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Abstract: Admission and discharge diagnoses of in-hospital patients are often in discord. Incorrect
admission diagnoses are related to an increased cost of care and patient safety. Additionally, due to
the seasonality of many conditions, this discord may vary across the year. In this paper, we used
medical claims data to develop a methodological framework that examines these differences for
Medicare beneficiaries. We provide examples for pneumonia, which is a condition with seasonal
implications, and aneurysm, where early detection can be lifesaving. Following a Bayesian approach,
our work quantifies and visualizes with time-series plots the degree that any clinical condition is
correctly diagnosed upon admission. We examined differences in weekly intervals over a calendar
year. Furthermore, the median length of stay and the mean hospital charges were compared between
matching and non-matching {admission, discharge Dx} pairs, and 95% confidence intervals of the
difference were estimated. We applied statistical process control methods, and then visualized the
differences among the hospital charges and the length of stay, per week, with time-series plots.
Our methodology and the visualizations underline the importance of a rigorous and non-delayed
diagnostic process upon admission, since there are significant implications in terms of hospital
outcomes and cost of care.

Keywords: health informatics; clinical decision making; seasonal variations; admission diagnosis;
health outcomes; visualization

1. Introduction

Today, hospitals generate large amounts of data that are kept in large data warehouses. This has
enabled data scientists to mine useful information for clinical decision making. Data-driven systems
utilize a number of clinical attributes, including laboratory, radiology tests, patient history, and more.
There are many implementations of clinical decision support systems that predict the patient
diagnosis, identify high-risk patients, and provide treatment insights. Many of these examples rely
on data analytics and large secondary datasets [1,2]. Examples include the identification of clinical
events [3], the evaluation of medical device effectiveness [4], and the understanding of patterns in rare
conditions [5]. A number of research examples utilized claims data from the Centers for Medicare and
Medicaid Services (CMS) [6]. CMS describe their data to be intended for “important research that will
lay the foundation for better quality and lower costs in the healthcare system”.

Newly admitted patients at the hospital are assigned with an admission diagnosis (Dx) upon
hospitalization. This admission Dx code on the medical claim indicates the initial Dx that the beneficiary
was given, at the time of admission. The principal exit Dx is the condition that occasioned the need for
hospitalization, and is determined after the patient has been thoroughly examined and completed any
medical tests. There is published evidence that the admission and discharge Dxs are often in discord.
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Researchers have studied theses discrepancies and their effect on outcomes of care [7]. Since long ago,
researchers have started to study these discrepancies and the characteristics of patients with high rates
of admission-discharge Dx discrepancies. Leske found that discrepancies existed in 26.8% of all hospital
admissions, and are most frequent in medical, pediatric, and neurological patients [8]. In another
research that examined the coding accuracy of hospital discharge data in cardiac care units, it was
found that the sensitivity of the examined diagnoses was 60.7% [9]. It is reasonable to hypothesize
that discrepancies between admission and discharge Dx can lead to unwanted medical examinations,
incorrect treatments, or delays in delivering care. There are also patient safety implications, such as
negative hospital outcomes of care, inefficiencies to the process of care delivery, and the increased
cost of care. The latter, subsequently, is often transferred to patients and their payers in the form
of increased hospital charges. Finally, existing approaches for the quantification of discrepancies
{admission, discharge Dx} focus on measuring the overall effect on outcomes or finding patient profiles
where these discrepancies appear in high frequency [7–9]. Since it is likely for hospitalized patients
to be assigned the incorrect admission Dx code, the thorough and non-sporadic use of diagnostic
protocols and differential diagnosis tools are important for improved diagnosis accuracy [10,11].

The seasonal aspect of diagnosis discrepancies is reasonable to be examined, considering how
seasonality plays a role in the prevalence of some diseases, such as respiratory ones. Research rarely
addresses the seasonal aspect of diagnosing diseases. During the year, a given symptom may lead to a
diagnosis with variable probability. For instance, it is more frequent for cough to be associated with
seasonal flu during winter rather than during the summer months.

