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Abstract: In this article, we present a taxonomy in Robot-Assisted Training; a growing body of
research in Human–Robot Interaction which focuses on how robotic agents and devices can be used
to enhance user’s performance during a cognitive or physical training task. Robot-Assisted Training
systems have been successfully deployed to enhance the effects of a training session in various
contexts, i.e., rehabilitation systems, educational environments, vocational settings, etc. The proposed
taxonomy suggests a set of categories and parameters that can be used to characterize such systems,
considering the current research trends and needs for the design, development and evaluation
of Robot-Assisted Training systems. To this end, we review recent works and applications in
Robot-Assisted Training systems, as well as related taxonomies in Human–Robot Interaction. The goal
is to identify and discuss open challenges, highlighting the different aspects of a Robot-Assisted
Training system, considering both robot perception and behavior control.

Keywords: robot-assisted training (RAT); human–robot interaction (HRI); taxonomy; robot
perception and behavior

1. Introduction

Robot-Assisted Training (RAT) is a growing body of research in Human–Robot Interaction (HRI)
which studies how robots can assist and enhance human skills during a task-centered interaction.
RAT systems have a wide range of applications, varying from physical assistance in post-stroke
rehabilitation and robotic prosthetics [1,2], cognitive training for patients suffering from dementia and
Alzheimer’s disease [3,4], to intervention and therapy for children with Autism Spectrum Disorders
(ASD) [5–7] and Socially Assistive Robotics (SAR) for language learning and children education
[8–10]. As a multidisciplinary research field, it requires expertise in several research areas, including
robotics, human–machine interaction, machine learning, data mining, computer vision, as well as
expertise in psychology and educational sciences, kinesiology, occupational therapy and others. A main
difference from other assistive robotic systems is that Robot-Assisted Training aims to train and enhance
user (physical or cognitive) skills, through the interaction, and not assist users to complete a task,
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e.g., Activities of Daily Living. Despite this large variety of applications, target populations and system
requirements, a common goal of Robot-Assisted Training systems is to enhance user performance
by providing personalized and targeted assistance towards maximizing training and learning effects.
Personalization has the potential to create a tailored and compelling experience that encourages and
assists users to perform a given task and meet the training goals.

The motivation and purpose of this research is to identify a common set of parameters
(i.e., taxonomy categories) that characterize a Robot-Assisted Training system in order to highlight
the current research trends and challenges in this growing research area. Towards this, we present
a review of recent works in Robot-Assisted Training systems, focusing on the different application
areas, as well as different approaches for robot perception and behavior control (Section 2). While there
are existing taxonomies for HRI systems, to our knowledge, no taxonomies have also been proposed
for Robot-Assisted Training systems. Taking into consideration existing taxonomies in HRI (Section 3),
we present our proposed taxonomy for Robot-Assisted Training systems (Section 4), providing a list of
examples, based on recent works. Finally, we present our concluding remarks, presenting a set of open
challenges while designing, developing and evaluating a Robot-Assisted Training system (Section 5).

2. A Review of Robot-Assisted Training Systems

Modern advances in robotics and sensor technologies have made possible the use of robots
as assistive systems with numerous applications in healthcare, education, cognitive and physical
rehabilitation and personalized skill training for a variety of target populations, e.g., elderly users,
children, language learners, students, etc. Depending on the application and the target population,
such systems require different underlying architectures in order to efficiently capture the required
information from the end-user and its environment and provide a personalized and efficient interaction.
In this section, we review recent Robot-Assisted Training systems, both for physical and cognitive
skill training, focusing on the different application areas and we discuss the different approaches for
modeling such systems, both in terms of perception and behavior control.

2.1. Application Areas

Robot-Assisted Training systems have been successfully deployed as training assistants with
applications in healthcare, physical and cognitive rehabilitation, education and personalized skill
training. In the field of psychological and cognitive assessment, robots have been proposed as screening,
assessment and training tools for cognitive functions and social skills [11–13]. A main advantage of
such systems is the automation of well-established psychometric tools and tests, with the potential
to provide users and experts with high-fidelity and standardized assessments. In a recent work [11],
a social robot has been deployed as an administration tool, which assesses a set of cognitive functions,
including working memory, attention, executive function, and others, following the guidelines
of the Montreal Cognitive Assessment test (MoCa) for elderly patients, suffering from dementia.
The proposed system was designed as a multimodal interface which accommodates all subtasks of the
proposed assessment task, utilizing the different sensors and interfaces of the Pepper robot. The Pepper
robot was programmed to administer the specific subtasks, as well as to provide a score at the end
of the assessment. The authors conducted a preliminary study to compare the automated (robotic)
scores to the paper-and-pencil (standard) scores of the standardized tests. Their results showed a high
correlation between the robotic and the standard scores, indicating a promising validity of the proposed
approach. In a similar application, a social robot has been proposed as a psychometric tool to assess
cognitive functioning via social interaction with a humanoid robot [12]. The robot was deployed to
administer a psychometric tool for detecting Mild Cognitive Impairment (MCI) in elderly users.

Robotic systems have been successfully deployed as intervention and therapeutic tools for children
with ASD. In a recent work [14], a social robot was used in an in-home long-term study to investigate
the effects of robot-assisted training for social communication skills. The autonomous robot was able to
participate in a multiparty interaction with the child and the caregiver, assisting the child to complete
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a set of activities, including emotional storytelling, perspective-taking, and sequencing. The robot was
able to provide the child with personalized interventions during the interaction, maintaining their
engagement. The results from the one-month pilot study indicate that children showed improved social
interaction skills during the interaction, as evaluated by the caregivers. Assistive robots have also been
deployed to train and enhance physical and cognitive skills for Cerebral Palsy patients [15]. Physical
skills include lower or upper limb motor function, such as standing and balancing, locomotion,
manipulation, gross and fine motor function. In order to train children with Cerebral Palsy with
navigation and mobility dysfunctions, a pre-industrial robotic vehicle was designed to enable children
explore their environment and learn how to navigate in the presence of obstacles. The system includes
a set of different interfaces (buttons, switches, an inertial head-mounted interface) which can be used
by the child to navigate the vehicle under different training scenarios. Results showed that the system
adapts efficiently to the particular users skills through the different driving modes (cognitive skills)
and different interfaces (physical skills).

Social robots have been successfully used as educational tools in classrooms and other educational
environments. Towards designing such systems, it is essential to consider how different robot’s
features, e.g., robot appearance, verbal and non-verbal behavior, tutoring and communication style,
affect both cognitive (learning) and affective outcomes [16–18]. A recent work presents a SAR
system for language learning with children [19], where the system uses a camera to capture and
analyze facial expressions and affective features (gaze, smile, engagement, valence, etc.) in order to
provide a personalized affective interaction through social verbal behavior (valence and engagement
of spoken instructions). The authors evaluated their system with 34 children in preschool classrooms
(ages 3–5) for a duration of two months. The evaluation was both in terms of learning outcomes
and affective outcomes. In order to assess learning outcomes, the authors conducted a pre- and
post-assessment vocabulary test. The results showed that the interaction with the system improved
childrens’ vocabulary. Considering affective outcomes, they estimated user engagement and valence,
using real-time face detection and analysis algorithms. The results support the authors’ hypothesis
that affective personalization increases long-term valence, while maintaining engagement. In another
educational setting [20], the authors presented a robot tutor for giving lectures in classrooms, evaluating
different teaching styles. More specifically, the robot was designed to display different non-verbal
behaviours (pitch, volume, body postures, hand gestures), resulting in different models of warmth
and competence—two dimensions related to teaching styles. While the most common evaluation
approach is to analyze subjective and objective measures, based on user’s behavior, there are works
that investigate the psychological effects (e.g., stress levels) of social robots based on bio-markers,
such as urinary and salivary samples [21,22].

