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Abstract: Load is a key magnitude for studying network performance for large-scale wireless sensor
networks that are expected to support pervasive applications like personalized health-care, smart
city and smart home, etc., in assistive environments (e.g., those supported by the Internet of Things).
In these environments, nodes are usually spread at random, since deliberate positioning is not a
practical approach. Due to this randomness it is necessary to use average values for almost all
networks’ magnitudes, load being no exception. However, a consistent definition for the average
load is not obvious, since both nodal load and position are random variables. Current literature
circumvents randomness by computing the average value over nodes that happen to fall within small
areas. This approach is insufficient, because the area’s average is still a random variable and also it
does not permit us to deal with single points. This paper proposes a definition for the area’s average
load, based on the statistical expected value, whereas a point’s average load is seen as the load of an
area that has been reduced (or contracted) to that point. These new definitions are applied in the
case of traffic load in multi-hop networks. An interesting result shows that traffic load increases in
steps. The simplest form of this result is the constant step, which results in an analytical expression
for the traffic load case. A comparison with some real-world networks shows that most of them are
accurately described by the constant step model.

Keywords: load definition; convergecast; many-to-one communication; energy hole; uneven energy
consumption; receptions load; energy consumption load; theory

1. Introduction

Wireless sensor networks have seen a significant growth, since their early introduction almost
two decades ago [1], with applications in various areas of everyday life. Seen as part of the Internet of
Things (IoT) (e.g., [2]) it is expected to be further expanded both in numbers of devices and categories
of supported applications, particularly under the upcoming 5G mobile technology [3]. These modern
environments support pervasive applications for assistive environments, like personalized health-care
(e.g., [4,5]), smart home and smart city applications (e.g., [6]), disaster management (e.g., [7]), etc.
Considering also the large-scale nature of these systems where scalability is inherently a concern,
in order to meet these challenges, key attributes of these technologies need to be studied under a new
light in order for the assumptions and the evaluation process to be as realistic as possible. For the case
of wireless sensor networks’ environments, which is the focus of this work, traffic load is one of the
key issues that needs to be analyzed given its crucial impact on the network’s lifetime and therefore,
on the applications for the particular assistive environments.
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Large-scale wireless sensor networks have usually random deployment, i.e., some thousands of
small sensors are spread randomly over a geographical area [1,8]. One or more base stations (or sinks)
are positioned at some predefined points with the purpose of collecting the sensed data. Sensors
(or nodes in network terminology) form a network by means of wireless communication and deliver
all sensed data to the sink(s). Many designs have been proposed, with multi-hop dissemination,
direct transmission or a combination between single and multi-hop, flat or hierarchical routing, mobile
or stationary sink, etc., [9,10]. This work focuses on wireless sensor networks with uniformly random
spatial probability distribution, i.e., all network positions have the same probability to accommodate
a node. This is the most common and the only feasible solution for large-scale wireless sensor
networks [11,12].

The term load has been widely used to describe some task or duty carried out by nodes.
For example, in single-hop wireless sensor networks, distant nodes consume more energy than
close ones, since they have to transmit over longer distances. In this case, the term load may be
assigned to the energy consumption rate. On the other hand, in multi-hop wireless sensor networks,
the nodes closer to the sink consume more energy because they have to transmit more packets than
the distant ones [13,14]. In this case, the load can be defined as the number of packets transmitted by a
node. In cases where nodes have a computational duty on the received packets, e.g., compression or
computation of an average value, load can be defined as the number of received packets.

Due to the random deployment, most network magnitudes, including load, become random
variables. They are completely unknown before network formation and immediately known after.
Only probabilistic values of these magnitudes may be described by mathematical relations. However,
due to the spatial randomness, the definition of the “average” is not always obvious or straightforward.
For example, in multi-hop networks where data packets are transferred uncompressed, nodes’ load is
the number of packets they transmit. Intuitively, it is expected to encounter larger loads close to the
sink, although, there is always a considerable probability of encountering an individual node with
very low load. It seems almost straightforward to define the “average” by taking into account a small
adjacent area around each node. However, this approach does not solve any problems. The average
over a small adjacent area is the area’s average, not the node’s. Even worse, the average over an area is
still a random variable, unknown before the network formation. It may also be meaningless for small
areas, since small areas may not contain any nodes at all (apart from a pre-chosen node).

It is common in the relevant literature to use the adjective “average” in order to circumvent load
randomness, without a consistent or rigorous definition. In most cases, average load is considered as
the average over an area, usually a ring centered at the sink [15,16]. Other works propose analytical
relations for the average load as a function of the distance from the sink [17,18], implying that individual
nodes have some average value.

This paper is an enhanced version of a previous one [19]. It introduces a consistent and strict
definition of both average load of an area and a single point. The basic idea is to see the area’s average
load as the expected value (or expectation) over many different network constructions, instead of
the average over a single network instance. The expected value is unique and independent from
any specific network, therefore, it might be possible to estimate it empirically or analytically. Still,
this method is not suitable when there is a need to deal with single points. The probability for having
a node upon a specific point is zero, therefore, the expected value for point load is meaningless.
However, the average load of a point can be seen as the load of an area that has been reduced until it
only occupies one point. Based on this observation, a sequence of nested areas is introduced in order
to formally describe the corresponding reduction process. The average area load is closely related
to the average point load. Specifically, the summation of average point loads upon all areas’ points
correspond to the average area load, normalized by the given area. Finally, the above definitions are
applied for the case of the traffic load. Especially in circular networks, the analysis elaborates further
into the problem, resulting in an analytical expression regarding traffic load.
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The rest of the paper is structured as follows. Section 2 presents the past related work in the area.
Section 3 describes the random experiment that produces the load values and Section 4 introduces
the definition of the average area load. Section 5 proves the additivity property of average area
loads and Section 6 defines the average point load and proves its relation with the average area load.
In Sections 7–9 the previous definitions are applied for the case of traffic load. Section 8 considers the
special case of a circular network and Section 9 investigates the traffic load of a simplified and ideal
routing. Section 10 compares the traffic load of some real-world routing policies with the ideal one
and, finally, the conclusions are drawn in Section 11.

