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Abstract: When a new chaotic oscillator is introduced, it must accomplish characteristics like
guaranteeing the existence of a positive Lyapunov exponent and a high Kaplan–Yorke dimension.
In some cases, the coefficients of a mathematical model can be varied to increase the values of those
characteristics but it is not a trivial task because a very huge number of combinations arise and the
required computing time can be unreachable. In this manner, we introduced the optimization of the
Kaplan–Yorke dimension of chaotic oscillators by applying metaheuristics, e.g., differential evolution
(DE) and particle swarm optimization (PSO) algorithms. We showed the equilibrium points and
eigenvalues of three chaotic oscillators that are simulated applying ODE45, and the Kaplan–Yorke
dimension was evaluated by Wolf’s method. The chaotic time series of the state variables associated
to the highest Kaplan–Yorke dimension provided by DE and PSO are used to encrypt a color image
to demonstrate that they are useful in implementing a secure chaotic communication system. Finally,
the very low correlation between the chaotic channel and the original color image confirmed the
usefulness of optimizing Kaplan–Yorke dimension for cryptographic applications.

Keywords: chaos; PSO; DE; Kaplan–Yorke dimension

1. Introduction

Chaotic systems are a hot topic of interest for researchers in a wide variety of fields. In the case
of optimization and applications, one is interested in finding appropriate design parameters that
provide better characteristics like a high positive Lyapunov exponent (LE+) and a high Kaplan–Yorke
dimension DKY, and guaranteeing chaotic behavior for long-times. This task can be performed by
varying the coefficients of a mathematical model under ranges that can be established from the
evaluation of the bifurcation diagram. However, this requires extensive computing time and is more
complex when the values of the coefficients have more fractional values. For example: The Lorenz
chaotic oscillator has three design parameters: σ, ρ, and β. They can have integer values and also
fractional ones. If one chose varying them using two integer (102) and four fractional numbers (104),
then the number of combinations becomes 106 × 106 × 106 = 1018. Simulating this number of cases
can be unreachable in a couple of years and not all cases will generate chaotic behavior. In this manner,
metaheuristics can be applied to search for the best coefficient values that provide high LE+ and
high DKY.

Among all the different kinds of chaotic systems, the case studies of this work are three
dimensional autonomous chaotic oscillators, and the analysis to determine their equilibrium points and
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eigenvalues are shown. The numerical simulation is performed by applying ODE45 to generate chaotic
time series that are used to evaluate both LE+ and DKY by applying Wolf’s method [1]. In fact, chaotic
flow is interesting for systems that have high complexity that can be quantified by evaluating the
attractor dimension, which is associated to DKY. For instance, the authors in [2] introduced a flexible
chaotic system through applying modification in a recent rare chaotic flow which has adjustable
DKY, and it is used in a practical application showing a relation between DKY and the ability of
the chaotic system to generate random numbers. The authors in [3] published a review paper of
fully analog realizations of chaotic dynamics that can be considered canonical (minimum number
of the circuit elements), robust (exhibit structurally stable strange attractors), and novel. The short
term unpredictability of the chaotic flow is demonstrated via the calculation of DKY that is high,
so that the generated chaotic waveforms can find interesting applications in the fields of chaotic
masking, modulation, or chaos-based cryptography. Another new chaotic oscillator is proposed
in [4], where the authors present a systematic study including phase portraits, dissipativity, stability,
DKY, etc. In the same line of research, the authors in [5] analyze a chaotic satellite system using
dissipativity, equilibrium points, bifurcation diagrams, Poincaré section maps, and DKY to ensure
the strange behavior of the chaotic system. As one can infer, DKY is quite useful to characterize a
chaotic dynamical system that can be implemented with electronics for engineering applications like
secure chaotic communication systems and it can also be useful to model natural dynamics like the
predator-prey system given in [6]. In this manner, we show the application of two metaheuristics,
namely: Differential evolution (DE) and particle swarm optimization (PSO) algorithms, in order to
maximize DKY of three chaotic oscillators. The state variables of each chaotic oscillator with the highest
DKY are used to encrypt a color image to demonstrate their usefulness in implementing a chaotic
secure communication system.

