
technologies

Article

A Cellular Automata Model of the Relationship
between Adverse Events and Regional Infrastructure
Development in an Active War Theater

Halil Bozkurt 1, Waldemar Karwowski 1 , Erman Çakıt 2,* and Tareq Ahram 1

1 Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando,
FL 32816-2993, USA

2 Department of Industrial Engineering, Gazi University, 06570 Ankara, Turkey
* Correspondence: ecakit@gazi.edu.tr

Received: 28 June 2019; Accepted: 5 August 2019; Published: 7 August 2019
����������
�������

Abstract: This study presents a cellular automata (CA) model to assist decision-makers in
understanding the effects of infrastructure development projects on adverse events in an active
war theater. The adverse events are caused by terrorist activities that primarily target the civilian
population in countries such as Afghanistan. In the CA-based model, cells in the same neighborhood
synchronously interact with one another to determine their next states, and small changes in iteration
yield to complex formations of adverse event risks. The results demonstrate that the proposed model
can help in the evaluation of infrastructure development projects in relation to changes in the reported
adverse events, as well as in the identification of the geographical locations, times, and impacts of such
developments. The results also show that infrastructure development projects have different impacts
on the reported adverse events. The CA modeling approach can be used to support decision-makers
in allocating infrastructure development funds to stabilize active war regions with higher adverse
event risks. Such models can also improve the understanding of the complex interactions between
infrastructure development projects and adverse events.

Keywords: cellular automata; modeling simulation; adverse events; infrastructure development;
war theater

1. Introduction

In 2001, the United Nations (UN) Security Council authorized a temporary administration to
dispatch peacekeeping forces to reassure steadiness in the region and aid delivery. In 2002, the
international community pledged more than US$5 billion in aid to rebuild Afghanistan [1]. In the
same period, the United States Congress approved more than US$38 billion for humanitarian and
reconstruction assistance in this region. The total amount of assistance from the United States was
divided into four categories [2]. The majority of the funding (56%) was reserved for the Afghan Security
Forces Fund (ASFF) to train and equip Afghan security forces. At 31%, the second largest category
of funding was reserved for economic, social, and political development efforts. The third category
(4%) was reserved for the development of international organizations and the United States Agency
for International Development (USAID); and the remaining 9% was reserved for counter-narcotics
efforts. Examples included rebuilding the bottom-up economic activity of indigenous institutions
and constructing the necessary urban and civil community infrastructures. The impact of these
infrastructure developments has been little explored, and the relationship between infrastructure
development and adverse events is not clear cut [3].

The development of reliable models for estimating, detecting, mitigating, and/or preventing adverse
events is crucial in the aviation industry [4], healthcare institutions [5,6], drug administration [7,8], and
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active war theaters [9], to name a few. In the latter, adverse events are caused by terrorist activities that
primarily target the civilian population in countries such as Afghanistan. Today, very little is known
regarding the impact of infrastructure development projects on adverse events in active war theaters,
predominantly due to challenges in the representation of social science data and framework requirements.
Some of the challenges reside in Human Social Culture Behavior (HSCB) modeling and are due to a
deficiency in the common vocabulary, variations in data acquisition, and a general lack of data [10].

The United States Department of Defense (DoD) developed the Human Social Culture Behavior
(HSCB) Modeling Program [11,12] to undertake infrastructure development efforts to stabilize the
country of Afghanistan and, consequently, to counter or reduce terrorist events. However, assessing
the effect of these efforts presents significant challenges, because the data used to build models exhibit
nonlinear and fuzzy behavior, and are often ill-defined with respect to their socio-economic-cultural
factors. The purpose of this paper is to investigate the relationship between adverse events and
infrastructure development investments in an active war theater by using a cellular automata (CA)
modeling approach, in which the accuracy of the predictions is directly beneficial from an economic
and humanistic point of view.

The contents of this paper are organized as follows. Section 2 provides the relevant background by
summarizing works of spatial and temporal analysis. Section 3 describes the study, the dataset, and the
methodology. Section 4 reports the experimental findings and analysis of the results. The conclusions
from the current study are presented in Section 5.