2. Related Work

In [20], average load of a node is defined as the average value over the nodes within one sensing
range around the node, including the node itself. Consequently, the average load exists only at points
occupied by a node. In addition, the term “geographical average” is used in the derivation of an
expression of load as a function of the distance from the sink, meaning that a small area around a node
is taken into account in the computation of the average value.

An expression for the “expected traffic load” for a node is proposed in [21]. In the simulations
section, this value is approximated as the average load of the nodes within a narrow ring centered at the
sink. Similarly, [17] defines the average traffic load of a node as “the average number of data packets
transmitted by a sensor” and proposes an analytical expression as a function of the distance from the
sink. In simulations, the above magnitude is calculated as the average traffic load of nodes with almost
the same distance from the sink. The calculation takes into account many network constructions,
i.e., intuitively the expected value of the average load is used. This approach is very close to the
proposed definition of “average” in this work. Note that the work presented here is an extended
version of a previous work [19] that has been enhanced and additional material has been included.

In [22], an expression for the average traffic load is proposed. Average is calculated over small
regions with almost the same distance from the sink. Nodes within a region have to have almost the
same load. Therefore, regions have to be small, but not that small so as to not contain any nodes at all.
As a result, the proper region’s size is calculated by an elaborate method.

Frequently, analysis of load is premised on the concept of rings [18,21,23]. The network is
conceptually divided into concentric rings, centered at the sink. Nodes within a ring have almost
the same distance from the sink and therefore approximately the same load with each other. Thus,
the average load of a ring represents the average load of each node within the ring. However, the ring’s
average load is still a random variable. Therefore, a suitable approach is to represent the ring’s average
load as the expected value of the average, i.e., the mean value of the average over (almost infinite)
different networks.

3. Load of an Individual Point

Let us assume a planar network that occupies an area S ⊂ R2. The area S is bounded by a finite
contour, it is connected and has no boundaries (the finite contour is not included in S). A finite number
of holes (e.g., obstacles) is allowed, as long as the area S remains connected. The following random
experiment is performed over the network area S.

Step 1: N points are randomly selected within the area S. The selection follows the uniform probability
distribution, i.e., all points of S have the same probability to be selected. The coordinates of
these nodes will be denoted by (xi, yi), 1 ≤ i ≤ N, assuming that nodes are named for 1 . . . N.
Each one of the N selected points host one node. This process is known as homogeneous
two-dimensional Poisson Point Process [24].

Step 2: Adjacent nodes are connected one to another by some rule. Usually, two nodes are considered
as connected if the distance between them is less than a predefined radio-range (or simply
range). If range is the same for all nodes then the resulting network is known as Gilbert’s
random disk graph [24,25].
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Step 3: One sink is positioned at some predetermined point (x0, y0). Its purpose is to collect the sensed
data from the entire network.

Step 4: The flow of data along the links is determined by the applied routing policy. The routing policy
specifies the exact path of packets from each node to the sink. After this step every node has
knowledge of the number of packets it transmits (and towards which particular neighbor)
and the number of packets it receives (and from which particular neighbor). Based on this
information every node is now capable of computing its own load. Let us denote `i the load of
node at point (xi, yi).

Step 4 can be seen as a mapping function that takes as input the nodes’ positions (xi, yi) along
with the sink’s position (x0, y0) and gives as output the load values `i, i = 1..N,

F ({(x0, y0), (x1, y1), .., (xN , yN)}) = {`1, `2, .., `N}. (1)

This function will be referred to as the routing function henceforth.
Load definition, as introduced here, is flexible enough to fit in different network scenarios.

For example, a widely used network model is the circular network [20,26]. N identical nodes are
spread randomly over a circular area and one sink is positioned at the center. With the sink as a
root, a shortest path tree is constructed by some proper algorithm, e.g., by Bellman-Ford or Dijkstra’s
algorithm. If edge cost corresponds to the euclidean distance between nodes then the resulting tree is
unique, since all possible paths have unique total length (due to the random positions). Packets are
traveling along the branches of that tree in a multi-hop manner.

If the sensed data are delivered uncompressed then the nodes closer to the sink transmit many
more packets than the distant ones; therefore, they quickly run out of energy (also known as energy
hole problem [9]). In that case (of the uncompressed transfer), we are interested in the number of
packets transmitted by each node, given that the energy consumption is proportional to the number of
transmissions. This type of load is known in the literature as traffic load [17].

In other network scenarios, packets may be delivered fully compressed (or 100% fused in the
related terminology), e.g., only the maximum value of the sensed data is transferred to the next node.
In that case the energy hole is due to the different number of receptions (e.g., the more receptions the
more the computational effort for a node). This type of load is known in the literature as receptions
load [27,28]. In either case or in situations where the delivered data are partly compressed, we may
also be interested in the energy consumption rate. This type of load is known as energy consumption
load [29].

In all the above examples routing function F is deterministic. That is, it gives always the same load
values for the same nodes positions. The only randomness is due to Step 1, i.e., the random positions
of nodes. However, some other routing policies may be probabilistic by their definition. For example,
instead of a shortest path tree, consider a random spanning one [30]. For this case, every execution of
the algorithm will generate a different tree. Apart from the inherent randomness of Step 1, we now
have another one, due to Step 4.