This paper, which is an extension of our previous research work [12], the admission-discharge Dx

discrepancies are examined in a temporal manner in weekly intervals. We had presented an approach
to examine the seasonal variation of discrepancies. Now, we are quantifying these discrepancies in a
temporal manner, and furthermore examining their associations with the length of stay and hospital
charges. We define, as discrepancy, the mismatch between admission and discharge Dx.

Therefore, in this paper, we present a methodological framework to calculate and visualize the
strength of the “admission Dx→discharge Dx” relationship for each of the 52 weeks of a calendar
year. We examine the degree to which clinical decision makers did not “label” the patient with the
diagnosis that was finally given as a primary exit Dx, on discharge. Therefore, we want to quantify the
conditional probability P (AD = k | PED = k), and not the inverse P (PED = k | AD = k): Our goal is not
to predict the exit Dx based on the admission Dx, but rather examine the probability of a diagnosis to
be set correctly early on, during admission. We also introduce two measures: length of stay (LOS) and
Claims Payment Amount to measure and visualize with time-series plots how the diagnosis discrepancies
are associated with increased hospital charges and prolonged hospital stay. In order to demonstrate our
methodology, we provide exemplified time-series plots for two conditions: pneumonia, a respiratory
condition with seasonal implications, and aneurysm, a life-threatening condition that is crucial to
be detected in a non-delayed manner. For the purpose of this study, we transformed International
Classification of Diseases (ICD) 9-CM codes to Clinical Classification Software (CCS) codes developed
by the Agency for Healthcare Research and Quality (AHRQ) [13]. With this grouping, we are more
confident that a non-matching admission-discharge Dx is a real mismatch: different CCS codes describe
different clinical conditions, at least sufficiently. In contrast, due to the ICD specificity, two ICD-9-CM
codes may describe almost identical conditions, and therefore, an ICD-9-CM admission-discharge
mismatch would not necessarily imply failure to recognize the condition.

Our work does not examine confounding factors such as the geography of hospitalization,
the beneficiary age, gender, or type of hospital admission, since the objective is not the causation of
discrepancies, but rather their prevalence and association with two outcomes. Further research can
focus on aspects of care and patient characteristics that act as burdening factors to admission-discharge
diagnosis discrepancies, such as in the work of Johnson et al. [14], where the authors examined how
these discrepancies are predictors of the length of stay, via a Generalized Linear Regression (GLR)
model, adjusting for patient factors.
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The paper begins by introducing to the reader important terminologies, and then discusses our
replicable methodological framework that can be applied to firstly measure discrepancies in a temporal
manner, and secondly compare and visualize (with time-series plots) differences to outcomes of care
between correct and incorrect admission Dxs. Finally, the paper uses our framework for pneumonia
and aneurysm, and visualizes the degree to which the diagnosis discrepancies lead to increased
hospital charges and prolonged hospital stay. This research aims to raise awareness of the importance
of an evidence-based and robust diagnosis triage process upon admission, and the uninterrupted and
thorough application of up-to-date diagnosis protocols during the clinical encounter. This is, in turn,
anticipated an improvement in patient safety aspects and a reduction in the cost of care.

2. Terminologies

International Classification of Diseases (ICD): The nomenclature system for diseases standardized by
the World Health Organization (WHO) for reporting diseases, injuries, disorders, and other medical
conditions. Both the admission and principal exit Dx attributes in our dataset were coded using
ICD-9-CM, which is the clinical modification of the ninth ICD revision [15].

Clinical Classification of Software Codes (CCS): The CCS classifies each ICD-9 code into broader
disease categories. Since there are more than 14,000 different ICD-9 codes, CCS groups ICD codes
into a smaller number of exclusive disease categories. The CCS to ICD-9 mapping is available from
the Healthcare Cost and Utilization Project (HCUP) [16]. The cardinality of the relationship between
the ICD and CCS is N-1. For example, ‘481′ is the ICD-9 code for ‘Pneumonia due to Streptococcus
pneumoniae’, while ‘483′ is an ICD-9 code for ‘Pneumonia due to other specified organism’. Both would
be grouped under the same CCS code (CCS = 122).