The rest of the manuscript is organized as follows: Section 2 describes the three chaotic oscillators
that are used to maximize DKY. They are a chaotic system with infinite equilibria points [7], Rössler [8],
and Lorenz [9] systems. Section 3 details the DE and PSO algorithms that are used to maximize DKY.
Section 4 details the maximization of DKY for the three chaotic oscillators and shows statistical results
of 10 runs applying DE and PSO. Section 5 shows the chaotic time series with the highest DKY that are
used to encrypt a color image. Finally, the conclusions are given in Section 6.

2. Chaotic Systems

This section describes three autonomous chaotic oscillators that are used as case studies to
optimize their DKY by applying DE and PSO algorithms. The first chaotic system has infinite
equilibria points and was introduced in [7]. Its mathematical model is described by (1), where it
can be appreciated that the non-linearity is provided by the exponential function and has a single
parameter, a. This attractor is simulated with a step size of 0.3 and its phase portrait is shown in
Figure 1. The attractor is generated when the design parameter a = 0.1 and provides an LE+ = 0.17
and DKY = 2.0791, as shown in Table 1.

ẋ = −z
ẏ = xz2

ż = x− aey + z(y2 − z2)

(1)

Other kinds of chaotic oscillators have nonlinearities that are associated to the multiplication of
their state variables. This is the case of the Rössler system [8], which is described by (2). It consists of
three design parameters shown in Table 1, a = 0.15, b = 0.20, and c = 10, which are used to provide
LE+ = 0.13 and DKY = 2.01, and its phase portrait is shown in Figure 1.

ẋ = −y− z
ẏ = x + ay
ż = b + z(x− c)

(2)
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The third chaotic oscillator used in this article is the Lorenz chaotic system [9], which is described
by (3), and its design parameters are σ = 0.16, ρ = 45.92, and β = 4. Its numerical simulation provides
LE+ = 2.16 and DKY = 2.07, as listed in Table 1, and its phase portrait is shown in Figure 1.

ẋ = σ(x− y)
ẏ = x(ρ− z)− y
ż = xy− βz

(3)

Table 1. LE+ and Dky of Equations (1)–(3) reported in the literature.

System Parameters LE+ DKY

Infinite equilibria [7] a ≈ 0.1 ∼0.17 2.0791
Rössler [8] a = 0.15; b = 0.20; c = 10.0 0.1300 2.0100
Lorenz [9] σ = 0.16; ρ = 45.92; β = 4.0; 2.1600 2.0700

(a) Infinite Equilibria (b) Rössler (c) Lorenz

Figure 1. Phase portraits of Equations (1)–(3) with the parameters listed in Table 1, and simulated with
a time-step: (a) h = 0.3; (b) h = 0.0038; and (c) h = 0.008.

3. Differential Evolution and Particle Swarm Optimization Algorithms

As mentioned above, chaotic systems can be optimized in order to provide better characteristics
like high LE+ and high DKY [10]. We show the application of metaheuristics because the design
variables have large search spaces and thus require extensive computing time. A clear example is
when trying to optimize the Lorenz chaotic oscillator, which has three design parameters: σ, ρ, and β,
which can have fractional values. Therefore, if the design parameters are varied using two integer (102)
and four fractional numbers (104), then the number of combinations becomes 106 × 106 × 106 = 1018.
As one can see, simulating this number of cases can be unreachable in a couple of years and the
most important thing is that not all the combination cases will generate chaotic behavior. Another
justification of applying metaheuristics is that an algorithm is used to evaluate DKY, which is not based
on derivatives.

The DKY requires evaluating the Lyapunov exponents of a chaotic oscillator, for which several
methods has been published [11–13]. In this work we perform numerical simulations by applying
ODE45 to generate chaotic time series that are used to evaluate both LE+ and DKY by applying Wolf’s
method [1]. This process is performed within the optimization loops of the DE and PSO algorithms.