Regardless of the type of routing function F (deterministic or probabilistic), it has to produce
finite values for load, bounded between a minimum `min and a maximum `max real number and as
a consequence, the load variance will be finite. Eventually, the process described in Steps 1 to 4 is
a valid random experiment. In the case of a deterministic routing function, the random part of the
experiment is Step 1. In the case of a probabilistic routing function F the random experiment can be
considered as a sequence of random processes, where the output of Step 1 is the input of Step 4 [31].
Note also that the existence of a single sink in Step 3 is not mandatory. It is clear from Step 4 that load
is a local magnitude which is computed by nodes themselves, based on the information obtained by
their neighbors. Therefore, the number of sinks is not important for this analysis. Nonetheless, in order
to keep the definitions simple it will be assumed for the rest of this paper that there exits only one sink.
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4. Average Load of an Area

Consider a sub-area S of the network area S, i.e., S ⊂ S and a single execution of the random
experiment, Steps 1 to 4. Suppose that k nodes happen to fall within S, with loads `i, 1 ≤ i ≤ k. For this
particular experiment, the average load of area S is denoted by L and defined as

L =
`1 + `2 + .. + `k

k
. (2)

In the case of no nodes at all (k = 0) the average load L, for one execution of the experiment, will be
considered as zero.

The average load L, as defined in Equation (2), can be seen as a new random variable. It is bounded
between the minimum value `min (if all k values are equal to `min) and the maximum value `max (if all
k values equal `max). Consequently, the new random variable L has finite variance. If the random
experiment is performed n independent times then it gives n outcomes L1, L2, . . . , Ln. The expected
value of L is defined by the following asymptotic expression

L = lim
n→∞

L1 + L2 + · · ·+ Ln

n
. (3)

According to the weak law of large numbers the limit of Equation (3) converges to a real, finite and
unique number [32]. This number (denoted by L in Equation (3)) is defined as the average load of area S.
This definition is actually the expected value of the magnitude defined in Equation (2).

5. Addition of Average Area Loads

Suppose that an area S has average load L and it is divided into two smaller subareas S1

and S2 with measures A1 and A2 (e.g., in m2) and average loads L1 and L2 respectively (Figure 1).
The following theorem gives the relation between loads.

Theorem 1 (Addition of Loads). If an area S within S (S ⊂ S) consists of two disjoint subareas S1 and
S2 (S1 ∪ S2 = S and S1 ∩ S2 = ∅) with measures A1 and A2 and average area loads L1 and L2 respectively,
then the total average area load L of the area S is given by,

L =
A1

A1 + A2
L1 +

A2

A1 + A2
L2. (4)

Figure 1. Addition of average area loads.
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Proof. Assume a single execution of the random experiment (Steps 1–4) and let be k1 and k2 the
number of nodes that happen to fall within subareas S1 and S2 respectively. By arranging the indexes
in Equation (2), the average area load can be written as,

L =
`1 + `2 + .. + `k1 + `(k1+1) + .. + `(k1+k2)

k1 + k2

=
`1 + `2 + .. + `k1

k1 + k2
+

`(k1+1) + .. + `(k1+k2)

k1 + k2

=
k1

k1 + k2

`1 + `2 + .. + `k1

k1
+

k2

k1 + k2

`(k1+1) + .. + `(k1+k2)

k2

=
k1

k1 + k2
L1 +

k2

k1 + k2
L2. (5)

The quantities k1/(k1 + k2) and k2/(k1 + k2) are the percentages of nodes that happen to fall
within S1 and S2 respectively. If we regard them as random variables then they are independent from
L1 and L2 respectively (L1 and L2 are also random variables). By taking the expected value (denoted
by E(·)) of both sides of Equation (5) and using the properties of the expected value and the fact that
the percentages are independent from the overlined values, we have

E
(

L
)
= E

(
k1

k1 + k2
L1

)
+E

(
k2

k1 + k2
L2

)
= E

(
k1

k1 + k2

)
E(L1) +E

(
k2

k1 + k2

)
E(L2)

= E
(

k1

k1 + k2

)
L1 +E

(
k2

k1 + k2

)
L2. (6)

The values k1 and k2 are the result of a homogeneous Poisson point process over two different
and disjoint areas, therefore they are independent from each other and their expected values are
proportional to the measure of each one’s area [25]. That is, E(k1) is proportional to A1 and E(k2)

proportional to A2. Therefore, the expected values of k1/(k1 + k2) and k2/(k1 + k2) can be substituted
by the percentages of the corresponding areas, A1/(A1 + A2) and A2/(A1 + A2) respectively.

6. Average Load of an Individual Point

The average load of an individual point is studied here, considering nested sequences of areas.

6.1. Nested Sequence of Areas

Assume a nested sequence of areas {Sn}, such that each element is a subset of the previous one,
S1 ⊃ S2 ⊃ · · · ⊃ Sn. In addition, all the sequence’s elements contain an area S0 as a subset, S0 ⊂ Si,
∀i = 1 . . . n, as depicted in Figure 2. It will be referred to as a nested sequence of areas around S0. Let L1,
L2, . . . , Ln be the corresponding average area load of each element of such a sequence and L0 be the
average area load of S0. The sequence of loads {Ln} will be called nested sequence of loads around L0.

Figure 2. A nested sequence of areas around S0.