Admission Diagnosis (AD): This is an ICD code on the medical claim that indicates the initial Dx

that the beneficiary was assigned with, at the time of hospital admission. The admission diagnosis can
be considered as the initial diagnostic evaluation of the patient.

Principal Exit Diagnosis (PED): This is an ICD code on the medical claim that is determined after
the patient has been thoroughly examined and has completed any laboratory and radiology tests.
The Principal Exit Diagnosis indicates what occasioned the need for hospitalization. In this work,
this is our ground truth variable.

3. Materials and Methods

3.1. Data and Attributes

The research uses the SynPUF dataset. This is publicly available from the Centers for Medicare and
Medicaid Services (CMS), in order to facilitate research efforts. SynPUF is a synthetic medical claims
dataset that simulates real hospital admissions data. The SynPUF data include the same patterns and
trends that can be found in non-synthetic datasets. Non-synthetic datasets are available for purchase
by CMS. The SynPUF data includes the following information: claim period, provider number,
claim payment, primary and secondary diagnoses, medical procedure codes, Diagnostic Related Group
(DRG) codes and price, utilization day count, and the coinsurance deductible amount. CMS makes
20 different subsets of SynPUF data available. We used the Inpatient Claims SynPUF files, since our
focus is on inpatient admissions, so as to study the nature of discrepancies between admission Dx and
the Principal Exit Dx. The most recent SynPUF data made available by CMS consist of three years of
simulated data for patients admitted between 2008–2010. Each sample consisted of approximately
65,000 records, and as we merged 10 sample datasets as mentioned in Supplementary Materials section,
the final number of records was approximately 650,000 records. The attributes that we used for this
study are shown in Table 1 [17].
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Table 1. Attributes used in this study. ICD: International Classification of Diseases.

SynPUF Attribute Description Comments

Admitting ICD-9 Diagnosis Code

Initial Dx code on the institutional claim
indicating the beneficiary’s initial diagnosis
at the time of admission, before any further

patient investigation took place

Referred to as AD
(Admission Diagnosis)

ICD-9 Diagnosis Code 1

The beneficiary’s principal exit diagnosis.
It typically represents the health problem
that caused the need for hospitalization.

This attribute is our ground truth

Referred to as PED
(Principal Exit Diagnosis)

Claims Admission Date The date the beneficiary was admitted to
the hospital or skilled nursing facility

To calculate the length of stay
(LOS, based on the

discharge-admission dates)
Beneficiary Discharge Date The date when the patient was discharged

from the hospital

Claim Payment Amount
The amount of payment made from the

Medicare trust fund for the services covered
by the claim record

The amount (USD) associated with
the diagnostic-related groups

Description of all SynPUF attributes can be found in the CodeBook as mentioned in the Supplementary
Materials section.

3.2. Methodological Framework

We started by appending the 10 SynPUF data samples; then, we extracted the attributes of interest
(Table 1), and finally joined the resulting dataset with CCS codes to group various diseases into one
single bucket. By joining with the CCS code set, 3888 different admission Dx codes were grouped
under 245 unique CCS categories, whereas 4723 different Principal Exit Dx codes were grouped under
251 unique CCS categories. We then replaced the admission date information with the calendar week,
and hence, the data were categorized under 52 different week categories.

Prior to investigating the {AD, PED} discrepancies, we were interested to learn about the frequency
of each CCS code during the calendar year, in a temporal manner, per week. The result of Formula (1) is
the percent of Principal Exit Diagnosis of pneumonia over the total number of admissions, during week
w:

P(w) =
P(PED = Pneumonia)

P(PEDi)
× 100 (1)

where w is a calendar year week; PED = Principal Exit Diagnosis; P(PEDi) is probability for any PED
for week w (total admissions for week w).