Robot-assisted rehabilitation systems have been proposed to assist patients after neurological
injury in movement training of upper and lower limbs [23]. There are commercially available RAT
systems for rehabilitation, such as the Lokomat [24] and the WalkBot [25], which are already used by
clinics for lower extremity motor rehabilitation. The rehabilitation systems motivate and challenge the
patient to reach the task goals in an interactive manner. A study was conducted in [26] to compare
the conventional physiotherapy (CP) with the robotic training Lokomat combined with CP on stroke
patients. The study separated the 107 patients of new cerebral stroke into two groups. The group
which followed the robotic training combined with CP showed improvement in some parameters
(e.g., Berg Balance Scale, Mini-Mental State Examination, Functional Independence Measure and others)
in comparison to the CP group. There are also non-commercially RAT systems available. An interactive
RAT system for stroke rehabilitation has been developed by [27], which assists with wrist, elbow,
knee and ankle training. The proposed RAT system motivates the stroke patients to actively interact
with it through a touch screen during task-related training sessions. The muscle activation, measured
by EMG (electromyography) sensors, is used as a control signal for the system. A study with 15 chronic
stroke patients trained with the system for 20 one-hour-sessions of upper limb training. The evaluation
results show the improvement in movement of the wrist and elbow, while muscle spasticity was
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reduced after the training session. RAT systems have been also proposed for training of the kinesthetic
sense for stroke patients [28]. Kinesthetic sense refers to the sense of position and movement of the
limbs and body. The robotic arm supports the forearm against gravity and provides haptic feedback.
Visual feedback is also provided to keep the subject engaged. A preliminary study was conducted with
seven chronic hemiparetic subjects over three weeks, and the results show effectiveness in enhancing
patients’ kinesthetic sense. It was also observed that the level of improvement over time could be
affected by the level of impairment. Several overviews for robot-assisted rehabilitation systems exist,
focusing on gait training and upper limb rehabilitation [29,30].

Chand and Kim [31] provide a review of the clinical use of robot-assisted therapy in stroke
rehabilitation. The improvement of the motor function in stroke patients is compared between the
robot-assisted therapy and conventional physiotherapy in order to evaluate the rehabilitation RAT
systems. The results from the clinical studies of robot-assisted gait training devices (both end-effector
and the exoskeleton devices) have shown to be effective to conventional physiotherapy in subacute
stroke patients, but it is not proven that robot-assisted training provides improvements in chronic stroke
patients in comparison to conventional training or when delivered alone. Moreover, robot-assisted
upper limb training with end-effector devices in subacute stroke patients was superior to conventional
therapy in patients with subacute stroke. However, the use of exoskeleton devices for upper limb
motor function in stroke patients did not provide enough evidence for its effectiveness. To summarize,
the role of robot-assisted therapy for improving motor function in stroke patients is an addition to
conventional physiotherapy and not a replacement. Similar evaluation results were also highlighted
by the review of robot-assisted gait training in neurological patients [32] and of robot-assisted upper
limb therapy in stroke patients [33].

2.2. Robot Perception and Behavior Control

Despite the wide range of applications, target population and system functionality, there are two
main components of any Robot-Assisted Training system: (a) the perception module and (b) the behavior
control module. The perception module is responsible to collect and analyze the information provided
by its environment, through the available sensors. Such information is used to model human behavior,
understand user intentions and detect task-related events. The behavior control (or action selection,
decision making, planning and acting module) uses this analyzed information in order to select and
execute a desirable behavior, by steering the robot’s actuators, aiming to assist the user during the task.
While in other applications of robotics, e.g., manipulation arms, industrial robotics, etc., planning and
acting are separate and distinguished modules, in this paper, we consider planning and acting to be
combined into the behavior control module. In this section, we present different approaches for robot
perception and behavior control in Robot-Assisted Training systems.

Considering robot perception in the context of a Robot-Assisted Training system, it is essential
that such a system can successfully process and analyze task-related modalities and signals, e.g., verbal
and non-verbal cues, speech, gestures, motion, physiological and behavioral/social signals, and others.
For example, designing a social skill training tool for children with ASD requires an efficient perception
module able to measure and analyze children behavior during social interactions. To this end,
several computational methods have been proposed to measure, analyze and assess social behavior,
language functioning and emotion regulation, through speech and natural language processing, affect
recognition and engagement estimation [34,35].

Maintaining engagement during a Robot-Assisted Training session is essential for an effective
training tool. To this end, there are many approaches to measure and estimate the level of user
engagement during a training task, including gaze and head pose estimation, gesture recognition,
physiological signals (EEG, heart rate, skin conductance, etc.), and others. In a recent work, a multi-user
engagement modeling approach has been proposed which utilizes multisensing data (affective state,
gaze position, speech and gestures) in order to estimate different users’ engagement in a multi-user
robot-assisted training scenario for cognitive activities [36]. In another work, a multimodal robot
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perception framework was proposed for non-structured social environments [37]. The authors present
their proposed computational approaches for non-invasive and unobtrusive audiovisual scene analysis
and human tracking, as well as for physiological user monitoring. They provide a detailed description
of the sensors used, the data acquisition and analysis, arguing that their proposed framework can be
used for a variety of contexts, including educational and learning environments.

In the domain of robot-assisted rehabilitation, a survey on multimodal adaptive interfaces
for upper limb rehabilitation [38] provides an overview of 3D multimodal adaptive interfaces for
robotic rehabilitation for multimodal data collection and analysis for human behavior modeling.
The multimodal interfaces collect, analyze and monitor bio-mechanical data (e.g., position, velocity,
and force which are obtained by sensors integrated into the robot, or else with wearable sensors on the
subject, or else sensors in the environment), psychophysiological measurements (e.g., EMG, EEG, heart
rate, skin conductance and other), as well as contextual and environmental factors (by analyzing robot
and human behaviors through vision sensors). The system analyses the data, in order to determine the
patient’s bio-mechanical and psycho-physiological state and intention. Visual and haptic augmented
sensory feedback is also provided to motivate and keep the patient in the loop. The robotic system
features online adaptation of the training exercises based on the patient’s performance.