2. Background

According to the Open Source Center (OSC) of the United States Central Intelligence Agency,
terrorist attacks do not occur at random, and it is possible to detect representative patterns in space
and time (spatiotemporal) [13]. These representative patterns can be modeled by using statistical
human behavior modeling approaches [14]. Some of those spatial patterns and assessments of
incidents are: Mapping the incident density, identifying the dominant ethnic group by incident location,
identifying the mean center of incidents, and calculating the spatial pattern and trend of the overall
incidents. Several studies have used geographic information system (GIS) data and spatiotemporal
statistics to conduct incident analysis. For example, LaFree et al. [15] examined spatial and temporal
patterns of all terrorist attacks attributed to the Euskadi Ta Askatasuna (ETA) (a Spanish separatist
group) from 1970 to 2007. Another study focused on the spatiotemporal factors of terrorist attacks in
Israel [16] and concluded that spatiotemporal data are necessary for describing terrorist attack patterns.
Siebeneck et al. [17] used historical data from 2004 to 2006 to develop a series of analyses to understand
terrorist activity spaces and counterterrorist actions. To be able to detect patterns, the researchers
focused their study on terrorist incidents in Iraq, applying several methodologies, such as clustering
analysis, spatial and temporal statistics, and global information systems to provide pattern knowledge.
Recently, Python et al. [18] performed hierarchical models in a Bayesian context, in which the spatial
random field is represented by a stochastic partial differential equation. The authors concluded that
lethal terrorist attacks tend to generate more deaths in ethnically polarized areas and in locations within
democratic countries. Another study by Marchment and Gill [19] applied a discrete choice model to
understand terrorist spatial decision making. These authors concluded that terrorists are similar to
traditional criminals in their decision making, in addition to being influenced by spatial context, such
as the distance from their home location to the attack location, or the presence of a premise relevant to
their ideology.

Agent-based models (ABMs) have also been applied in this field. Hudak and Baez [20] proposed
an ABM that simulates operations on the populations’ perception of governance, security, and
infrastructure for a particular district in Afghanistan, and found that the effects are directly related to
non-kinetic operations. The ABM approach was also introduced to model residential burglaries at an
individual level using a behavioral framework [21]. However, the above applications of ABM require
access to large sets of data to successfully model the targeted population characteristics [22]. Recently,
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Tutun et al. [23] aimed to model how terrorist groups and governments influence each other. To do so,
an agent-based model with a network topology was used to model the system, which was composed
of interacting agents (attacks) and groups.

In the current study, the relationships between infrastructure development projects and adverse
events are modeled using the cellular automata approach. CA is one of the oldest models of natural
computing, with a history spanning more than half of a century [24]. In its simplest form, space is
represented by a tessellation (a uniform, bi-dimensional collection of cells) in which the cells represent
the population involved. Iterations are performed based on a set of rules that represent the parametric
set of conditions that determine the next state of cells according to neighboring states at a discrete time
t. The rules can control changes in the behavior of the CA to enable meaningful results. CA consists of
identical computing cells, which locally and synchronously interact with one another to determine
their next state. Although the change of a cell state in a given iteration may be small, after numerous
iterations, these small changes create complex patterns representing the final condition of the system.
Thus, CA is a potential tool for simulating a range of varied and sophisticated natural phenomena.

Spicer et al. [25] applied a traditional cellular automata modeling approach to link liquor
establishments to crime data. In this study, the cells in a grid behaved like city blocks, each of which
was assigned its own risk factor, and the behavior of the cells was altered by the social interactions that
occurred between the cells. Vaz et al. [26] used CA to study urban growth by modeling the transactions
among urban and non-urban areas and densely populated areas in Portugal. A Markov model
was used to generate transition rules that were determined by social, economic, and geographical
inputs. The study concluded with an urban growth scenario for the year 2020. Bing Sheng and
Sui [27] incorporated remote sensing imagery and social and economic data into a CA model to
express the impact of globalization on Asian urban dynamics with domestic economic/demographic
drivers. Wu et al. [28] combined an artificial, neural network-based stochastic CA model with a set of
socioeconomic measures that included the income of the non-urban population, income of the urban
population, population, and gross domestic product. Lauf et al. [29] integrated system dynamics
into a CA to model the relationship between household dynamics and residential development.
Mago et al. [30] applied CA and fuzzy cognitive maps (FCM) to model the spread of HIV by combining
macro and micro-level models, for which the macro-level model was identified by FCM and statistical
feedback was generated from the micro-level parameters calculated by CA.

More recent studies used linear regression, neural networks, fuzzy inference systems (FISs), adaptive
neuro-fuzzy inference systems (ANFISs), fuzzy overlay models, fuzzy C-means with subtractive clustering,
and data streaming methods to predict and detect four types of events: The number of people killed,
wounded, and hijacked, as well as other events based on infrastructure development spending and other
variables in a war theater in Afghanistan [9,31–37]. These four categories of events are collectively called
“adverse events,” which is the term that will be used throughout this paper. This study proposed a
different approach for investigating the relationships between infrastructure development projects and
adverse events using the CA modeling approach. A unique CA model that incorporates GIS and is
capable of evaluating the impact of infrastructure development projects on adverse events, in terms of the
location, time, and impact of these incidents, was developed. Using the developed cellular automata, the
user can create “what-if” scenarios to forecast adverse events in comparison to previous models [9,31–37].
The proposed cellular automata modeling approach is capable of identifying the location, time, and
impact of future adverse events.