3.1. Differential Evolution Algorithm

This algorithm belongs to the focused-evolutionary family to solve optimization problems. DE is
an algorithm that begins from generating D-dimensional vectors randomly as in a population: xi,G with
i = {1, 2, 3, ..., Np}, where G is the maximum number of generations and Np is the number of vectors
in the population. As the generations run, new vectors are generated by performing mutation (4) and
crossover (5) operations [14].
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vg+1
i ← xg

c + F(xg
a − xg

b ) (4)

ug+1
ij ←

{
vg+1

ij i f [U(0, 1) ≤ CR] or rnbr(i) = j

xg+1
ij i f [U(0, 1) > CR] and rnbr(i) 6= j

(5)

In Equation (4), a, b, and c are different vectors randomly selected, g is the current generation,
and F ∈ [0, 2] is a mutant constant. In Equation (5), j = {1, 2, ..., D}, U(0, 1) is a function that returns a
real number with uniform distribution and within the range [0, 1), CR ∈ [0, 1] is a crossover coefficient
selected by the user, and rnbr(i) ∈ [0, 1] is an index generated randomly. During the evaluation process,
several operations are performed as follows: When evaluating the new generated vector (ug+1

ij ), if it is

better than the previous vector (xg+1
ij ), then the new vector replaces the previous one and it will be

part of the new population (g + 1), otherwise, the new vector will be discarded. The DE algorithm
stops when the maximum number of generations is reached (or other stop criterion is applied) and the
values of optimization are retrieved. Algorithm 1 shows the pseudo-code of the DE algorithm that is
detailed in [14].

Algorithm 1 Differential Evolution

Require: D, G, Np, CR, F, and f unc(•).
1: Initialize the population randomly (x)
2: Evaluate the population with your function [ f unc(x)]
3: Save the evaluation results in score
4: for (counter = 1; counter ≤ G; counter++) do
5: for (i = 1; i ≤ Np; i++) do
6: Select three different indexes randomly (a, b, and c)
7: for (j = 1; j ≤ D; j++) do
8: if U(0, 1) < CR || j = D then
9: trialj ← xaj + F(xbj − xcj)

10: else
11: trialj ← xij
12: end if
13: end for
14: f x ← f unc(trial)
15: if f x is better than scorei then

16: scorei ← f x
17: xi ← trial
18: end if
19: end for
20: end for
21: return x and score

3.2. Particle Swarm Optimization Algorithm

The PSO algorithm avoids performing a selection process as the evolutionary algorithms do.
In PSO, all the population members survive in the whole optimization process. Basically, it updates the
position and the velocity of the particles that follow the particle with the best result. The particles are
associated to xi ∈ RJ vectors, which are randomly initialized. The vectors are viewed as particles in the
space, and their behaviors are defined by two formulas associated to their velocity (6) and position (7).

vt+1
ij ← αvt

ij + U(0, β)
(

pij − xt
ij

)
+ U(0, β)

(
gj − xt

ij

)
(6)

xt+1
ij ← xt

ij + vt+1
ij (7)

In Equations (6) and (7), i is the index of the particle, j is the dimension, pi is the best position
finding in i, and pg is the best position obtained during the optimization. α ∈ R is named
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inertial weight, β ∈ R is named acceleration constant, and U(•) is a generator of random numbers
uniformly distributed.

PSO is based on evaluating a f (xi) function and comparing the results. If the last result is better
than the i-th results registered, this will be the new vector pi. The global best value (g) is also compared,
and if the last value is better than this, this is also replaced. This process is accomplished until it
reaches the stop criterion. A feature of PSO is that during its execution, each particle moves around a
centroid region determined by pi and g, so that the particles pursue new positions to reach the best
solution. Algorithm 2 shows the pseudo-code of PSO algorithm, which is detailed in [15].

Algorithm 2 Particle Swarm Optimization

Require: D, G, Np, α, β, and f unc(•).
1: Initialize the position of the particles randomly (x)
2: Initialize the velocity of the particles (v)
3: Evaluate the position of the particles with your function [ f unc(x)]
4: Save the evaluation results in score and p← x
5: Find the best value from p and save it in g
6: for (counter = 1; counter ≤ G; counter++) do

7: for (i = 1; i ≤ Np; i++) do

8: for (j = 1; j ≤ D; j++) do

9: vij ← αvij + U(0, β)
(

pij − xij
)
+ U(0, β)

(
gj − xij

)
10: xij ← xij + vij
11: end for
12: fx ← f unc(xi)
13: if fx is better than scorei then

14: scorei ← fx
15: pi ← xi
16: if pi is better than g then

17: g← pi
18: end if
19: end if
20: end for
21: end for
22: return x, p, g, and score