The goal of a Robot-Assisted Training system is to utilize the perceived multisensing information
and perform in such a way in order to provide the user with an effective training session. Robot
behavior, in the context of a Robot-Assisted Training system, can be expressed and realized in several
ways, e.g., by adjusting task-related parameters (e.g., task difficulty, duration), verbal or non-verbal
behavior, gestures, proxemics and others, depending on the application and the system requirements
and functionality. Several approaches have been proposed to model and optimize robot behavior
in a Robot-Assisted Training system. The challenge is to simulate authentic or at least appropriate
human behavior while avoiding both the uncanny valley and cartoon-like over-simplification [39].
In the domain of ASD intervention, a recent work proposes a behavior control architecture for
a Robot-Assisted intervention system, which enables the robot to intervene in autism therapy with
high autonomy, minimizing the workload of the supervisor therapist [40]. The proposed architecture
is inspired from the ACT-R cognitive architecture which is a general model of cognition and provides
a framework for information processing [41]. The proposed control architecture consists of different
modules (intention, memory, task planning, action, social) which are responsible for different aspects
of the robot behavior, aiming to facilitate social skills for children with ASD. In a similar application,
another work presents a behavior control system for social robots in therapies with a focus on
personalization and platform-independence [42]. The authors present the different components of
their proposed architecture (user modeling, robot mood, affect and personality, behavior generation),
as well as the set of design principles considered during the architecture design process, including
multi-layer behavior, personalization and modularity.

Existing and well-established cognitive systems and software, e.g., IBM Watson, have been used
as design tools for robot and virtual tutors. For example, IBM Watson, a cognitive question-answering
system, has been used to design a virtual tutor which answers common questions of students
during an introductory Java programming course [43]. The prototype was evaluated in a field test
and the results indicated that existing cognitive architectures and software can be used to design
robotic tutors in educational settings. A recent work presents ProCRob; a software architecture for
cognitive robot programming, which enables non-technical experts (teachers, therapists) to design and
develop personalized social robot applications, using a visual programming interface, for different
human–robot interaction contexts, including therapy for children with ASD, and for encouraging
rehabilitation activities in patients with post-stroke [44]. Taking into consideration that robots and
humans must closely interact and collaborate in the context of robotic rehabilitation systems, a robotic
architecture has been proposed to allow non-expert users to be involved in the robotics operation when
needed [45]. The proposed architecture is presented, showing how human users can communicate
with robotic systems at different levels, considering sensing planning and acting. Different users
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can interact with the system through different communication channels and modalities, resulting in
a contextually-rich environment.

3. Related Taxonomies in HRI

Taking into consideration the large variety of applications, target population, as well as the
computational approaches to design and model an effective Robot-Assisted Training system, the focus
of this work is to identify a set of common parameters that can be used to define and evaluate
a Robot-Assisted Training system. To this end, we review existing taxonomies for Human–Robot
Interaction systems, which are used to classify and categorize different design methods and approaches.
One of the most generalized and broad classifications for HRI systems, which we mainly considered
for our taxonomy, provides a classification framework based on eleven taxonomy categories [46,47]:
task type, task criticality, robot morphology, ratio of people to robots, composition of robot teams, level
of shared interaction among teams, interaction roles, physical proximity, decision support for operators,
time–space taxonomy and autonomy level/amount of interventions from operators. These different
variables can be used to define and classify an HRI system, as we show in Table 1.

Table 1. An updated taxonomy in Human-Robot Interaction [47].

System Requirements Interaction Type Human Roles Spatio-Temporal

Task
Type

Ratio of People
to Robots

Human Interaction
Roles

Time–Space
Taxonomy

Task
Criticality

Level of Shared Interaction
Among Teams

Decision Support
for Operators

Human–Robot
Physical Proximity

Robot
Morphology

Composition of
Robot Teams

Level of Autonomy-
Amount of Intervention

System requirements can be defined by task type, task criticality and robot morphology. The task
type variable defines the task in a high-level representation (e.g., physical rehabilitation task).
It is important because it sets the system requirements and the basic design guidelines. Some possible
values of this variable are: tutoring session, assembly manufacturing task, rehabilitation exercises, etc.
Task criticality is a subjective measure which considers safety issues (e.g., human safety risk) and has
three values indicating the level of human life risk: high, medium, low. For example, a heavy industrial
robot which physically interacts with humans would be classified as criticality = ‘high’, whereas,
for a social robot tutor, criticality would be low. Since robot appearance affects how people interact
with it, the robot morphology variable describes the robot appearance type, i.e., anthropomorphic,
zoomorphic, and functional.

Depending on the application, there are different interaction types between human and robot
members. One parameter under this category is the ratio of people to robots, which simply defines
the number of humans and robots participating in the interaction. Another parameter is the type of
interaction between human and robot participants, defining the level of shared interaction among
(robot and human) teams. The most straightforward example is a single robotic agent that interacts
with a single human user. A more complex example is a human operator that sends commands to
a team of robots, which has to autonomously coordinate its members to execute the command. Another
example is a team of human users that coordinates and sends specific commands to independent robots.

Since human participation is essential for any HRI system, human roles must be well-defined.
Scholtz [48] has defined five different roles for a human participant in an interaction with a robot:
supervisor, operator, teammate, mechanic/programmer and bystander. Moreover, two more are added
by Goodrich [49]: mentor and information consumer. In many applications, where the human acts as
an operator or supervisor, an HRI system should provide the user with decision support. The human
user needs to monitor, intervene, and modify robotic behavior, when needed. Providing appropriate
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information to the operator can enhance their decision-making. For example, the robot can visualize
information on the list of all available sensors and data streams. Interactive methods can be used to
make the system’s decision process transparent to the user, as humans and machines require shared
awareness and shared intent during human–robot interactions [50,51]. Another defining factor for
HRI is the level of autonomy (or the amount of human intervention). Human operators or supervisors
often have the ability to control the robot and modify its behavior. The level of the autonomy is defined
as the amount of time that the robot acts in an autonomous manner. In many cases, this value can be
adjusted during the interaction, resulting in a progressively autonomous system. Human workload
and cognitive capacity are two important factors to take into consideration in order to define the level
of autonomy.

Other parameters that are defined by this taxonomy are spatiotemporal and define human–robot
interaction in terms of space and time. More specifically, these parameters categorize an HRI system
based on whether human and robot share the same space (collocated, non-collocated), and whether
they act at the same time or not (synchronous, asynchronous). Moreover, in a collocated HRI system,
the robot can be defined by different proximity behaviors e.g., avoiding, passing, following, approaching,
touching, and/or none. Focusing on specific applications and domains requires a more detailed
description. For example, SAR systems have been used for physical rehabilitation [52], where proxemics
are defined based on social interaction zones (e.g., social, personal, intimate) used to define robot’s
personality (e.g., introvert, extrovert).

Depending on the application and the system requirements, several taxonomies have been
introduced for human–robot interaction systems, such as human–robot collaboration, child–robot
interaction, assistive robotics and others. More specifically, Salter [53] presented a taxonomy for
child–robot interaction (CRI), based on the control factors for both robots and participants. They used
three categories for both robots and human participants: Autonomy, Group and Environment.
For example, the robotic autonomy (RA) can be classified as one of the following: autonomous,
fixed, combination, Wizard of Oz, and remote-controlled. The participant autonomy (PA) can be:
free, natural, comfortable, directed, and controlled, based on how the users are allowed to interact
with the robot. The authors have provided a taxonomy rating in relation to participant and robot
influences, for all three categories. They used a rating scale from 1 (None) to 9 (High) to describe the
level of control of robots and participants.