Study Area

Afghanistan, which is constituted by 34 provinces, is located in South-Central Asia. Each province
has its own capital and administration, and the 34 provinces are subdivided into a total of 400 districts.
Each district contains at least one city or a certain number of villages. Afghanistan boarders Pakistan
on the south and east, Iran on the west, Turkmenistan, Uzbekistan, and Tajikistan on the north, and
China on the far north-east. Afghanistan is comprised of 652,000 square kilometers, such that by
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areal land mass, the country is only slightly smaller than the state of Texas in the United States.
The population of Afghanistan was estimated to be at 34 million as of 2017. Afghanistan’s particular
geography is relatively inaccessible due to significant mountainous regions, with plains in the north
and south-west. These factors result in a situation that has led to great difficulty in securing the
population and improving the economic situation of the country’s inhabitants.

3. Methods

3.1. Cellular Automata Model

CA modeling of the infrastructure development projects and adverse events was designed at
two major implementation levels: The macro level; i.e., population and infrastructure development
projects, and the micro level; i.e., reported adverse events in a given geographical region of Afghanistan.
The macro-level model supports CA rules to generate predictions. The micro-level model utilizes
interactions between adverse events. Transition between the macro and micro levels is deployed by
CA transition rules that benefit from weighted Euclidean distances. Understanding and managing
both levels as coherent dynamic entities helps to maintain the modeling system’s integrity.

Figure 1 illustrates the modeling framework and input variables of the CA model. A transition
rule generator inputs aid data as the count; the sum of the budget of the aid grouped by aid sector
activity types; adverse event data as the count and the impact (population affected by the adverse
event) grouped by the number of killed, wounded, or hijacked people; the count of adverse events that
occurred; and population data in terms of rural and urban populations, female and male populations,
the total population, and population density. In this framework, the GIS acts as both the location data
integrator and the neighboring cell identifier, which uses the cellular automata’s variables. The cellular
automata prediction module inputs data for only the time period in which prediction will be conducted.
The input data are the same in type as the input of the transition rule generator module, except for
adverse event data. The prediction module inputs the adverse event data belonging to the prediction
start time at (t − 1) to apply the transition rules and generate prediction results. Next, we describe
the CA neighborhood presentation, cell states, and transition rules performed in this study. If a user
has defined an aid data distribution, the CA module overrides the user-specified distribution in the
current state of the cell. A CA module also obtains the landscape data and population specific data
from the GIS module to add into the current cell state of the cell. During the initial run of the model,
the CA module also obtains adverse event initial data from the user. Subsequently, the CA loops in the
CA module to create next states of the cells until the defined time span is reached; then it sends the
generated data to the GIS to visualize and calculate the statistics of the results.

The modeling methodology of CA for social and economic analysis for this research is designed in
two major implementation levels: Macro and micro-level (Figure 2). At the macro-level, the modeling
framework integrates population, social, and economic sub-systems. The macro-level allows the
model to use regionalized representations and enables understanding of why the events have occurred.
The macro-level supports cellular automata rules to generate accurate predictions. The predictive
capabilities of CA will be used to model the micro-level interactions between individual actors, which
are represented by adverse events. Understanding and managing these systems as coherent dynamic
entities will help to maintain system integrity. In this methodology, CA iterates over time to generate
complex patterns on the overall model by iterating with small changes.
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Figure 1. Cellular automata framework.

Figure 2. Cellular automata methodology.

3.2. Research Data

Empirical field data were obtained for different regions of Afghanistan from various information
sources (and with different formats) and then were grouped into two major groups, adverse events and
infrastructure development datasets. The adverse events’ datasets were comprised of data collected
from a variety of news feeds, blogs, reports, and various databases. Among the supplied datasets,
the WITSGEO dataset was selected for further study of the reported adverse events and incidents.
Although other datasets had more data points for specific time periods, WITSGEO had the largest
spread of data between 2005 and 2010. This dataset contained the adverse event date, the latitude and
longitude of the incident location, and the number of people affected by the adverse event in terms of
the numbers killed, wounded, and hijacked. Using the ArcMap overlay analysis tool, the incident
locations were updated from 32 provinces to 34 provinces.

The infrastructure development datasets were comprised of data collected from the United States
and regional databases. Among the supplied datasets, the USAID database was selected for the study
of infrastructure development, because most of the relationships among the tables were predefined
and indexes were presented. This dataset contained project identification, estimated start and end
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dates, estimated project budget, activity start and end dates, activity budget sector type, sector activity
detail, and location information for each project. Although the USAID database was well organized,
some data points were missing important content, such as project start and end dates, project budget,
activity detail budget, and location information. To overcome these limitations, estimated project start
and end dates and estimated project budgets (for projects with identical IDs) were utilized.