Theorem 2. Every nested sequence of loads around L0 converges to L0, i.e., if {Ln} is the nested sequence then
Ln → L0 as n→ ∞.
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Proof. (i) Let {Sn} be the nested sequence of areas, {An} the sequence of the corresponding areas’
measures and A0 the measure of the area S0. Note that all areas’ measures Ai are real numbers. It is
trivial to prove that An → A0, as n→ ∞. For the new sequence Cn = An − A0 the following hold true
(a) Zero is a limit point of Cn, i.e., every neighborhood of zero contains infinite many elements of Cn.
(b) Zero is a lower bound of Cn, i.e., Cn > 0, ∀n.
(c) Cn is monotonically decreasing, i.e., Cn+1 < Cn, ∀n.
Consequently, Cn → 0 and An → A0.
(ii) The elements of {Sn} can be seen as the union of two areas Sn ∩ S0 and S0, i.e., Sn = (Sn ∩ S0) ∪ S0,
as depicted in Figure 3. Theorem 1 gives the corresponding average load {Ln} of any element Sn

Ln =
An − A0

An
L′ +

A0

An
L0, (7)

where L′ is the average load of Sn ∩ S0. It is clear from Equation (7) that as An → A0, then Ln → L0.

Figure 3. Decomposition of Sn into Sn ∩ S0 and S0.

6.2. Nested Sequence of Areas Around a Point

Consider a nested sequence of areas Sn such that all the elements contain a specific point P(x0, y0)

(instead of an area), i.e., S1 ⊃ S2 ⊃ · · · ⊃ Sn and P ∈ Sn, ∀n. Such a sequence will be referred to as a
nested sequence of areas around a point. With the same reasoning as Theorem 2 it can be proved that the
corresponding sequence of the areas’ measures An tend to zero as n→ ∞. In order to be clear that all
elements of {Sn} contain the point P(x0, y0), we can write Sn → (x0, y0), as n→ ∞.

Assume a nested sequence of areas {Sn} around S0 and let {Ln} be the corresponding sequence of
average loads. Assume also that S0 is not a fixed area but gradually is reduced to a single point P(x0, y0),
that is S0 → (x0, y0). The question is what will happen to the sequence of loads? Does sequence {Ln}
converge to anything while S0 tends to a point (x0, y0), or more formally, does the double limit

lim
n→∞

(
lim

S0→(x0,y0)
Ln

)
, (8)

exist, for every nested sequence {S0} around (x0, y0)?
Although Theorem 2 states that the external limit in Equation (8) always exists so long as S0 has

some dimensions, this is not guaranteed when S0 → (x, y). The behavior of Ln in a neighborhood of a
point depends on the routing function F . For example, F may approach a point (x0, y0) in a similar
manner as sin( 1

x ) approaches 0. However, it is hopefully expected that existing (widely implemented)
routing functions will have a convergent Ln everywhere or, at least, Ln will be non-convergent only at
some special points. If the double limit of Equation (8) exists, then it can be seen as the limit of a nested
sequence of areas around a point and thus we can omit the use of the intermediate area S0. It can be
written as limSn→(x0,y0)

Ln, implying that Sn is a nested sequence of areas around (x0, y0). If the limit
exists then it will be referred to as average load of a point and will be denoted by λ(x, y), that is,

λ(x, y) = lim
Sn→(x,y)

Ln, (9)

where {Sn} is a nested sequence of areas around the point (x, y) and {Ln} the corresponding sequence
of the average loads of Sn.
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Since the average area load is actually the expected value of the average, it can be simplistically
interpreted as the expected load value for those nodes that happen to fall within that area.
This interpretation cannot be applied in the case of a single point, because the probability for a
node to fall upon a specific point is zero. Nevertheless, there is a close relation between the average
area load and the average point load of the points that are covered by that area. The following theorem
reveals that relation.

Theorem 3. If an area S has average load L and for every point (x, y) within the area the average load λ(x, y)
exists and also if λ(x, y) is a Riemann integrable function then

L =
1
A

∫∫
S

λ(x, y) dA, (10)

where A is the area’s measure and dA is the differential of the area.

Proof. Assume that the area S is divided into n disjoint subsets, Si ∩ Sj = ∅, ∀i 6= j, 1 ≤ i, j ≤ n,
and S = S1 ∪ S2 ∪ · · · ∪ Sn. This is called a partition of the area S [33]. The diameter of a subset Si is the
largest distance between any two points within the subset and diameter δ of the entire partition is the
largest diameter among all Si. According to Theorem 1 the average load of area S is given by

L =
1
A

n

∑
i=1

Li Ai, (11)

where Li and Ai are the average area load and the area’s measure of each partition member, respectively.
The sum of Equation (11) can be seen as a Riemann sum [33] and by following the Riemann theory of
integration, Equation (11) becomes an integral when n→ ∞ (or δ→ 0). The measure of each subarea
tends to zero (Ai → 0), the average load of each subarea Li becomes the average point load λ(x, y) and
the corresponding area Ai is written as dA, in terms of the integral formalism.

Theorem 3 provides a straightforward interpretation for λ(x, y). If the average point load λ(x, y)
is constant throughout an area S then it coincides with the average load L of that area. However,
in the general case some subareas of S might have different average load of some other subareas,
i.e., the average load of the area S changes from point to point. In such cases λ(x, y) shows how the
average load of S changes from point to point. Note that the average load λ(x, y) of a single point
(x, y) is not a measurable magnitude by itself. It must be always integrated over an area in order to
provide a meaningful and measurable result.