The next step involves the calculation for every PED of (i) the number of cases where the AD
matches the PED and (ii) the number of cases where the AD and PED mismatch (AD = other, PED = Dx

of interest). These calculations were made for the entire year, as well as per week separately. With this
information, it now becomes possible to calculate the precision and recall of the admission diagnosis
for any PED of interest, and prepare confusion matrices accordingly. Obviously, in our approach, the
test variable is the AD, and the ground truth variable is the PED.

Formula (2), below, is the probability for pneumonia to be correctly diagnosed upon admission.
Formula (3), on the other hand, is the probability for pneumonia to be incorrectly mislabeled as any
other condition during the admission phase. These probabilities are complementary, and inform us
“what physicians initially thought while trying to diagnose a later-known patient diagnosis”.

{P(AD = Pneumonia |PED = Pneumonia)} (2)

{P(AD = Other Diagnosis |PED = Pneumonia)} (3)

We then compared the matching versus mismatching {AD, PED} pairs in terms of the length
of stay (LOS) and the hospital charges. We calculated, for the hospital charges, the mean and 95%
CI of the hospital charges for the matching and the mismatching cases separately. In the case of the
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LOS, we used a non-parametric approach, and the median instead of the mean, since the LOS does
not follow a normal distribution, and is log skewed to the right. For both hospital charges and the
LOS, the comparison was made in a temporal manner, for the 52 calendar weeks. Then, we subtracted
the two means/medians, in order to find the difference of means/medians and the 95% CI of the
difference of means/medians. Formula (4) shows the calculation of the difference for the charges:

Diff = xmismatch − xmatch (4)

where:

xmismatch =
1

nmismatch

n

∑
k=1

xk

xmatch =
1

nmatch

n

∑
k=1

xk

The aforementioned differences were calculated per week, thus generating a temporal dataset
of 52 data points per Principal Exit Diagnosis. The final step involves the application of statistical
process control (SPC) methods in order to smoothen the temporal data packets and reduce the effect of
random spikes on the visualized time series plots. The SPC method that we used is the Exponential
Weighted Moving Average (EWMA) algorithm (Formula (5)). While other control charts treat rational
subgroups of samples individually, the EWMA chart tracks the exponentially-weighted moving
average of all prior sample means. EWMA weights samples in geometrically decreasing order, so that
the most recent samples are weighted most highly, while the most distant samples contribute very little.
After experimenting with different depth of memory values during our smoothing effort, we decided
to use a smoothing factor λ = 0.3, and therefore, the EWMA transformations and time-series plots are
generated accordingly:

EWMAi = λYt + (1− λ)EWMAt−1for t = 1, 2, . . . , n (5)

where EWMA0 is the mean of historical data (target); Yt is the observation at time t; n is the number of
observations to be monitored including EWMA0; and 0 < λ ≤ 1 is a constant that determines the depth
of memory of the EWMA.

The difference of the means (e.g., mean LOS for non-matching {AD, PED} minus the mean LOS for
matching {AD, PED}) per week were finally used to generate time-series plots. These plots visualize
the raw differences, as well as the EWMA-smoothened differences. Figure 1 illustrates and summarizes
our replicable methodological framework.
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4. Results

4.1. Seasonal Variations of Disease Frequency

We selected two example diagnoses in order to illustrate our methodology: pneumonia,
a respiratory disease with seasonal implications, and aneurysm, a life-threatening condition. The results
section presents examples for these two conditions. By using our replicable framework, similar output
can be generated for any diagnosis of interest. Below, in Figure 2, pneumonia is visualized to
demonstrate the seasonal aspect of this disease. We provide time-series plots of the raw frequency
ratio (%) (blue line), and then, we smoothened the time-series plot (red line), using EWMA with a
depth of memory λ between 0.2–0.3.
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Examining the EWMA line plot (Figure 2), the ratio of pneumonia gradually increases during
winter until mid-February (week seven), and then gradually decreases when approaching the summer
months. The decrease is especially steady during weeks seven through 14 (mid-February to early
April), with a peak low of 3.68% in week 27 (early July). In a similar manner, the frequency of any
diagnosis of interest can be visualized to examine disease-specific temporal patterns.