Datasets in both categories contained time and geographical location. The structure of the data and
the GIS shape files enabled us to collate different layers of data within a spatial database, which allowed
us to obtain information regarding neighboring districts for utilization in the CA model. Figure 3
illustrates the spatial database populated for use in this study. The database grouped infrastructure
development projects and adverse events in a monthly fashion. Infrastructure development project
data branched into 14 sectors, and each sector branched into 6 activities, totaling 84 variables for a
single period for a certain district. As such, a project on “education” could be conducted in more than
one district within different activity types, such as “construction” and “advisory service.” We also
added population data to the database to study the effects of regional demographics.

Figure 3. Populated human social culture behavior (HSCB) spatial database.

3.3. Neighborhood Definition

The common social science applications of CA use a rectangular grid, such as Moore or von
Neumann neighborhoods, as the underlying network structure [38]. Such applications have regular
grid structures in which every cell has the same number of neighbors. Unfortunately, Afghanistan’s
400 districts, with numerous neighbors, preclude the use of a regular grid structure [39]. To overcome
this limitation, we generated an irregular CA neighborhood by using the ArcGIS geostatistical analyses
tool. Figure 4 represents a Voronoi diagram generated using ArcGIS to represent each neighborhood
visually as
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Figure 4. Visualization of irregular cellular automata neighborhoods for Afghanistan’s 400 districts.

3.4. State of Cells

The state of a cell, ςd(t) defined as a row vector of size 178, represented the state of a district
d at time t. Eighty-four elements of ςd(t) were the sum of the U.S. dollars spent, δs

d(t), whereas the
remaining 84 constituted the count of infrastructure development projects implemented, γs

d(t), where s
denotes each sector and activity type of the infrastructure development data. Five elements denoted
the population number, $p

d(t), where p represented the total population, male and female, for urban-
and rural-area populations. Population density ηd(t) was represented as its own element. Finally,
four elements were employed to designate adverse events measures, αa

d(t). This model involved
a = k,w,h,and c adverse event measures; i.e., the number of individuals killed, wounded, and hijacked,
and the number of adverse events, respectively (Equation (1)).

ςd(t) =
[
δs

d(t) γ
s
d(t) $

p
d(t) ηd(t) αa

d(t)
]

(1)

3.5. Transition Rules

Transition rule ϕ describes the rules of change for each cell from its current state at time t to its
next state at time t + 1. Transition rule ϕ has 3 main inputs: The transition state for the time at which
prediction will occur τ∗d(t) and the state and adverse event ratio matrices T and R of the historical
data. The transition rule searches through the state matrix T and identifies the most similar event(s)
and conditions to τ∗d(t). The rule then uses weighted Euclidean distances to measure similarity. After
identifying the most similar event(s), the ratio of change of the adverse events in a cell is determined
by using an adverse event ratio matrix R. The development of the required inputs and the transition
rule are described below.

3.5.1. Transition State

We defined the states of neighboring cells, ςNd
(t), as the sum of each neighbor’s cell state for the

centering cell d, except for the cell state of population density, which is defined as:

ςNd
(t) =

∑
d∈Nd

[
δs

d(t) γ
s
d(t) $

p
d(t) α

a
d(t)

]
(2)

The transition state, τd(t), is a row vector of size 357 that represents the macro and micro-level
states of district d at time t. Two elements, λd(t), represent the year and month of the data sampled,
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and the other 355 elements denote the state of the center cell, ςd(t), and the state of the neighboring
cells, ςNd

(t), according to:
τd(t) =

[
λd(t) ςd(t) ςNd

(t)
]

(3)

3.5.2. Adverse Event Change Ratio

We defined micro-level changes in the adverse event as the ratio of change from time t to t + 1 for
adverse event measures, ra

d(t), including all measures (a = k,w,h,and c) for district d at time t:

ra
d(t) =

α
a
d(t + 1) if, αa

d(t) = 0
αa

d(t+1)
αa

d(t)
otherwise

(4)

Tis the state matrix including τd′(t′) for all historical data, where d′ is the district and t′ is the
time of data sampling. Ris the matrix including adverse event rates for each τd′(t′) in T. T represents
the macro- and micro-level states that support CA rules to generate predictions with the use of the
corresponding R:

T =


λd′(t′)

.

.

ςd′(t′)
.
.

ςNd′
(t′)

.

.

 R =


rk

d′(t
′) rw

d′(t
′)

. .

. .

rh
d′(t
′) rc

d′(t
′)

. .

. .