7. Joint Probability Density Function for a Hop

The rest of this paper focuses on the traffic load in multi-hop networks. This is the most interesting
case, compared to receptions load and energy consumption load, since traffic load (a) is directly related
to the routing policy; (b) is not affected by the energy consumption model; and (c) apparently depends
on the distance from the sink. The following three sections present the newly defined average area and
point load in a real case. The adjective “average” will be omitted henceforth, since both the area load
and the point load are valid terms only when they are referred to their average values.

Let us assume a simple routing policy, where each node chooses a proper neighbor and forwards
all the packets (its own packets along with the packets received by other nodes) to this neighbor.
Consequently, the flow of packets towards the sink forms a tree with the sink as the root. Details
about how each node selects the particular neighbor are not important here. Let us also assume that
each node generates one packet per time unit and all these packets are traveling from node-to-node
uncompressed. It has already been mentioned in Section 3 that the number of packets each node
transmits is called traffic load of that node.
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Consider that a node u chooses the neighbor v as its next hop towards the sink (Figure 4).
The euclidean distance between nodes u and v is denoted by h and is referred to as the hop-length of
u. The direction of the hop forms an angle φ with the line that joins the position of u and the sink
(the sink direction from u), as depicted in Figure 4. We will refer to this angle as the hop-direction.
Consequently, the hop from u to v can be seen as a vector h with measure h (hop-length) and direction
φ (hop-direction).

Figure 4. Hop from u to v as a vector h.

Suppose that the random experiment of Section 3 is performed once and k nodes happen to fall
within a fixed area S. Let us write the k nodes as u1, u2, . . . ,uk. Each one of them has a corresponding
hop vector h1, h2, . . . ,hk. The average hop of S, for this experiment, is defined as the resultant of these
k vectors, divided by k,

H =
h1 + h2 + · · ·+ hk

k
. (12)

The particular direction of H can be defined as the angle between the vector itself and the line defined
by the geometric center of S (the centroid) and the position of the sink, as depicted in Figure 5.

Figure 5. Average hop of an area S for a network instance (a single execution of the random experiment).

If we repeat the random experiment many times then H follows some joint probability density
function (joint-pdf henceforth), denoted by P(H, φ), where H and φ are the measure and the direction
of H respectively (hop-length and hop-direction of H). Function P(H, φ) is the probability density for
H to be a vector with hop-length H and direction φ. The term “joint” has been used here because the
outcome of the experiment gives a combination of two random variables, hop-length and hop-direction.
The term “probability density” is due to the fact that both hop-length and hop-direction are continuous
random variables.

In an analogous manner as in Section 4, the average hop of the area S is defined as the expected
value of H or equivalently the expected value of the joint-pdf P(H, φ). Similarly to Section 6.2, if {Sn}
is a nested sequence around the point (x, y) and Sn → (x, y) then the average hop of Sn becomes the
average hop at point (x, y) and the joint-pdf of Sn becomes the joint-pdf at that point. The average
hop of a point will be denoted by h, the average hop-length by h and the average hop-direction by
φ. In general, the joint-pdf of a point (x, y) depends on the position of that point and therefore it
can be written as p(x, y, h, φ). Without being too mathematically strict, p(x, y, h, φ) can be seen as
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the probability (in terms of density) to have a hop with departure point (x, y), hop-length h and
hop-direction φ. Since p(x, y, h, φ) is a probability density function it must satisfy∫∫

S

p(x, y, h, φ) dA = 1, (13)

for every point (x, y) of the network area S. Note that the point (x, y) is fixed for the integration
of Equation (13). The integral is calculated over all possible hops departed from (x, y). If the
communication range is c then the double integral in Equation (13) can be calculated over the disk that
is centered at the point (x, y) and has radius c, instead of the entire network area.

8. Circular Networks

The analysis can be significantly simplified in the case of a circular network. For the rest of this
paper it will be assumed that the network covers a disk-shaped area and the sink is positioned at the
center of the disk. The network’s shape remains the same after a rotation around the sink. Moreover,
all existing routing policies are isotropic, i.e., a rotation of the network does not change any path from
each node to the sink. More formally, the output of the routing function F (Equation (1)) is the same
after a rotation of the network around any point by any arbitrary angle. Recall also that the nodes’
deployment is uniformly random and therefore, nodes’ surface density is constant and unchanged
after a rotation. Consequently, a disk-shaped network with the sink at the center has central symmetry
with respect to the sink and, consequently, all magnitudes related to the routing will also be centrally
symmetric. The interest here is for the traffic load and the joint-pdf at any point (x, y). Due to the
central symmetry, both magnitudes are independent from the relative direction with respect to the
sink and depend only on the distance from the sink. In polar coordinates the position of a point is
described as (r, θ), where r is the distance from the sink (the radius of the point) and θ the polar angle
with respect to some arbitrary axis. For simplicity, the distance between a point and the sink will
be henceforth referred to as the radius r of that point, meaning the radius of its polar coordinates.
Eventually, in polar coordinates the traffic load can be written as λ(r) and the joint-pdf as p(r, h, φ).

Consider a fixed point Q with radius r0 and a disk D with radius c (the communication range)
and center the point Q (Figure 6). All points within D have some probability to select the point Q as
their next hop. Let the point P be an arbitrary point of the disk D (P ∈ D), with polar coordinates
(r, θ). The polar axis for the definition of the polar angle θ is the direction of Q with respect to the sink
(the direction of r0). For the hop from P to Q, the distance |PQ| is the hop-length h and the angle φ the
hop-direction, as presented in Figure 6. The joint probability density function for the pair h, φ to occur
simultaneously is the joint-pdf p(r, h, φ).

Figure 6. A hop from P to Q.