Other taxonomies focus and elaborate on specific parameters, such as robot autonomy level.
In [54], the authors present a framework for Levels Of Robot Autonomy (LORA) in HRI, identifying
parameters that influence and get influenced by the level of robot autonomy. They provide a guideline
flow chart to determine robot autonomy and effects on HRI. Their taxonomy for robot autonomy takes
into consideration the level of autonomy during sensing, planning and acting. The guidelines can be
used to identify task and environmental influences on robot autonomy level, measure and categorize
autonomy level and identify HRI parameters that have an impact on robot autonomy. Focusing
on human–robot collaboration systems, another recent taxonomy describes the level of automation,
specifically for collaborative robots [55]. The Interaction Readiness Model (IRM) classifies a system in
one of the four levels, based on the level of automation. This model correlates the level of automation
with task complexity in a manufacturing environment. The automation level varies from gated robots
mode, where a robot is idle while a human is present to fully interactive mode, where humans and
robots learn how to solve a synergistic task. This model has been defined based on real industrial
needs, towards Industry 4.0 and “robofacturing” [56].

4. A Taxonomy for Robot-Assisted Training Systems

Based on the existing taxonomies and classification frameworks, we propose a set of
taxonomy categories which may be considered as guidelines for the design, development and
evaluation of a Robot-Assisted Training system, as we show in Figure 1. The categories are:
Task Type and Requirements, Interaction Types and Roles, Level of Autonomy and Learning and
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Personalization Dimensions. In this section, we present and describe the proposed taxonomy
categories, using examples of recent RAT systems, highlighting the relationship between these
categories, i.e., the requirements of a rehabilitation system (high level of task criticality) may require
a supervisor to monitor the interaction—interaction roles. In Table 2, we illustrate the proposed
taxonomy categories, using recent works in Robot-Assisted Training.

Figure 1. Taxonomy categories for robot-assisted training.

4.1. Task Type and Requirements

When designing a Robot-Assisted Training system, the task type and requirements are the first
parameters to be defined, since they can set the tone for the overall design, implementation and
evaluation process. The task type and requirements define important parameters as task criticality
and safety issues, target populations, robot morphology, set of appropriate sensors and type of
assistance (physical, social, mixed). Several parameters, including robot design, task criticality and
target population, may be defined taking into account both researchers’ views and clinicians’ and other
stakeholders’ recommendations. Task type provides a high-level description of the task and the system
requirements. Based on a recent taxonomy [57], types of assistive robots include physically assistive
robotics (PAR), socially assistive robotics (SAR), as well as sensory and feedback systems and user interface
and control systems.

Physically Assistive Robotics (or Assistive Robotics) is an area that studies how robots can be
used to provide assistance to users (e.g., stroke patients) through physical interaction (e.g., robotic
rehabilitation). In [58], a physically assistive robot is presented for upper-limb rehabilitation. In this
work, the authors presented an automated system for a rehabilitation robotic (physically assistive and
functional) device that guides stroke patients through an upper-limb reaching task. The system uses
task-related observations (e.g., task completion time and assistance needed) to estimate user-related
metrics (e.g., user fatigue, progress, etc.) and adapt the reaching task parameters to enhance training
effects. As part of the system’s requirements, the authors argue that the use of sensors (camera, EMG
sensors, etc.) could lead to noisy and untrustworthy observations and system’s decisions. Due to high
task criticality, a supervisor monitors the system’s decisions and intervenes when needed.
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Table 2. Considering our proposed taxonomy, we classify recent works in Robot-Assisted Training
based on (a) Task Type and Requirements, (b) Interaction Types and Roles, (c) Level of Autonomy and
Learning and (d) Personalization Dimensions.

Task Type and
Requirements

Interaction Types
and Roles

Level of Autonomy
and Learning Personalization Dimensions

Socially Assistive Robotics
(SAR) for Language Learning

with Children [19]

A social robot acts as an
affective tutor during a
language learning game

The robot acts fully
autonomously and learns

using Reinforcement
Learning

The robot adjusts its
engagement and valence

during verbal instructions

SAR-based system for Post
Stroke Rehabilitation for

Elderly Patients [52]

The robot therapist
monitors, assists and

encourages users during
rehabilitation

The robot acts fully
autonomously and

personalizes its policy using
Policy Gradient RL

The robot adjusts its therapy
style, speed and proxemics

based on user progress

Robot-Based Rehabilitation
using Serious Games and

Haptic device [59]

The user performs a
reaching task using a
robotic haptic device

The robot acts autonomously
and learns through RL

The system adjusts the game
parameters to challenge the

user

Adaptive Upper- Limb
Rehabilitation using a Haptic

Device [58]

The robotic arm trains the
user in a reaching task. A

supervisor monitors
system’s decisions

The robot acts autonomously
based on a given policy (no

learning); an expert can alter
the action

The system decides reaching
target, resistance level of

resistance, or when the task
should stop

Social Robot for Attention
Acquisition during a Memory

Game [60]

The robot acts as a tutor
who guides user’s attention
during a memory game, in a

WoZ setup

The system acts
semi-autonomously. A

supervisor provides RL with
user state to select gestures

The robot learns the
appropriate gesture

combination to increase user
attention

Physical Exercising for
Children using a Social Robot
and Wizard-of-Oz Interfaces

[61]

The robot shows the
exercises to be performed. A
supervisor can control the

robot

The system acts in a
semi-autonomous manner.

The robot learns from
human input

The robot personalizes the
exercise regimen according to

exercise performance and
compliance

EMG-Controlled Interactive
Robot for Upper Limb

Training [27]

The robot guides the user
during the training tasks
through assistive torques

and a Graphical User
Interface

The system records and
analyzes EMG signals and

generates a control signal to
provide assistive forces

The system adjusts the
assistive forces based on

real-time continuous EMG to
improve task performance

Social Robotic Tutor for
Grid-based Puzzle Solving

[62]

A social robot provides
supportive behavior to help

the user solve the puzzle

The robot acts fully
autonomously and uses an

RL framework to learn
personalized policies

The robot observes user
progress and selects a
supportive behavior to

maximize performance and
engagement

Social robots can provide supportive behavior, feedback and recommendations, as well as
attention acquisition to assist users in several applications, e.g., through gestures to enhance memory
training using a memory game [60]. For the purposes of the experiments, the authors deployed
Furhat, an anthropomorphic robotic head [63], which has been developed for several HRI applications.
Another example demonstrates how socially assistive robots can be deployed for physical rehabilitation
with elderly users [52], investigating different robot behavior parameters (human–robot personality
matching, robot proxemics, etc.), as well as their relationship to user performance and engagement.
Social assistance can also improve compliance and performance for physical exercising in child–robot
interaction [61]. In sensory and feedback systems, the input channels may include different modalities
from several sensors in order to capture information on the state of the robot, as well as user-related
information, e.g., user’s performance, affective state. Based on the system requirements, a robot’s
behavior is expressed through the output channels, responsible for robot movement, emotion
generation, task parameter adjustment, etc. User interfaces and control systems are being used
as input/output communication channels, e.g., to visualize sensor information for a human supervisor
who can control the system, if needed.
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4.2. Interaction Types and Roles

Similar to previous taxonomies, we define the human–robot interaction types and roles.
These parameters define the interaction types; how the human–robot team is formulated and
communicates, as well as the interaction roles for each part of the interaction. Depending on
the task type and requirements, there are different interaction types between human and robot
members, considering the levels of interaction. For example, as mentioned before, the most
straightforward interaction includes a single interaction channel between one robot and one human
user. A more complicated interaction could involve a robot which communicates with multiple human
users, with the same or different interaction roles (e.g., students, teacher–student). In the case of
a collaborative training scenario, a social robot can be used as a moderator for a collaborative training
game between two human users to improve their collaboration skills [64]. In Figure 2, we show the
different interaction types of humans and robots in a Robot-Assisted Training system.