 (5)

3.5.3. Weighted Euclidean Distance

The weight of the Euclidean distance, ω, defined as a row vector of size 357, represents the weight
of the impact of each variable on the adverse events at time t + 1. Two elements of ω are the weight
of the impact for a given time, ωλd , while another 168 elements constitute the weight of the impact
of the total U.S. dollars spent and the total count of infrastructure development implemented at the
centering cell, ωδγ. Six elements denote the weight of the impact of the population for the centering
cell, ω$; four elements are the weight of the impact of the number killed, wounded, and hijacked
and the total event count, given as ωk, ωw, ωh, and ωc, respectively. The weight of the impact of the
total U.S. dollars spent and the total count of infrastructure development projects implemented are
represented by 168 elements at the neighboring cells, ωNδγ ; five elements are the weight of the impact
of the population of the neighboring cells, ωN$ ; and four elements are designated to the weight of
the impact of the number of people killed, wounded, and hijacked and the total event count at the
neighboring cells, ωNk , ωNw , ωNh , and ωNc , respectively, giving:

ω =
[
ωλd ωδγ ω$ ωk ωw ωh ωc ωNδγ ωN$ ωNk ωNw ωNh ωNc

]
(6)

Next, let τ∗d(t) be the transition state for the time at which the prediction will occur for district d
and time t to find the most similar τd′(t′) among the matrix T and to determine the ratio of change
in the adverse events, τa

d′(t
′). Two steps are involved in the decision-making process: Selecting the

conforming τd′(t′) and determining the ratio of change, τa
d′(t
′). In Step 1, the weighted Euclidean

distances, E( j), are calculated between τ∗d(t) and τd( j), which are rows of T. σT is the standard deviation
of the columns of T:

E( j) =

√∑ ω2

σT2

(
τd( j) − τ∗d(t)

)2
(7)

To determine the ratio of change in adverse events, values of τd′(t′) are selected with minimum
Euclidean distances. In the case of more than one minimum, the most similar historical data that
occurred in the same province and district as the scenario data are selected (Steps 1 and 2). If more than
one minimum remains, then the scenario and historical data months are checked; if one of the months
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corresponds to a Holy month in the Islamic calendar, then that month is selected (Step 3). Otherwise,
the ratio of change is calculated as the mean of the selected rate of change.

1. T∗( j) = T( j) with the minimum E( j) that have the same province as τ∗d(t);

2. T∗( j) = T∗( j) with the same district as τ∗d(t);

3. T∗( j) = T∗( j) with either the Islamic months of 9 or 12 (Ramadan and Dhul-Hijjah, respectively);
4. Calculate the ratio of change in adverse events, ra, for all a=k, w, h, and c as the mean of τa

d′(t
′) in

T∗( j).

Transition rule φ is defined as the change of adverse events with a ratio of ra:

φ : αa
d(t + 1) =

ra i f , αa
d(t) = 0

αa
d(t) ∗ ra otherwise

(8)

3.5.4. Weight of Impact Calculation

The sensitivity analysis of the data showed that the effect of each input on the output varies
in degree. Therefore, we postulated that implementing and optimizing the weighing factors to the
elements of the transition states should improve the CA model’s performance. Assuming that each
element of the transition state has a different level of impact on the output, we computed all of the
inner products of the weight vector with all of the other training and scenario vectors. To determine
the weights that result in the most accurate model output in each time step, we also constructed the
model to prevent non-iterative prediction updating.

We calculated the weights of impact for each district and each input variable to identify the
drivers of the model. Due to long computation times, we reduced the number of elements of the
weight of impact vectors and the number of values that each element could accept. Then, we calculated
a total of 8 weights (6561 runs of the model) and assigned 6 of these weights as the weights of the
centering cells, which we limited to three levels: 0.1, 0.4, and 0.9. These six weights represent an
average impact of the total funds spent (expressed in U.S. dollars) and the amount of infrastructure
development at the centering district, ωδ, the population of the centering district, ω$, and the total
number of individuals killed, wounded, and hijacked, and the total event count, ωk,ωw,ωh, and ωc,
respectively. We clustered the weights of neighboring cells into two groups: (1) The total funds spent
for infrastructure development and count of infrastructure development projects in the neighboring
district,ω

δ′
, and total population of the neighboring district,ω$ ; and (2) the total number of individuals

killed, wounded, and hijacked, and the total number of adverse events occurring in the neighboring
districts, ωk′ , ωw′ , ωh′ and ωc′ , respectively. Then, we assigned a divider to each group to calculate
the weights of the neighboring districts as a function of the centering district. This function is the
centering cell average divided by the denominator; e.g., if the divisors for groups one and two are c1

and c2, respectively, then ωw = ω$/c1, and either ωk = ωk/c2 or ωw = ωω/c2. We limited the possible
values of these two divisors to 1, 2, and 3.