Point Q sees that all points within D have some probability density function to choose it as the
next hop. The total probability for Q to be chosen is

∫∫
D p(r, h, φ)dA. If we consider the hop from P to
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Q as our favorable outcome among all possible hops targeting Q, then the probability for this hop to
occur is

p(r, h, φ)∫∫
D

p(r, h, φ) dA
. (14)

Every time the point P chooses the point Q as its next hop all packets of P are transferred to the
point Q. The number of the transmitted packets at point P is the traffic load λ(r) of P. From a traffic
load point of view, every time the hop from P to Q occurs, the traffic load of P is transferred to the
point Q, i.e., Equation (14) corresponds to the probability for traffic load λ(r) to be transferred at point
Q. Point Q receives the traffic load from all points within D, with a different probability for each point.
The total traffic load that point Q receives from the disk D is

T(r0) =
∫∫
D

p(r, h, φ)∫∫
D

p(r, h, φ) dA
λ(r) dA =

∫∫
D

p(r, h, φ)λ(r) dA∫∫
D

p(r, h, φ) dA
, (15)

where T(r0) is the total transferred load at point Q.
In polar coordinates the area’s differential is dA = rdrdθ. The magnitudes of h and φ can be

expressed as functions of r and θ by resolving the triangle of r, r0 and h. If we apply the law of cosines
and the law of sines to the aforementioned triangle we can express h and φ as functions h = h(r, θ) and
φ = φ(r, θ) (the details of these expressions are trivial and omitted). In both integrals of Equation (15)
the variable r takes values between r0 − c and r0 + c. For each value of r the angle θ takes values
between −θ0 and θ0 as shown in Figure 7. Clearly, θ0 is a function of r, i.e., θ0 = θ0(r). After the above
substitutions, the integral of the nominator of Equation (15) becomes

r0+c∫
r0−c

θ0(r)∫
−θ0(r)

p (r, h(r, θ), φ(r, θ)) · λ(r) r dr dθ =

r0+c∫
r0−c

θ0(r)∫
−θ0(r)

p(r, θ)dθ

︸ ︷︷ ︸
P(r)

λ(r) r dr. (16)

Figure 7. The integration of Equation (16). For each r between r0 − c and r0 + c corresponds an angle
θ0, which is a function of r.

The internal integral of Equation (16) does not depend on the polar angle θ and therefore it can be
written as P(r). If we repeat the same calculations on the denominator of Equation (15) then it becomes

T(r0) =

r0+c∫
r0−c
P(r)λ(r) r dr

r0+c∫
r0−c
P(r) r dr

. (17)
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Equation (17) is the weighed average of λ(r) in the interval [r0 − c, r0 + c], with weighed function
P(r) r. The weighed mean value theorem for integrals states that for two functions f , g : [a, b] → R,
such that f is continuous and g is integrable in the interval [a, b], the following holds true,

b∫
a

f (x) · g(x) dx = f (x0)

b∫
a

g(x)dx, (18)

where x0 ∈ (a, b) [34]. In the terminology of the weighed mean value theorem for integrals, f (x0) is the
mean value of the function and g(x) the weighed function. In the case of Equation (17), the weighed
mean value theorem for integrals says that the value of T(r0) equals the value of λ(r) at some radius
between r0 − c and r0 + c. If z denotes the difference between that radius and the r0 then that radius
can be written as r0 + z. Eventually, Equation (17) can be written as

T(r0) = λ(r0 + z), (19)

where −c < z < c. Since traffic load is expected to be a decreasing function of r (the closer to sink the
higher the load) it can be assumed that for the usual routing mechanisms z > 0 is satisfied. Note also
that Equation (19) is still valid at points close to the periphery. In this case, the integrals of Equation (15)
can be calculated over a clipped disk and then, the reasoning until Equation (19) remains the same,
except from the integration’s limits which will be clipped accordingly.

Equation (19) hides all the complexity of the random environment behind the variable z. At some
distance from the sink a point receives as much load as the load at a longer distance, but no longer
than one radio-range. Conclusively, traffic load increases in steps or “hops” and z is the length of
these hops. For that reason we will refer to z as load progress. The term “progress” is widely used as a
measure for the displacement towards the sink [35,36], especially in geographical routing policies [37].
From Equations (16) and (17) it is clear that the value of z is determined by the combination of the
weighed function P(r) r and the function of load λ(r).

9. The Case of Constant Load Progress

This section assumes that load progress z is independent from radius r and has a constant value
throughout the network. This is the simplest form of z and, in addition, it makes the estimation of
traffic load almost straightforward. Although it is not clear which attributes of the routing policy result
in such a simple load progress, it will be assumed that there exists an ideal routing policy that leads to
a constant z. In the next section, the results of this section will be compared with the traffic load of
some real-world routing policies.

The network is uniform, therefore, the nodes’ surface density (nodes per area unit) is constant and
is denoted by ρ. Consider an elementary ring with radius r and infinitesimal width ∆r, as shown in
Figure 8. The area of the ring is 2πr∆r and the number of nodes within this area is ρ2πr∆r. The number
of packets that has been transferred to the ring is T(r) and the extra packets that have been generated
by the ring itself are ρ2πr∆r. Thus, the ring transmits T(r) + ρ2πr∆r packets in total. The number
of the transmitted packets can be computed by the traffic load directly, because the ρ2πr∆r nodes of
the ring have the same radius r and therefore the same traffic load λ(r). They transmit ρ2πr∆r · λ(r)
packets in total. Either calculation must yield the same magnitude, therefore,

ρ2πr∆r · λ(r) = T(r) + ρ2πr∆r. (20)

According to Equation (19), load increases in “hops” with length z. The number of packets that
have been transferred to the ring, i.e., T(r), is equal to the number of packets that has been received
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at radius r + z, i.e., T(r + z), plus the extra packets of the ring at the radius r + z, i.e., ρ2π(r + z)∆r.
That is

T(r) = T(r + z) + ρ2π(r + z)∆r. (21)

Equation (21) can be applied recursively m times, as Figure 9 shows. The distance from the radius
r to the network boundary is R− r and m is the quotient of the euclidean division of R− r by z,

R− r = mz + δ⇒ m =
R− r− δ

z
, (22)

where δ is the remainder.