Figure 2. Examples of interaction types in robot-assisted training (A–E) (inspired by [47]).

Previous taxonomies have focused on the interaction roles that human users can have in the
interaction [46,47]. Depending on the application area and context, e.g., education, healthcare, industry,
there are different interaction roles between human and robot members. For example, focusing on
educational robots, the different interaction roles of the robot can be: presenter, teaching assistant,
teacher, peer, or tutor [16]. In this work, we focus on the different categories of interaction roles that
both human and robot members can have in a Robot-Assisted Training session. Considering the
existing taxonomies, as well as recent works and applications in this area, the categories of interaction
types in a Robot-Assisted Training system are: primary user, trainer, supervisor and teammate.

A primary user is the end user who participates actively in the interaction (e.g., patient, student,
trainee). While the most frequent case is that this is a human user, there are works that focus on
training a secondary user (therapist) [65], by simulating the primary user using the robot in order
to evaluate the system from the aspect of the supervisor [66]. Moreover, as a primary user, a robot
can act as peer-learner. Peer-learning (or peer-training) refers to students (or employees, trainees)
learning with and from each other (classmates, colleagues, trainees). The role of a (human or robot)
trainer is to instruct, assist and guide the primary user(s) during the training session (e.g., educational
robotic tutors). For example, therapeutic robots can guide patients during rehabilitation sessions,
by demonstrating the rehabilitation exercises that need to be performed [26,42,61]. A supervisor
monitors the training session (i.e., through sensors or interfaces) to capture essential information
of the training session (e.g., task parameters, user performance and condition, etc.), and intervene,
if needed, to ensure an efficient and safe interaction. Team co-ordination and collaboration can be used
as training tasks, thus the role of a (human or robot) teammate who interacts with the user can be an
important member role in a training session. For example, robotic teammates can be used to simulate
in real time the cooperation between industrial robotic manipulators and humans, executing simple
manufacturing tasks [67].
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4.3. Level of Autonomy and Learning

An essential aspect of a Robot-Assisted Training system is the level of robot autonomy, which defines
whether the robot acts autonomously or under the guidance or control of a human user. Specific system
requirements and parameters may require the presence of a human expert who acts as a supervisor
to ensure safety and efficiency during the training session. Influenced by LORA [54], the level
of autonomy in a RAT system varies from tele-operated to fully-autonomous systems, including
supervised autonomy and decision support systems. Autonomy can be defined both in terms of
perception and behavior control. Autonomy in perception defines to what extent the robot perceives
its environment, with or without the supervision or intervention of a human user. For example,
a decision support system can visualize the input modalities (speech, facial expressions, etc.) through
a Graphical User Interface (GUI), allowing a human operator to provide the system with the required
perception information (spoken utterances, engagement level, user intention, etc.), especially during
system prototype evaluations, where automated processing modules (speech recognition, emotion
classification) have not been developed. Autonomy in behavior control relates to the amount of human
intervention during the decision making and execution process of the system based on the information
provided by the processing module. For example, in the upper-limb reaching task example [58],
the system suggests an action to the supervisor, through a GUI, and the supervisor agrees or disagrees
with the system decision, resulting in a supervisory control system. This Wizard-of-Oz (WoZ) paradigm
has been extensively used for RAT applications, where the robot executes the behaviors decided
by a human supervisor. Despite its effectiveness, a main limitation relates to the amount of expert
workload and attention to ensure a safe robot behavior. Towards this end, recent approaches enable
the robot to learn through human (expert) input and progressively act in an autonomous manner.

Considering the above, we compare two systems in terms of robot autonomy in both perception
and behavior control, illustrating their differences (Figure 3). In a user study for attention acquisition
through gestures [60], a social robot was deployed to grab and guide user’s attention during a memory
card game, through a combination of verbal and non-verbal behavior (e.g., speech, gaze, gestures).
The system needs to perceive user behavior, attentive and affective state and make a decision based
on these. In order to facilitate robot perception, a human supervisor provides the robot with the user
state, based on gaze and speech behavior, by observing the interaction (teleoperation). The robot
selects a combination of gestures to deploy based on the human-provided user state and the game
state (number of remaining cards). While robot perception is fully dependent on the human supervisor,
the robot uses a Reinforcement Learning policy to decide if the participant needs support and
determine the combination of gestures to grab user’s attention, in a fully autonomous manner.
In another study, the authors illustrate the SPARC framework (Supervised Progressively Autonomous
Robot Competencies) with applications in Robot-Assisted Therapy [68]. The robot is designed to
assist children with ASD during a set of turn-taking and imitation training tasks. The proposed
system include a sensing and interpretation module which analyzes multimodal information for
child behaviour classification. At the perception level, the system acts as a Decision Support system;
it visualizes captured data, as well as extracted information and features related to child’s level of
engagement, motivation, and performance based on the perceived modalities (gaze, motion, speech).
A human expert uses this information to annotate child behaviors with the possibility of training
classifiers based on this annotated data using Machine Learning approaches (e.g., Neural Networks
and Support Vector Machines) for automated child behavior classification. Based on the perceived
information, the robot uses a cognitive controller which maps therapist-specified child behaviours
to appropriate therapist-specified robot actions. The system proposes actions to the supervisor who
can passively accept the action or actively correct it. The system acts in a semi-autonomous way
(supervised control) in order to reduce the supervisor’s workload.

Robotic agents can be either learning or non-learning agents, or they can switch between different
levels of learning, depending on different parameters (i.e., uncertainty, performance). There are
several types of learning agents, e.g., offline or online, model-based or model-free, supervised or
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unsupervised, the selection of which depends on the application and the system requirements. There is
a variety of learning approaches which can be applied for interactive systems and agents, including
Machine Learning, Active Learning, and Reinforcement Learning [69]. For example, Active Learning
is a research area which studies when an agent should ask for human input (i.e., correct label/action)
in order to improve system performance. Interactive Machine Learning and Interactive Reinforcement
Learning are two promising approaches to integrate such human expertise and feedback in the learning
mechanism of an interactive system (Human-in-the-Loop). Following such interactive learning
approaches, intelligent WoZ interfaces can enable an assistive robot to integrate expert knowledge
and guidance and switch from tele-operation to a progressively autonomous mode, decreasing expert
workload and effort. Similar to autonomy levels, learning can occur both in perception and behavior
control. Neural Networks and Support Vector Machines have been used to learn robot behavior
from human expert input in a RAT session [66]. The presented system simulates a RAT session,
where a human supervisor monitors a robot–child and a robot–instructor during a card classification
task, using a WoZ interface. The neural network is trained using human input as training labels.
Their user study results indicate that learning agents can decrease expert workload, as they learn how
to provide human-like decisions. The robot shifts from a tele-operated agent (WoZ) to a supervised
autonomous robot, demonstrating that progressive robot autonomy can reduce supervisor workload,
while maintaining the quality of the interaction. In another work, a robotic device has been used as
a haptic interface for upper-limb rehabilitation [59]. The robotic device acts as a joystick for the user
who performs a rehabilitation game. The system follows a dynamic player modeling approach using
Reinforcement Learning in order to learn a user model and adjust the game difficulty in real time.