We calculated the weight of impact by testing every combination of the elements of the weight
vectors for 2009 and measuring the performance of each run by the mean absolute error. We input
infrastructure development and adverse event data from January 2005 to November 2008 and
population data for the 400 Afghanistan districts to train the model. We input data from December
2008 to November 2009 as the scenario data.

Table 1 shows the calculation results for the weights of impact for the centering district.
We interpreted the weights as the impact of the infrastructure development projects and adverse events
occurring in a district at time t0 on the prediction of adverse events, such as the number of individuals
killed, wounded, and hijacked, that would occur at time t1. We considered the impact weight to be
high if the values were greater than 0.65, medium if the values were between 0.64 and 0.20, and low for
all remaining values. Table 1 shows that the number of individuals killed, wounded, and hijacked
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at time t0 has a significant impact on the adverse events that would occur in the same categories at
time t1. In addition, we note that the number of wounded individuals at time t0 significantly affects
the prediction of the number of hijacked individuals at time t1. The sum and count of infrastructure
development, the total number of wounded, and the count of adverse events in a district at time t0

have a moderate impact on the prediction results of the total number killed at time t1. Finally, we
observed that the population of a district significantly impacts the total number of adverse events that
would occur at time t1.

Table 1. Impact of centering cell states on security incidents.

Impact Factors on Security Incidents at Time t1

State of a Centering District at Time t0 Killed Wounded Hijacked Count

Sum and count of infrastructure
development (ωδγ) 0.40 0.10 0.10 0.10

Population (ω$) 0.10 0.10 0.40 0.90
Total killed (ωk) 0.90 0.10 0.10 0.10

Total wounded (ωw) 0.40 0.90 0.90 0.10
Total hijacked (ωh) 0.10 0.10 0.90 0.10

Total of all security incidents (ωc) 0.40 0.40 0.10 0.40

Table 2 lists the calculation results for the weight of the impact for the neighboring districts.
We interpret these weights as the impact of the infrastructure development projects and adverse events
that occurred in the neighboring districts at time t0 on the prediction of adverse events that would
occur at time t1 in the centering district. We observe that the number of individuals killed, wounded,
and hijacked in the neighbors of a district at time t0 have a medium impact on the adverse events
that would occur in the same categories at time t1 in the center district. The number of individuals
killed at time t1 was moderately affected by the number of wounded people, the sum and count of
infrastructure development, and the total amount of adverse events that occurred in the neighboring
districts at time t0. Finally, we observed that the number of wounded and the amount of population in
the neighboring districts at time t0 had a moderate impact on the prediction of the number of hijacked
individuals at time t1.

Table 2. Impact of neighboring cell states on security incidents.

Impact Factors on Security Incidents at Time t1

State of a Centering District at Time t0 Killed Wounded Hijacked Count

Sum and count of infrastructure
development (ωδγ) 0.13 0.03 0.10 0.05

Population (ω$) 0.03 0.03 0.40 0.45
Total killed (ωk) 0.45 0.03 0.05 0.03

Total wounded (ωw) 0.20 0.30 0.45 0.03
Total hijacked (ωh) 0.05 0.03 0.45 0.03

Total of all security incidents (ωc) 0.20 0.13 0.05 0.13

4. Results and Discussion

This paper developed a CA model for testing against observed adverse events based on monthly
data from January to December 2010 in Afghanistan. Infrastructure development, adverse event data
from January 2005 to November 2009 for 400 Afghanistan districts, and 2008 population data were
used as the inputs to train the model.

The model’s performance was measured based on the average performance and accuracy using
the mean absolute error (MAE) and root mean square error (RMSE). Each of these measures expresses
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the average model prediction error in the unit of adverse events. Among the two models, MAE is the
most natural measure of average error [40].

MAE =

∑n
i=1|ei|

n
(9)

RMSE =

√∑n
i=1|ei|

2

n
(10)

The final CA model showed the highest average model performance among the variations of
models generated and analyzed, such as (1) a model using standardized Euclidean distances and (2) a
model using weighted Euclidean distances. Table 3 shows the average model performance of these
two variations. The highest increase observed for RMSE was the number of wounded individuals.
High values of RMSE pointed to large errors in the predictions. From the study results, we concluded
that implanting the weight of impact into the CA model increased its average model performance.

Table 3. Average model performances by category of security incidents.

Model Variation Performance Measure Killed Wounded Hijacked

CA with standardized
Euclidean distances

MAE 0.92 1.8 0.35
RMSE 3.81 29.32 1.98

CA with weighted
Euclidean distances

MAE 0.75 1.33 0.28
RMSE 3.07 6.88 1.7

Model accuracy was measured by the percentage of adverse event data correctly predicted in
terms of location, time, and impact in 2010. The three different success rates measured included (1) the
exact success rate or the rate of correct forecasts over all forecasts that were made; (2) the one-away
success rate, or the rate of correct forecasts with the error margin of one over all forecasts that were
made; and (3) the three-away success rate, or the rate of correct forecasts with an error margin of three
over all forecasts that were made.