Figure 8. A ring with infinitesimal width ∆r.

Figure 9. Derivation of Equation (22).

Equations (20) and (21) are rewritten along with the recursive application of Equation (21)

ρ2πr∆r λ(r) = T(r) + ρ2πr∆r

T(r) = T(r + z) + ρ2π(r + z)∆r

T(r + z) = T(r + 2z) + ρ2π(r + 2z)∆r

T(r + 2z) = T(r + 3z) + ρ2π(r + 3z)∆r

· · ·
T(r + mz) = ρ2π(r + mz)∆r.

(23)

The recursion ends because the ring at distance r + mz transmits only the packets generated by
itself. The addition of the left and right sides of Equation (23) yields

rλ(r) = [r + (r + z) + (r + 2z) + · · ·+ (r + mz)]⇒

rλ(r) =
m

∑
i=0

r + z
m

∑
i=1

i = (m + 1)r + z
m(m + 1)

2
. (24)

By substituting the value of m from Equation (22) and ignoring δ (negligible when compared to
R), Equation (24) is written as

λ(r) =
R2 − r2 + (R + r)z

2rz
. (25)

Figure 10 shows a typical graph of Equation (25). Traffic load is a decreasing function of r. It takes
the value 1 at the periphery (r = R). This is the expected behavior, since the periphery transmits only
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its own packets. However, the ideal routing assumes that traffic load goes to infinity for distances too
close to the sink and this cannot be true for real-world routings.
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Figure 10. Traffic load versus distance from the sink as given by Equation (25), (a) normal plot,
(b) semi-log (log-linear) plot.

10. Results

In Section 9 it was assumed an ideal routing policy that has the same load progress z regardless
of the distance from the sink r. However, this is not always true for all routing policies. This section
compares the traffic load of some existing (implemented in devices) routing policies with that of the
ideal routing.

Simulations are conducted in a custom java program. Each network instance contains 2000 nodes,
randomly deployed over a circular area with radius R = 1. Nodes’ radio-range is chosen as the 7.07%
of network radius R, in order to have on average 10 neighbors per node [38]. Each node produces
one packet, which is delivered to the sink by some routing policy. For each node the number of the
transmitted packets equals the traffic load λ of that node. In order to approximate the traffic load at
a point, the radius R is divided into 30 equal intervals (or rings). The average traffic load over the
nodes that happen to fall within a ring is the traffic load L for that ring and for one network instance,
as given by Equation (2). In order to approximate the traffic load’s expected value, 250 networks are
constructed (different network instances) and for each ring, the mean value over these networks is
computed. This approximates the area’s traffic load L of each ring, as given by Equation (3). Due to
the fact that the rings are too narrow, the points within each ring have almost the same traffic load.
Therefore, the traffic load of the ring approximates the point traffic load at the middle of the ring
(the median point between the interior and exterior ring’s radii). The resulting point’s traffic load
(or equivalently the ring’s load) is depicted as a small gray circle in the figures of this section (one
circle per ring).

The aim here is to see how well Equation (25) describes the traffic load as a function of the radius
r. The only unknown variable in Equation (25) is the load progress z. This can be estimated by the
method of least squares, a well-known statistical procedure in regression analysis [39]. The goodness of
fit between the resulting curve and the simulated points is evaluated by the Coefficient of Determination
(COD) [39]. The value of COD = 1 corresponds to a perfect fit, whereas, values close to zero show no
fit at all.

Equation (25) has been compared with the simulated traffic load for eight routing policies.
These are:

(a) Minimum Hop Count, also known as Minimum Delay Tree, Breadth First Tree or Shortest
(in number of hops) Path Tree. Nodes are aware of their hop number, that is the minimum
number of hops from the node to the sink. Each node forwards its packets towards a neighbor



Technologies 2018, 6, 112 15 of 21

with less hop number than the node itself. The resulting tree is the same with that of the Dijkstra’s
or Bellman-Ford algorithm, if the edge cost is considered as 1 for all edges.

(b) Shortest Path. The classic Dijkstra or Bellman-Ford algorithm, where edge cost is the euclidean
distance between nodes.

(c) Minimum Transmission Energy. The same as (b) the only difference being the edge cost. Here,
edge cost is a power of the distance between the two edge’s nodes, with the exponent usually
defined between 2 and 4 [40]. In that way, edge cost becomes proportional to the required
energy for transmission, hence the name. The exponent that has been used for this comparison
is 2. Larger exponents give similar (and in some cases even better) results, but they are not
included here.

(d) Sink Betweenness Routing [41]. Sink betweenness is a centrality measure attributed to a node,
which shows how likely is it for that node to become a hot-spot. Each node shares its packets
among the neighbors that are closer (in number of hops) to the sink than the node itself. Nodes
that are more likely to be hot-spots (higher sink betweenness) receive less packets than the others.
Packets are delivered to the sink in a multi-path manner, since there is no tree formation in
this policy.

(e) α-Shortest Path [42]. Same as (b) with the difference being that the edge cost is multiplied by
a factor α after each hop, starting from the sink to the tree leaves. That way edges close to the
sink become more important than the distant ones. The value of a = 5 has been used for this
comparison. Different values for a give similar results as those presented here.

