030, USA). The propane
conversion was defined according to the following equation:

Propane conversion (%) = (1 − [C3H8]outlet/[C3H8]inlet) × 100%, (1)

3. Results and Discussion

The appearance of prepared macroscopic self-standing MnO2 architectures with cylindrical shapes
was shown in the inset of Figure 2. The appearance of Ni-MnO2 and Co-MnO2 were similar to that
of MnO2. It demonstrates that the Ni or Co doping did not interrupt the assembling process of
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macroscopic self-standing MnO2 architectures. The XRD patterns (Figure 1) suggested that the crystal
phases of pristine MnO2, Ni-MnO2 and Co-MnO2 samples corresponded well to the tetragonal MnO2

(JCPDS no. 44-0141). No impurity phase was observed, which validated the high dispersion state of
Ni or Co within the MnO2 framework. The statistical average bulk densities of MnO2, Ni-MnO2 and
Co-MnO2 samples were 0.72, 0.69 and 0.70 g cm−3

, respectively. The morphologies of pristine MnO2,
Ni-MnO2 and Co-MnO2 samples were shown in Figure 3. The basic component unit of pristine MnO2

was nanowire, with a length of several hundred micrometers. The bundles of ultra-long nanowires
intertwined and assembled into a network structure of macroscopic self-standing MnO2 architecture.
After Ni or Co doping, the morphology of nanowires did not change distinctly. Thus, the Ni-MnO2

and Co-MnO2 also showed the disordered network structure assembled by nanowires.
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Figure 2. The X-ray diffractometer (XRD) patterns of pristine MnO2, Ni-MnO2, and Co-MnO2 samples.
The inset is the appearance of the macroscopic self-standing MnO2 architecture.

On the basis of the aforesaid results, the fabrication process of macroscopic self-standing Mn-based
architectures included the formation of wet gel with nanowires via hydrothermal reaction and the
removal of water via ambient pressure drying maintaining the self-standing architecture simultaneously.
In previous research, the MnO2 short nanofibers were prepared and the wet gel was not formed
without the addition of ammonium sulfate during the hydrothermal reaction [12,13]. The role of
ammonium sulfate included: (1) modification of the nanostructure unit; the nanowires with large
length-to-diameter ratio were obtained with the addition of ammonium sulfate and this morphology
was favourable for the assembly, and (2) assistance to assembly; the ammonium sulfate functioned
as bridging ligands and promoted the assembling of MnO2 nanowires. It has been proposed that
sulfate ions have two coordination sites which can bond water molecules via hydrogen bonds forming
a three-dimensional network, and simultaneously coordinate metal nanoparticles, thus promoting
nanoparticles self-assembly [14–16]. Therefore, the solvent of water also participated in the building
process of the macroscopic assembly.

The mechanical properties of samples were investigated and the stress-strain curves were shown
in Figure 4. The curves of all samples had a similar shape and contained elastic and plastic regions.
The calculated Young’s moduli in the linear region of pristine MnO2, Ni-MnO2, and Co-MnO2 samples
were 127, 73.8, and 172 MPa, suggesting they had good resistance to elastic deformation under load.
The yield strengths of pristine MnO2, Ni-MnO2, and Co-MnO2 samples reached 4.5, 3.2, and 4.2
MPa, respectively. In the plastic regions, when the samples were compressed to strain of 50%, the
corresponding stresses of pristine MnO2, Ni-MnO2, and Co-MnO2 samples were 6.2, 4.1, and 5.7
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MPa. It suggested that all samples were robust, compared with manganese oxide sponges in previous
research [10].Technologies 2019, 7, x FOR PEER REVIEW 4 of 7 
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The catalytic activities of propane oxidation over pristine MnO2, Ni-MnO2, and Co-MnO2 samples
were investigated and the results were shown in Figure 5. The T50 (the temperature at which 50%
C3H8 was converted) was usually used to compare the performance of different samples. It was found
that after incorporation of Ni or Co, the T50 shifted towards lower temperatures. Moreover, the T50 of
Co-MnO2 (278 ◦C) was lower than that of Ni-MnO2 (289 ◦C), suggesting that Co-MnO2 showed higher
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activity for propane oxidation than Ni-MnO2. When the temperature reached 400 ◦C, the conversion
of propane over Co-MnO2, Ni-MnO2, and MnO2 samples was 85.9, 84.3, and 58.6%, respectively.
The results verified the promotional effect of Ni or Co doping on the catalytic activity for propane
oxidation over MnO2. After the reactions, the self-standing architectures did not deform or collapse,
suggesting they had good resistance to thermal shock.
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Furthermore, the turnover frequency (TOF) values were calculated to compare the catalytic
activities of the three different catalysts. The detailed calculation method was described in previous
research [17]. Based on the light-off curves and surface areas, the calculated results were shown in
Table 1. It was found that the TOFs of samples increased in the order of MnO2 (4.20 × 10−10 mol m−2

s−1) < Ni-MnO2 (4.53 × 10−10 mol m−2 s−1) < Co-MnO2 (5.10 × 10−10 mol m−2 s−1), which suggested
that the incorporation of Ni or Co remarkably enhanced the catalytic activity for propane oxidation.

Table 1. The surface areas and TOFs of the three catalysts.

T10 Surface Area (m2 g−1) TOF × 1010 (mol m−2 s−1)

MnO2 239 70.8 4.20
Ni-MnO2 223 67.8 4.53
Co-MnO2 229 59.5 5.10

TOF = turnover frequency.

4. Conclusions

Macroscopic self-standing MnO2 architecture was fabricated via hydrothermal reaction followed
by ambient pressure drying. The addition of ammonium sulfate played an important role in the
assembling of MnO2 nanowires. After the Ni or Co doping, the macroscopic self-standing architectures
could be maintained with excellent mechanical properties, which showed enhanced catalytic activities
for propane oxidation. This study demonstrated a facile strategy to develop macroscopic self-standing
Mn-based architectures, having great possibilities for practical applications.
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