Figure 3. Levels of Robot Autonomy during perception and behavior control.

4.4. Personalization Dimensions

Personalization plays an integral role in designing an efficient Robot-Assisted Training system.
Based on the famous Bloom’s 2 sigma problem [70], one-to-one tutoring presents better learning
effects than group (conventional) tutoring. Parameters that affect efficiency include training material
(e.g., exercise regimen) and teacher behavior (e.g., supportive, challenging, etc.). Such parameters can
be adjusted in order to maximize tutoring/training effects for each individual. Considering system
parameters defined by other taxonomies and recent work in RAT systems, we define the personalization
dimensions. Personalization dimensions refer to (a) the set of observations that the system perceives
and considers in order to adjust its behavior and (b) the set of control parameters, that are adjusted
to achieve personalization. Considering the two basic modules of a Robot-Assisted Training system,
the observations would be the output of the perception module and the control parameters would be
defined based on the behavior control module. Another crucial parameter is the evaluation metric
(or objective function) based on which the effects of personalization will be maximized. This is highly
dependent on the system requirements and can relate to both affective, learning/cognitive and physical
gains. Since such parameters are defined based on the system’s requirements, as well as the design
approach and can be defined either at a high level (e.g., robot supportive behavior) or at a low level
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(e.g., robot movement), one of the research objectives regarding personalization is how to use these
observed parameters in order to learn the control parameters. Interactive Reinforcement Learning
(IRL) techniques have been used to facilitate robot learning from human-generated feedback varying
from button clicks and vocal commands to haptic feedback during human–robot object handover [71].
For example, a robot that learns behavior by analyzing and utilizing emotional and social user
signals could facilitate real-time personalization in human–robot interaction on the wild. For example,
the affective language tutor [19] uses a facial expression and feature extraction software in order
to estimate child’s affective state (engagement and valence). The system combines these estimated
values into a reward signal and the system learns to adjust its behavior by selecting appropriate
motivational strategies (using verbal and non-verbal actions), based on the current child’s state (affect
and performance).

5. Conclusions and Open Challenges

In this paper, we presented a taxonomy in Robot-Assisted Training, considering related
taxonomies in Human–Robot Interaction, as well as current trends and needs in this growing body
of research. The motivation of this work is to highlight research objectives related to the design and
implementation of a Robot-Assisted Training system. We presented a review on recent works, aiming
to delineate different aspects and trends to be taken into consideration when designing such a system,
focusing on personalization. In this section, we discuss the open challenges and research objectives
for the design, development and evaluation of a Robot-Assisted Training system. Considering a set
of open challenges regarding physically robot-assisted training systems [72] and social aspects of
human–robot interaction and evaluation of social robots [73], we identify the following research
objectives and needs:

• Perceiving and understanding user needs, focusing on techniques and approaches to enable
an intuitive and non-intrusive interaction between the user and the system, maximizing
user’s compliance, based on the different user types and roles and their participation in the
personalization procedure,

• Improvement of system self-awareness, in terms of perception, interpretation, reasoning, decision
making, and learning. The system must be able to self-assess its functionality on different levels
in order to prevent inappropriate interactions, e.g., notify if involvement of a human supervisor
is required,

• Improvement of system adaptation and personalization based on the perceived behavioral,
cognitive and emotional states of the user(s), the task needs and the context of the interaction.
The system must be able to know when and how to personalize its behavior with respect to
appropriate evaluation metrics.

Robot-Assisted Training systems usually operate in contextually rich environments that can
provide the system with valuable information to achieve personalization. A research question that
arises is how to identify the optimal (e.g., minimum) set of modalities and sensors, as well as accurate
perception and behavior control components, to ensure an efficient, intuitive and non-intrusive
interaction. Different interaction types and member roles result in different types of human feedback
that can be captured by different sensors/interfaces including, cameras, microphones, EEG sensors,
GUIs, joysticks, and many others. Such systems should be able to utilize the different communication
channels from different types of human users, who can provide the system with anticipatory guidance
and performance feedback towards personalization [74]. Research works investigate how informative
user interfaces and interactive learning methods can increase user engagement while interacting with
a learning agent [75]. Interactive Reinforcement Learning can utilize human-generated feedback
(i.e., facial expressions, emotion, GUI input, etc.) in order to facilitate personalization in the wild [19].

The selection of personalization parameters must be in line with the system design and
requirements, in order to achieve positive effects on both learning and affective gains. Based on the
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time span or the frequency of the interaction, there is a distinction between long-term and short-term
adaptation and personalization systems. Short-term adaptation systems are able to personalize their
behavior during few interaction steps in order to provide an effective interaction, given a limited
amount of data [76]. Long-term adaptation systems require more or longer interactions in order to
personalize and improve future interactions. Long-term adaptation may be more efficient for frequent
interactions (e.g., tutoring, rehabilitation), considering the learning benefits of long-term interactions
in tutoring [77]. Moreover, the selection of the personalization parameters (observations and control)
should serve the purpose and goal of the system. Affective robots are deployed to personalize the
interaction by selecting and generating appropriate emotions, aiming to a more natural and effective
interaction [73], considering both learning and affective gains, e.g., task performance and engagement.

A recent systematic review discusses adaptivity and personalization of human–robot
interaction [78]. The paper presents usability studies with adaptive social robots interacting with
users in heath care and therapy domain, in education, in work and home environments and public
spaces. While most of the studies proposed adaptation of the HRI based on user performance and
user profile, limited studies investigate adaptation based on user characteristics (e.g., gender, age,
level of experience). Another important issue is to understand the influence of the adaptation on
user’s engagement and performance [78,79]. A comparison between emotional-based, memory-based
and game adaptations to engage social long-term interaction with between robot and children at
a school is presented in [79]. The initial results showed that emotion-based adaptation was more
effective, followed by memory-based adaptations, while game adaptation did not achieve long-term
social engagement.

An important challenge for Robot-Assisted Training considers human safety during physical
(and/or social) interaction [80]. While well-established standards (ISO) for direct HRI have been
proposed for assistive and collaborative robots in industry [81], there are no established safety
standards for robot-assisted training systems, to the best of our knowledge. Moreover, psychological
safety for the user should also be considered based on the survey paper of methods for safe HRI by
Lasota and his co-authors [82]. Negative psychological effects on the user from HRI, such as discomfort,
stress or fatigue, should be recognized and the robot could take some retrieving actions. For example,
if the user feels discomfort, the robot could slow down or keep a greater distance or pause/stop
until the user’s psychological state improves. Such affective personalization can be considered as
a sequence of human emotion recognition, appropriate robotic behavior selection and expression of
robotic emotions. This loop of perception, regulation and expression is called affective loop. Research
works focus on developing cognitive models to provide robots with social aspects and capacities,
in order to personalize affective artificial behaviors in cooperative human–robot scenarios through
emotion detection, regulation and expression [83–85].