4. Maximizing DKY

The Lyapunov exponents give the most characteristic description of the presence of a deterministic
non-periodic flow. Therefore, Lyapunov exponents are asymptotic measures characterizing the average
rate of growth (or shrinkage) of small perturbations to the solutions of a dynamical system [16].
Lyapunov exponents provide quantitative measures of response sensitivity of a dynamical system
to small changes in initial conditions [17]. The number of Lyapunov exponents equals the number
of state variables, and if at least one is positive, this is an indication of chaos [18]. That way, the
three chaotic oscillators given by Equations (1)–(3) have 3 Lyapunov exponents: One is positive LE+,
one is zero (or very close to zero), and one is negative. The three Lyapunov exponents are used to
evaluate the Kaplan–Yorke dimension, which can be obtained by Equation (8), where k is an integer
such that the sum of the Lyapunov exponents (λi) is non-negative. If chaotic behavior is guaranteed in
Equations (1)–(3), then k = 2, so that λk+1 is the third Lyapunov exponent, and the dimension DKY is
higher than 2.

DKY = k + ∑k
i=1 λi

λk+1
(8)
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In chaotic oscillators, an analysis of their eigenvalues is performed to determine unstable regions.
The eigenvalues are determined from the evaluation of the equilibrium points. In this manner, the
chaotic oscillator described by Equation (1), has the characteristic equation given by s[s2− (y∗)2s+ 1] = 0,
where y∗ includes the equilibrium points in y (that are infinite). In this case one eigenvalue is s1 = 0
and the remainders s2,3 are determined from s2 − (y∗)2s + 1 = 0. As already shown in [7], the unstable
region is determined in y∗ 6= 0, but following the eigenvalues criterion, this also must accomplish
∆ < 0. If ∆ = (y∗)4 − 4, the unstable region is in − 4

√
4 < y∗ < 4

√
4. Otherwise, the remainder

eigenvalues are not complex.
The equilibrium points of Equations (1)–(3), and their associated Jacobians are shown in Table 2,

where ∂ f0
∂x can take the values from evaluating Equation (9), so that each chaotic oscillator has three

eigenvalues for each equilibrium point. For complex systems the eigenvalues can be calculated by
applying Cardano’s method [19].

∂ f0

∂x
=

{
k, i f |x| ≤ 1
0, otherwise

(9)

Table 2. Jacobian and equilibrium points of the chaotic systems given in Equations (1)–(3).

System Jacobian Equilibrium Points

Infinite Equilibria

 0 0 −1
z2 0 2xz
1 aey∗ (y∗)2 − 3z2

 (aey∗ , y∗, 0)

Rössler

 0 −1 −1
1 a 0
z 0 x− c

 (
c±
√

c2−4ab
2 ,− c±

√
c2−4ab
2a , c±

√
c2−4ab
2a

)

Lorenz

 −σ σ 0
ρ− z −1 −x

y x β

 (
±
√

β(ρ− 1),±
√

β(ρ− 1), ρ− 1
)

The Lyapunov exponents of the three chaotic oscillators were obtained by applying Wolf’s
method [1]. The initial conditions (x0, y0, z0) matters to reduce computing time in computing Lyapunov
exponents and DKY. In this manner, the appropriate initial conditions are: (ae0.5, 0.5, 0.75) for the
chaotic oscillator with infinite equilibria (1), (0.5, 0.5, 0.5) for Rössler (2), and (0.1, 0.1, 0.1) for Lorenz (3).

The DE and PSO algorithms were executed with the same conditions for the three chaotic
oscillators, i.e., the same number of populations (P) and maximum generations (G). The numerical
simulations were performed for 10,000 iterations, discarding the first 1000 iterations as they include
the transient behavior. In this manner, the optimization was run to maximize DKY with the following
conditions in both DE and PSO: G = 20, P = 30, and the search space 0.001 ≤ a ≤ 1 for the system
with infinite equilibria; G = 20, P = 30, and the search spaces 0.001 ≤ a ≤ 10, 0.001 ≤ b ≤ 10,
0.001 ≤ c ≤ 30 for Rössler; and G = 20, P = 30, and the search spaces 0.001 ≤ σ ≤ 60; 0.001 ≤ ρ ≤
180; 0.001 ≤ β ≤ 30 for Lorenz. The results are given in Table 3, where it can be appreciated that
DKY > 2 in all cases and the maximum variation is approximately ±0.05, which demonstrates the
usefulness of applying metaheuristics like DE and PSO algorithms.