Table 4 shows the percentage of the successful prediction rates of the CA model with weighted
Euclidean distances for 2010. Predictions of the total number of hijacked individuals resulted in 93.29
percent of the exact prediction. Predictions of the number of killed and wounded individuals resulted
in more than 80 percent of the exact prediction. When the error margin of the success rate increased,
correct predictions of the number of killed, wounded, and hijacked individuals resulted in more than
90 percent of all predictions. It was also observed that the number of hijacked individuals was more
than 97 percent with an error margin of three.

Table 4. Percentage of correct prediction of security events in 2010.

Killed Wounded Hijacked

Exact Prediction (%) 83.29 81.27 93.29
One-Away (%) 88.90 85.22 95.10

Three-Away (%) 93.90 91.54 97.33

The distribution of the percentages of the exact success rates for each month is shown in Figure 5,
which indicates that the exact success rate for hijacked individuals was close to 95 percent in February,
April, and October, whereas the exact success rate for killed individuals was greater than 85 percent in
February, March, April, and November. The prevalence of exact success rates for killed, wounded, and
hijacked individuals showed similar trends. Intuitively, with further iterations, this CA model should
be able to predict the number of killed, wounded, and hijacked individuals with similar accuracy.
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Figure 5. Percentage of exact success rate per month in 2010.

According to Figure 6, which shows the distribution of 1-away success rates for each month,
when the error margin of the number of people affected by an adverse event was increased by 1, the
success rate of the prediction of the number of hijacked individuals increased to more than 95 percent
for most months. For the number of individuals killed, the success rate was greater than 85 percent for
every month.

Figure 6. Percentage of one-away success rate per month in 2010.

The distribution of the three-away success rates for each month is shown in Figure 7, which
indicates that when the error margin of the number of people affected by an adverse event was
increased by three, the success rate of the number of hijacked individuals was 98 percent accurate for
most months and for the number killed, was greater than 90 percent for every month. Moreover, the
success rate for the number killed was within an accuracy of 95 percent for six months, and for the
number wounded, the accuracy was greater than 90 percent for every month. The prevalence of the
three-away prediction accuracies with similar trends increased the confidence of the model accuracy
for further iterations to predict the number of killed, wounded, and hijacked.
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Figure 7. Percentage of three-away success rate per month in 2010.

Figure 8 displays the predicted data for March 2010 by location, time, and impact of the adverse
events likely to occur. The map legend represents the range of the number of people affected for each
adverse event measure. In the upper-left corner is a Voronoi diagram of the districts where people were
killed; in the upper-right corner is a Voronoi diagram of the districts where people were wounded; in
the lower-left corner is a Voronoi diagram of the districts where people were hijacked. The lower-right
corner includes a bar chart and table of the exact one-away, and three-away prediction success rates.
The districts in white indicate predictions with no adverse events; the districts in yellow indicate
predictions resulting in zero to four people affected by an adverse event; the districts in orange indicate
predictions resulting in four to eight people affected; and the districts in red indicate predictions
resulting in more than eight people affected.

More than 85 percent of predictions were exactly correct regarding the number of people killed
and the location. The districts where the model failed to correctly predict the number killed were the
first-or second-order neighbors of the districts where the model correctly predicted the number of
killed. Most of the districts for which the model failed to correctly predict the number killed were also
located in the provinces where killed individuals were predicted. Similar to the killed people data,
most of the incorrect predictions of the number wounded were located at the neighboring cells of the
correct predictions. The killed and wounded individual data showed a similar pattern of distribution
among CA neighborhoods. The Voronoi diagram of the predicted number of hijacked individuals was
correctly predicted at 94 percent. The predictions showed that the developed model was capable of
predicting the path, possible location, and impact of the observed adverse events.

4.1. Model Capability

This section exemplifies a what-if scenario and cellular automata model prediction for 2015 to
express the capability of the model. The what-if scenario is designed to examine the changes in
adverse events if the amount of money spent and the count of aid were doubled for the year 2010.
For the scenario examined, aid distribution among districts has remained the same. Table 5 shows the
USAIDdistribution among sectors for the real case and the what-if scenario. The amount spent and the
counts of aid conducted for each sector in the table are averages for 400 districts of Afghanistan.
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Figure 8. Security event predictions for March 2010.
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Table 5. USAID distribution for the real case and what-if scenario for 2010.