There is also a need to investigate the negative effects of personalization, considering both
learning (training) and affective gains. Personalization may result in a more enjoyable short-term
interaction, considering also the novelty effect [86]. However, it is shown that human learners may
not prefer a personalized and concise robot behavior, over the long-term, but a more varying one [62].
Considering these, there is a need to investigate different personalization mechanisms both in terms of
perception and control, from the aspects of user acceptance and preferences, learning and affective gains
and other evaluation metrics for Human–Robot Interaction systems [87]. Personalization is a complex
computational problem that requires the robot to dynamically assess, adapt, and leverage a model
of user’s abilities and needs [88] and can benefit from literature reviews in several areas, including
but not limited to, Intelligent Tutoring Systems [89], Student Modeling [90], Affective Computing [91],
Cyber-Physical Systems [92] and Machine Learning for Interactive Systems and Robots [69].
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10. Clabaugh, C.; Ragusa, G.; Sha, F.; Matarić, M. Designing a socially assistive robot for personalized

number concepts learning in preschool children. In Proceedings of the 2015 Joint IEEE International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Providence, RI, USA,
13–16 August 2015; pp. 314–319.

11. Varrasi, S.; Di Nuovo, S.; Conti, D.; Di Nuovo, A. A social robot for cognitive assessment. In Proceedings of
the Companion of the 2018 ACM/IEEE International Conference on Human–Robot Interaction, Chicago,
IL, USA, 5–8 March 2018; pp. 269–270.

12. Varrasi, S.; Di Nuovo, S.; Conti, D.; Di Nuovo, A. Social robots as psychometric tools for cognitive assessment:
A pilot test. In Human Friendly Robotics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 99–112.

13. Korn, O.; Tso, L.; Papagrigoriou, C.; Sowoidnich, Y.; Konrad, R.; Schmidt, A. Computerized assessment of
the skills of impaired and elderly workers: A tool survey and comparative study. In Proceedings of the 9th
ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece,
29 June–1 July 2016; p. 50.

14. Scassellati, B.; Boccanfuso, L.; Huang, C.M.; Mademtzi, M.; Qin, M.; Salomons, N.; Ventola, P.; Shic, F.
Improving social skills in children with ASD using a long-term, in-home social robot. Sci. Robot. 2018,
3, eaat7544. [CrossRef]

15. Raya, R.; Rocon, E.; Urendes, E.; Velasco, M.A.; Clemotte, A.; Ceres, R. Assistive robots for physical
and cognitive rehabilitation in cerebral palsy. In Intelligent Assistive Robots; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 133–156.

16. Belpaeme, T.; Kennedy, J.; Ramachandran, A.; Scassellati, B.; Tanaka, F. Social robots for education: A review.
Sci. Robot. 2018, 3, eaat5954. [CrossRef]

17. Konijn, E.; Hoorn, J. Humanoid Robot Tutors Times Tables: Does Robot’s Social Behavior Match Pupils’ Educational
Ability?; IEEE: Piscataway, NJ, USA, 2017.

18. Saerbeck, M.; Schut, T.; Bartneck, C.; Janse, M.D. Expressive robots in education: Varying the degree of
social supportive behavior of a robotic tutor. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Atlanta, GA, USA, 10–15 April 2010; pp. 1613–1622.

http://www.ncbi.nlm.nih.gov/pubmed/28084064
http://dx.doi.org/10.1109/MEMB.2008.919496
http://dx.doi.org/10.1016/j.jamda.2015.05.002
http://www.ncbi.nlm.nih.gov/pubmed/26096582
http://dx.doi.org/10.1146/annurev-bioeng-071811-150036
http://www.ncbi.nlm.nih.gov/pubmed/22577778
http://dx.doi.org/10.3390/robotics6010004
http://dx.doi.org/10.5772/51128
http://dx.doi.org/10.1017/S0958344010000273
http://dx.doi.org/10.1126/scirobotics.aat7544
http://dx.doi.org/10.1126/scirobotics.aat5954


Technologies 2018, 6, 119 16 of 19

19. Gordon, G.; Spaulding, S.; Westlund, J.K.; Lee, J.J.; Plummer, L.; Martinez, M.; Das, M.; Breazeal, C. Affective
Personalization of a Social Robot Tutor for Children’s Second Language Skills. In Proceedings of the AAAI,
Phoenix, AZ, USA, 12–17 February 2016; pp. 3951–3957.

20. Peters, R.; Broekens, J.; Neerincx, M.A. Robots educate in style: The effect of context and non-verbal
behaviour on children’s perceptions of warmth and competence. In Proceedings of the 2017 26th IEEE
International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal,
28 August–1 September 2017; pp. 449–455.

21. Wada, K.; Shibata, T. Robot therapy in a care house-results of case studies. In Proceedings of the
15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK,
6–8 September 2006; pp. 581–586.

22. Bharatharaj, J.; Huang, L.; Al-Jumaily, A.; Elara, M.R.; Krägeloh, C. Investigating the Effects of Robot-Assisted
Therapy among Children with Autism Spectrum Disorder using Bio-markers. In IOP Conference Series:
Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 234, p. 012017.

23. Marchal-Crespo, L.; Reinkensmeyer, D.J. Review of control strategies for robotic movement training after
neurologic injury. J. Neuroeng. Rehabil. 2009, 6, 20. [CrossRef] [PubMed]

24. Riener, R.; Lünenburger, L.; Maier, I.C.; Colombo, G.; Dietz, V. Locomotor training in subjects with
sensori-motor deficits: An overview of the robotic gait orthosis lokomat. J. Healthc. Eng. 2010, 1, 197–216.
[CrossRef]

25. Jung, J.H.; Lee, N.G.; You, J.H.; Lee, D.C. Validity and feasibility of intelligent Walkbot system. Electron. Lett.
2009, 45, 1016–1017. [CrossRef]

26. Dundar, U.; Toktas, H.; Solak, O.; Ulasli, A.; Eroglu, S. A comparative study of conventional physiotherapy
versus robotic training combined with physiotherapy in patients with stroke. Top. Stroke Rehabil. 2014,
21, 453–461. [CrossRef] [PubMed]

27. Tong, R.K.; Leung, W.W.; Hu, X.; Song, R. Interactive robot-assisted training system using continuous
EMG signals for stroke rehabilitation. In Proceedings of the 3rd International Convention on Rehabilitation
Engineering & Assistive Technology, Singapore, 22–26 April 2009; p. 20.