Table 3 summarizes the feasible optimized results provided by DE and PSO algorithms for the
three chaotic oscillators (1), (2), and (3). The highest values of DKY are given in Table 4, where one can
see the values of the design parameters associated to the best five values of DKY provided by DE and
PSO, and it also shows their associated LE+.
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Table 3. Results of 10 runs performed by differential evolution (DE) and particle swarm optimization
(PSO) for the three chaotic oscillators.

Oscillator Runs DE PSO

Max DKY Mean σ Max DKY Mean σ

Infinite Equilibria

1 2.0781 2.0789 0.02080 2.0764 2.0753 0.02059
2 2.0791 2.0788 0.02079 2.0767 2.0753 0.02036
3 2.0781 2.0787 0.02071 2.0767 2.0759 0.02036
4 2.0788 2.0787 0.02075 2.0716 2.0765 0.02073
5 2.0785 2.0787 0.02063 2.0740 2.0738 0.02077
6 2.0786 2.0785 0.02026 2.0766 2.0715 0.02039
7 2.0781 2.0788 0.02043 2.0766 2.0734 0.02077
8 2.0782 2.0788 0.02031 2.0754 2.0751 0.02031
9 2.0786 2.0789 0.02051 2.0754 2.0752 0.02054

10 2.0789 2.0787 0.02070 2.0737 2.0736 0.02045

Rössler

1 2.0250 2.0395 0.02036 2.0235 2.0230 0.03285
2 2.0350 2.0377 0.02043 2.0225 2.0224 0.03286
3 2.0510 2.0364 0.02046 2.0270 2.0210 0.03286
4 2.0300 2.0374 0.02048 2.0229 2.0240 0.03289
5 2.0500 2.0381 0.02038 2.0198 2.0220 0.03285
6 2.0203 2.0383 0.02039 2.0269 2.0240 0.03288
7 2.0203 2.0363 0.02028 2.0233 2.0230 0.03288
8 2.0204 2.0373 0.02044 2.0170 2.0240 0.03287
9 2.0204 2.0405 0.02026 2.0254 2.0230 0.03285

10 2.0055 2.0414 0.02039 2.0265 2.0220 0.03287

Lorenz

1 2.0754 2.0773 0.01486 2.0719 2.0713 0.00969
2 2.0730 2.0732 0.01481 2.0718 2.0712 0.00969
3 2.0843 2.0783 0.01466 2.0706 2.0703 0.00969
4 2.0791 2.0775 0.01478 2.0712 2.0705 0.00969
5 2.0785 2.0772 0.01474 2.0712 2.0702 0.00969
6 2.0839 2.0770 0.01486 2.0662 2.0710 0.00969
7 2.0796 2.0752 0.01487 2.0690 2.0702 0.00969
8 2.0739 2.0738 0.01479 2.0684 2.0708 0.00969
9 2.0733 2.0733 0.01451 2.0692 2.0703 0.00969

10 2.0741 2.0740 0.01431 2.0714 2.0744 0.00969

Table 4. Design parameters of the five highest values of DKY from Table 3, for each metaheuristic and
chaotic oscillator, and their corresponding value of LE+.

Oscillator DE PSO

Design Parameters LE+ DKY Design Parameters LE+ DKY

Infinite Equilibria

a = 0.1006 0.0753 2.0791 a = 0.0937 0.0753 2.079
a = 0.0938 0.0730 2.0789 a = 0.1007 0.0788 2.0789
a = 0.0939 0.0726 2.0786 a = 0.1028 0.0796 2.0796
a = 0.0935 0.0726 2.0785 a = 0.0935 0.0726 2.0785
a = 0.1007 0.0747 2.0788 a = 0.1007 0.0787 2.0791

Rössler

a = 0.3609 b = 0.1000 c = 11.3470 0.2711 2.07890 a = 0.3609 b = 0.1000 c = 11.3470 0.2711 2.02700
a = 0.3947 b = 0.5490 c = 9.12060 0.2600 2.07140 a = 0.3947 b = 0.5490 c = 9.12060 0.2600 2.02690
a = 0.3720 b = 0.2055 c = 12.0147 0.2710 2.07870 a = 0.3947 b = 0.2055 c = 9.12060 0.2600 2.02650
a = 0.3930 b = 0.8505 c = 13.0501 0.2645 2.07810 a = 0.3930 b = 0.8505 c = 13.0501 0.2645 2.02350
a = 0.3643 b = 0.1537 c = 12.7643 0.2764 2.07880 a = 0.3643 b = 0.1537 c = 12.7643 0.2764 2.02330