Real Case What-If Scenario

USAID Sector Amount Spent Count of Aid Amount Spent Count of Aid

Agriculture $220 0.01 $440 0.01
Capacity Building $31 0.01 $62 0.01

Commerce & Industry $10,305 0.14 $20,611 0.28
Community Development $438 0.00 $876 0.01

Education $705,451 9.56 $1,410,902 19.12
Emergency Assistance $0 0.00 $0 0.00

Energy $16,547 0.02 $33,095 0.04
Environment $10,270 0.02 $20,539 0.05

Gender $0 0.00 $0 0.00
Governance $2,132,035 0.24 $4,264,071 0.48

Health $12,064 0.03 $24,129 0.07
Security $0 0.00 $0 0.00

Transport $2,062,176 0.09 $4,124,351 0.17
Water & Sanitation $20,009 0.04 $40,018 0.08

Grand Total ≥ $4,969,547 10.15 $9,939,093 20.30

According to the results of the designed what-if scenario, the expected changes in the number of
adverse events are as follows. If the amount and count of aid were doubled over 2010, it is predicted
that the number of killed people in 155 districts, the number of wounded people in 147 districts, and
the number of hijacked people in 95 districts would decrease over the months of 2010. However it is
predicted that the number of killed people in 57 districts, the number of wounded people in 76 districts,
and the number of hijacked people in 30 districts would increase. The results can be interpreted as
indicating that increasing the USAID does not necessarily decrease the number of people affected by
adverse events, because it is predicted that there are districts in which the number of people affected
by adverse events increases. However, more districts are positively affected by the change in USAID.

In the cellular automata model, districts in the same neighborhood synchronously interact with
each other to determine their next state, and changes in iteration in a month yield complex formations.
Thus, it is expected that if the distribution of USAID were changed among different districts or months,
the rates of changes in adverse events would be different from the scenario examined. It is also expected
that if the amount of money spent in each sector were distributed among the different activity types
of these sectors, the rates of change on adverse events would differ. Figure 9 displays the monthly
average output for the real-case and what-if scenario for 2010.

4.2. Performance Comparison of Models

In this study, we compared the proposed CA models with a previous model [33] on the same
basis, using the MAE performance metric to identify the most accurate model among three approaches.
When the model performance was evaluated by using the MAE values, the proposed CA model
variations had the potential to perform better than Çakıt and Karwowski’s fuzzy based model [33]
(Table 6). The superiority of the proposed CA approach might be attributed to its ability to capture
the nonlinear dynamics of the data, and such superiority may be problem-related and may require
extensive applications on various data sets to be generalized.
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Figure 9. Real case and what-if scenario monthly average output for 2010.
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Table 6. Performance comparison of the results for each dependent variable.

Dependent Variable Methods MAE

Number of people killed
Çakıt and Karwowski (2015) [33] 2.17
Proposed CA Model Variation 1 0.92
Proposed CA Model Variation 2 0.75

Number of people wounded
Çakıt and Karwowski (2015) 4.30

Proposed CA Model Variation 1 1.81
Proposed CA Model Variation 2 1.33

Number of people hijacked
Çakıt and Karwowski (2015) 0.50

Proposed CA Model Variation 1 0.35
Proposed CA Model Variation 2 0.28

5. Conclusions

This study aimed to develop a CA model to better understand the impact of infrastructure
development projects on adverse events in an active war theater. The analysis was performed on
a set of spatial data representing projects based on infrastructure development and adverse events
data. The infrastructure projects and adverse events represented the states of the districts. Districts in
the same neighborhood synchronously interacted to determine their next states. Small changes in an
iteration yielded complex formations of adverse event risk after several iterations of time. The modeling
methodology of CA for infrastructure development analysis was implemented at both macro and
micro levels. Macro-level subsystems were supported by CA rules to generate accurate predictions.
The predictive capability of the CA modeled the micro-level interactions between individual actors,
which were represented by adverse events.

Application to a real war theater in Afghanistan demonstrated that the CA model was useful
for evaluating the influence of infrastructure development projects on reported adverse events, and
for identifying the likelihood of the location, time, and impact of such incidents. The infrastructure
development projects examined had different levels of impact on each category of adverse events; i.e., the
number of individuals killed, wounded, and hijacked. Funds spent for infrastructure development
projects, and the number of infrastructure development projects in a given district, had a moderate
impact on the number of individuals killed, whereas the population of a district had a moderate impact
on the number of individuals hijacked. Performance tests showed that the model was capable of
predicting the number of individuals killed, wounded, and hijacked with 83, 81, and 93 percent success
rates, respectively.

The study concluded that the prediction capabilities of the developed CA model can be used to
support decision-makers in promoting regional rebuilding operations in a war theater through economic
infrastructure development programs. Future research will focus on improving the model’s capabilities
by implementing an optimization method for distributing funds through different geographical sectors.
This approach will better support policymakers in deciding on the distribution of infrastructure
development projects in regard to their location and timing. The model can be applied in other
countries seeking to pursue infrastructure development in times of continued adverse events.
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