(f) Minimum Spanning Tree. The classic tree of minimum total edge cost (Prim’s or Kruskal’s
algorithm). Edge cost is the euclidean distance between nodes.

(g) Greedy Geographical Forwarding. The most common of the position-based routing policies [43].
Nodes forward their packets to the particular neighbor that minimizes the distance from the
sink, i.e., the one that is closer to the sink. No other infrastructure is needed, apart from the
knowledge of the distance from the sink.

(h) Minimum Residual Energy [40]. Same as (b) but with edge cost the inverse of the neighbor’s
residual energy. Edge cost changes after a transmission, therefore, the tree does not remain
constant. Is is considered here that the initial energy is the same for all nodes. The residual
energy after the first nodal loss is taken into account and the resulting tree is considered to be a
representative one for this routing policy.

Figures 11–14 present the graph of Equation (25) as a continuous line and the simulated traffic
load as small gray circles. Table 1 shows the estimated values of load progress z as a percentage of
the radio-range along with the confidence interval 95% and the coefficient of determination for the
aforementioned routing policies. In most routing policies Equation (25) fits upon the simulated points
fairly well and in some of them almost perfectly, except for the Minimum Spanning Tree, in which
traffic load is increased in a quite different way as Equation (25) suggests. Recall that the derivation of
Equation (25) was based on a constant load progress z throughout the network (independently from
radius r). The assumption of a constant z seems to be valid in most routing policies, especially at points
that are not too close to the sink.
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Figure 11. Comparison between Equation (25) and the simulated traffic load as a function of the
distance from the sink for two routing schemes, Min Hop Count and Shortest Path. (a) normal (linear)
plot, (b) semi-log plot (log-linear).
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Figure 12. Comparison between Equation (25) and the simulated traffic load as a function of the
distance from the sink, for two routing schemes, Minimum Transmission Energy and Sink Betweenness.
(a) normal (linear) plot, (b) semi-log plot (log-linear).
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α-Shortest Path Routing (a)
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Figure 13. Comparison between Equation (25) and the simulated traffic load as a function of the
distance from the sink, for two routing schemes, α-Shortest Path and Minimum Spanning Tree.
(a) normal (linear) plot, (b) semi-log plot (log-linear).
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Figure 14. Comparison between Equation (25) and the simulated traffic load as a function of the
distance from the sink, for two routing schemes, Greedy Geographical and Minimum Residual Energy.
(a) normal (linear) plot, (b) semi-log plot (log-linear).
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Table 1. Load progress z and Coefficient of Determination (COD) for the compared routing policies.

Policy
Load Progress z

along with the Confidence Interval 95%
as a Portion of the Range c

Coefficient of Determination

Minimum Hop Count 0.829 ± 0.065 0.9517
Shortest Path 0.741 ± 0.056 0.9450

Minimum Transmission Energy 0.335 ± 0.007 0.9790
Sink Betweenness 0.808 ± 0.069 0.9390

α-Shortest Path 0.739 ± 0.059 0.9390
Minimum Spanning Tree 0.133 ± 0.005 0.7227

Greedy Geographical 0.932 ± 0.076 0.9594
Minimum Residual Energy 0.623 ± 0.011 0.9961

11. Conclusions

This paper provides a consistent definition of the term “average load” for both an area and a
point within a random wireless sensor network. The average area load is defined as the expected value
of the average of those nodes that happen to fall within the area. If an area is reduced (or contracted)
to a single point, then the average area load converges to the average point load. It has been proved
here that the average area load is the integral of the average point load over the area, divided by the
area’s measure. The average point load is not a measurable magnitude on its own. It requires to be
always integrated over an area and divided by the area’s measure in order to provide the average load
of that area.

These definitions, introduced in this paper, have been applied in the case of traffic load in
multi-hop networks. Especially for circular networks, traffic load increases in steps, similar to the
packet’s hops. The assumption that these steps are independent from radius (distance from the sink)
leads to a simple analytical expression for the traffic load. The analytical expression attains to describe
the traffic load of many routing policies fairly well and in some cases very well. The assumption
that traffic load increases in constant steps appears to be valid or almost valid in many existing
routing policies.

In conclusion, the study of load as presented in this paper gives insight into the particulars of
an attribute that affects—among other attributes—network lifetime and eventually the nature of the
supported applications. Given that the emerging 5G mobile technology will give a new perspective
to wireless sensor applications for assistive environments like personal health-care, smart home and
smart city applications, etc., the outcomes of this paper will help evaluate future applications in the
considered network environment.
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Abbreviations

The following abbreviations are used in this manuscript:
Variables
N Total number of nodes
c Communication range or radio-range
F Routing function
S Area of the entire network
S An area within the network
D A disk-shaped area with radius c
A Measure of an area (e.g., in m2)
R The radius of a circular network
` Load of an individual node for a single execution of the random experiment
L Average area load for a single execution of the random experiment
L Average area load (or simply area load)
λ Average point load (or simply point load)
h Vector representation of a hop
h Measure of h, or hop-length
φ Direction of h, or hop-direction
H The vector of the average hop for an area and for a single execution of the random experiment
H The measure of H
P(H, φ) Joint probability density function of H, or joint-pdf for an area
p(x, y, h, φ) Joint probability density function at point (x, y)
r Distance from the sink in polar coordinates
θ Polar angle in polar coordinates
T The traffic load that is transferred at a point from its neighborhood
z Load progress
ρ Surface density of nodes (nodes per unit area)
COD Coefficient of Determination
joint-pdf joint probability density function
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