28. De Santis, D.; Zenzeri, J.; Casadio, M.; Masia, L.; Riva, A.; Morasso, P.; Squeri, V. Robot-assisted training of
the kinesthetic sense: Enhancing proprioception after stroke. Front. Hum. Neurosci. 2015, 8, 1037. [CrossRef]

29. Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait
training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat.
2017, 13, 1303. [CrossRef] [PubMed]

30. Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for
upper limb rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [CrossRef] [PubMed]

31. Chang, W.H.; Kim, Y.H. Robot-assisted therapy in stroke rehabilitation. J. Stroke 2013, 15, 174. [CrossRef]
[PubMed]

32. Schwartz, I.; Meiner, Z. Robotic-assisted gait training in neurological patients: Who may benefit?
Ann. Biomed. Eng. 2015, 43, 1260–1269. [CrossRef] [PubMed]

33. Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; Van Wegen, E.E.; Meskers, C.G.; Kwakkel, G. Effects
of robot-assisted therapy for the upper limb after stroke: A systematic review and meta-analysis.
Neurorehabil. Neural Repair 2017, 31, 107–121. [CrossRef]

34. Chetouani, M.; Boucenna, S.; Chaby, L.; Plaza, M.; Cohen, D.; Chaby, L.; Luherne-du Boullay, V.;
Chetouani, M.; Plaza, M.; Templier, L.; et al. Social Signal Processing and Socially Assistive Robotics in
Developmental Disorders. In Social Signal Processing; Cambrige University Press: Cambrige, UK, 2017; p. 389.

35. Spaulding, S.; Chen, H.; Ali, S.; Kulinski, M.; Breazeal, C. A Social Robot System for Modeling Children’s
Word Pronunciation: Socially Interactive Agents Track. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, Stockholm, Sweden, 10–15 July 2018; pp. 1658–1666.

36. Fan, J.; Bian, D.; Zheng, Z.; Beuscher, L.; Newhouse, P.A.; Mion, L.C.; Sarkar, N. A Robotic Coach Architecture
for Elder Care (ROCARE) based on multi-user engagement models. IEEE Trans. Neural Syst. Rehabil. Eng.
2017, 25, 1153–1163. [CrossRef] [PubMed]

37. Cominelli, L.; Carbonaro, N.; Mazzei, D.; Garofalo, R.; Tognetti, A.; De Rossi, D. A multimodal perception
framework for users emotional state assessment in social robotics. Futur. Internet 2017, 9, 42. [CrossRef]

http://dx.doi.org/10.1186/1743-0003-6-20
http://www.ncbi.nlm.nih.gov/pubmed/19531254
http://dx.doi.org/10.1260/2040-2295.1.2.197
http://dx.doi.org/10.1049/el.2009.0879
http://dx.doi.org/10.1310/tsr2106-453
http://www.ncbi.nlm.nih.gov/pubmed/25467393
http://dx.doi.org/10.3389/fnhum.2014.01037
http://dx.doi.org/10.2147/NDT.S114102
http://www.ncbi.nlm.nih.gov/pubmed/28553117
http://dx.doi.org/10.1186/1743-0003-11-3
http://www.ncbi.nlm.nih.gov/pubmed/24401110
http://dx.doi.org/10.5853/jos.2013.15.3.174
http://www.ncbi.nlm.nih.gov/pubmed/24396811
http://dx.doi.org/10.1007/s10439-015-1283-x
http://www.ncbi.nlm.nih.gov/pubmed/25724733
http://dx.doi.org/10.1177/1545968316666957
http://dx.doi.org/10.1109/TNSRE.2016.2608791
http://www.ncbi.nlm.nih.gov/pubmed/28113672
http://dx.doi.org/10.3390/fi9030042


Technologies 2018, 6, 119 17 of 19

38. Simonetti, D.; Zollo, L.; Papaleo, E.; Carpino, G.; Guglielmelli, E. Multimodal adaptive interfaces for 3D
robot-mediated upper limb neuro-rehabilitation: An overview of bio-cooperative systems. Robot. Auton. Syst.
2016, 85, 62–72. [CrossRef]

39. Korn, O.; Stamm, L.; Moeckl, G. Designing Authentic Emotions for Non-Human Characters: A Study
Evaluating Virtual Affective Behavior. In Proceedings of the 2017 Conference on Designing Interactive
Systems, Edinburgh, UK, 10–14 June 2017; pp. 477–487.

40. Feng, Y.; Jia, Q.; Wei, W. A Control Architecture of Robot-Assisted Intervention for Children with Autism
Spectrum Disorders. J. Robot. 2018, 2018. [CrossRef]

41. Trafton, J.G.; Hiatt, L.M.; Harrison, A.M.; Tamborello II, F.P.; Khemlani, S.S.; Schultz, A.C. Act-r/e:
An embodied cognitive architecture for human–robot interaction. J. Hum.-Robot Interact. 2013, 2, 30–55.
[CrossRef]

42. Cao, H.L.; Van de Perre, G.; Kennedy, J.; Senft, E.; Esteban, P.G.; De Beir, A.; Simut, R.; Belpaeme, T.;
Lefeber, D.; Vanderborght, B. A personalized and platform-independent behavior control system for social
robots in therapy: Development and applications. IEEE Trans. Cognit. Dev. Syst. 2018. [CrossRef]

43. Müller, S.; Bergande, B.; Brune, P. Robot Tutoring: On the Feasibility of Using Cognitive Systems as Tutors
in Introductory Programming Education: A Teaching Experiment. In Proceedings of the 3rd European
Conference of Software Engineering Education, Bavaria, Germany, 14–15 June 2018; pp. 45–49.

44. Ziafati, P.; Lera, F.; Costa, A.; Nazarikhorram, A.; Van Der Torre, L.; Nazarikhor, A. ProCRob Architecture
for Personalized Social Robotics. Presented at the Robots for Learning Workshop @ HRI 2017, Vienna,
Austria, 6–9, March 2017. Available online: https://r4l.epfl.ch/wp-content/uploads/2018/09/R4L_HRI_
2017_paper_9.pdf (accessed on 9 December 2018).

45. Galindo, C.; Gonzalez, J.; Fernández-Madrigal, J. An architecture for cognitive human–robot integration.
Application to rehabilitation robotics. In Proceedings of the 2005 IEEE International Conference on
Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005; Volume 1, pp. 329–334.

46. Yanco, H.A.; Drury, J.L. A taxonomy for human–robot interaction. In Proceedings of the AAAI Fall
Symposium on Human–Robot Interaction, North Falmouth, MA, USA, 15–17 November 2002; pp. 111–119.

47. Yanco, H.A.; Drury, J. Classifying human–robot interaction: An updated taxonomy. In Proceedings of
the 2004 IEEE International Conference on Systems, Man and Cybernetics, The Hague, The Netherlands,
10–13 October 2004; Volume 3, pp. 2841–2846.

48. Scholtz, J. Theory and evaluation of human–robot interactions. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, Big Island, HI, USA, 6–9 January 2003.

49. Goodrich, M.A.; Schultz, A.C. Human-robot interaction: A survey. Found. Trends Hum.-Comput. Interact.
2007, 1, 203–275. [CrossRef]

50. Lyons, J.B.; Havig, P.R. Transparency in a human–machine context: Approaches for fostering shared
awareness/intent. In International Conference on Virtual, Augmented and Mixed Reality; Springer: Berlin/
Heidelberg, Germany, 2014; pp. 181–190.

51. Drury, J.L.; Scholtz, J.; Yanco, H.A. Awareness in human–robot interactions. In Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, USA, 8 October 2003;
Volume 1, pp. 912–918.
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