Lorenz

σ = 29.9226 ρ = 89.8095 β = 13.9727 3.3129 2.08430 σ = 30.0000 ρ = 90 β = 12.3872 3.3129 2.07230
σ = 29.9388 ρ = 89.8923 β = 14.1895 3.3122 2.08390 σ = 29.8297 ρ = 90 β = 13.7954 3.3122 2.07290
σ = 29.7786 ρ = 89.7268 β = 13.4876 3.3168 2.07960 σ = 29.9966 ρ = 90 β = 13.4876 3.3168 2.07190
σ = 29.9222 ρ = 89.9781 β = 14.1956 3.3149 2.07910 σ = 30.0000 ρ = 90 β = 14.1956 3.3149 2.07197
σ = 29.7066 ρ = 89.8899 β = 13.7180 3.3199 2.07410 σ = 29.8375 ρ = 90 β = 13.8036 3.3199 2.07179

5. Encrypting Color Images Using State Variables with High DKY and LE+

Chaotic masking has been performed for color images using chaotic oscillators that are
synchronized by applying different techniques, as already shown in [20], where one can see details on
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the hardware implementation of a chaotic secure communication system using field-programmable
gate arrays (FPGAs).

Figure 2 sketches the chaotic encryption of a color image, which basically consists of a transmitter
and receiver blocks that communicate through a chaotic channel. The transmitter has a master
chaotic oscillator that generates signals ED that contaminate the original image with data EM, this
masking process produces the chaotic channel containing data ET = ED + EM that is the input of the
receiver system. The information is recovered when the chaotic oscillator in the receiver produces data
ER = ED because both oscillator are synchronized [20]. Therefore, the recovered image is saved into
data E′M = ET − ER.

Figure 2. Encryption process adding chaos to an original image and recovering it through
synchronizing two chaotic oscillators, as already shown in [20].

The chaotic encryption is applied herein to an RGB image of size 512 × 512 pixels. The chaotic
data is generated by the chaotic oscillators with the best two DKY values from Table 4. In this manner,
each state variable of each chaotic oscillator was selected to generate the chaotic data and then the
correlation analysis between the original image and the chaotic channel as shown in Table 5.

Table 5. Correlation between the original image and the chaotic channel using each state variable of
the two highest DKY of each chaotic oscillator.

Oscillator DKY State Variables Correlation

Infinite Equilibria

2.0791
x 0.0332
y 0.0589
z 0.0371

2.0789

x 0.0447
y 0.2961
z 0.0423

Rössler

2.0789

x 0.1144
y 0.0075
z 0.0112

2.0788

x 0.0084
y 0.0038
z 0.0034

Lorenz

2.0843

x 0.0173
y 0.0152
z 0.0025

2.0839

x 0.0009688
y 0.0029
z 0.0010

The experiments show that the best chaotic oscillator is Lorenz because it provides the lowest
correlation. In this manner, Figure 3 shows the encryption of an RGB image using the state variable x
of the Lorenz chaotic oscillator for the case DKY = 0.0009688. This confirms that the chaotic encryption
is much better if one maximizes DKY, as showed herein by applying DE and PSO.
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Figure 3. Original image on the left, encrypted image in the chaotic channel in the center, and the
recovered image on the right.

6. Conclusions

This article showed that the chaotic encryption of an image can be enhanced when using chaotic
data from an oscillator that has a high Kaplan–Yorke dimension DKY. However, maximizing DKY of a
chaotic oscillator is not a trivial task because the design parameters or coefficients of the mathematical
model can have huge search spaces, as shown by the three case studies documented herein.

We showed that metaheuristics like DE and PSO algorithms are quite suitable to maximize DKY,
both algorithms were run with the same conditions to find feasible solutions. The two highest values
of DKY of each chaotic oscillator were selected to encrypt an RGB image and a correlation analysis was
performed between the original image and the chaotic channel to identify the best masking. In this
manner, after testing each state variable of each chaotic oscillator, the lowest correlation was provided
by Lorenz, as showed in Table 5. This confirms that the best chaotic encryption can be performed if
one maximizes DKY, as shown herein applying DE and PSO.
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