4.2. Mismatch between Admission and Principal Exit Diagnosis

We estimated the percent of mismatch between AD and PED. In order to examine the seasonal
aspect of this mismatch, we herein grouped data into four calendar seasons and calculated confusion
matrices for each season. Our ground truth is the PED, and we are interested in learning the accuracy
of the admitting diagnosis. The average percent of matching {AD, PED} pairs, for all 249 CCS Dx codes
was only 21.67%. The 25th quartile of this distribution was 4.54%, the median = 12.5%, and the 75th
quartile was found to be 34.96%. Table 2 shows the percent where AD matched the PED for the 20
most frequent PEDs.

We conducted correlation analysis using the Pearson coefficient to examine the relationship
between the disease (PED) frequency and the correctness (AD:PED) ratio, and found a statistically
significant, moderate to strong positive correlation (R = 0.454, p < 0.001) between these two variables:
the higher the frequency of a CCS code, the higher the probability that it is correctly classified
on admission.

Tables 3 and 4 show the confusion matrices and the recall, precision, and F-Score for pneumonia.
The precision and recall were both consistent across the four seasons (Recall = 51%, Precision = 59%),
with very minor differences. According to results, during admission, half of pneumonia cases are
misclassified by physicians as other conditions (recall = 51%). The precision was found to be higher,
at 59%; out of 10 admission diagnoses of pneumonia, six were truly pneumonia, according to the PED.
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Table 2. Correct diagnosis % (admission = discharge Dx), for the 20 most frequent Clinical Classification
Software (CCS) Principal Exit Diagnoses.

Discharge Dx N P (AD = PED) Discharge Dx N P (AD = PED)

Congestive heart failure 32,367 47.13 Acute Cardiovasc. 14,419 48.36
Pneumonia 29,619 52.20 Fluid/electrolytes Dx 12,784 45.43

Osteoarthrosis 23,870 72.26 Respiratory failure 12,458 43.30
Dysrhythmia 23,007 56.52 Hip fracture 12,316 44.85

Chronic Obstr. Pulm. Disease 20,680 45.18 Acute renal failure 12,051 36.32
Coronary atheromatosis 19,064 27.04 Back problem 11,207 74.82

Rehabilitation 17,324 82.87 Chest pain 11,170 81.34
Medical Device Compl. 16,526 25.09 Skin infection 10,220 68.80
Urinary Tract Infection 16,386 45.45 Gastroint. hemorr. 9750 71.74

Acute Myocard. Infraction 16,214 23.84 Mood disorders 9613 40.27

Table 3. Confusion matrices for the admission→ discharge discrepancies of pneumonia.

Spring Principal Exit DX Fall
Principal Exit DX

Pneumonia Other Pneumonia Other

Admission DX
Pneumonia 4317 2912

Admission DX
Pneumonia 3399 2356

Other Dx 3989 17,3046 Other Dx 3161 140,855

Summer
Principal Exit DX Winter

Principal Exit Dx

Pneumonia Other Pneumonia Other

Admission DX
Pneumonia 3930 2715

Admission DX
Pneumonia 3816 2587

Other Dx 3771 163,843 Other Dx 3547 147,968

Table 4. Recall, precision and F-Score of the admission diagnosis for pneumonia.

Spring Summer Fall Winter

Recall [TP/(TP + FN)] 0.5197 0.5103 0.5181 0.5183
Precision [TP/(TP + FP)] 0.5972 0.5914 0.5906 0.5960

F-Score [2TP/(2TP + FP + FN)] 0.5558 0.5479 0.5520 0.5544

Tables 5 and 6 show the confusion matrices and the recall, precision, and F-Score for aneurysm.
The precision and recall were similar across the four seasons (recall = 39.7% in summer versus 42.7%
in winter, precision = 44.6% in summer versus 46.7% in winter). According to results, six out of
10 aneurysm cases are misclassified by physicians as other conditions on admission. The precision
was found to be slightly higher: out of 10 admission diagnoses of aneurysm, four to five were
truly aneurysm.

Table 5. Confusion matrices for the admission→ discharge discrepancies of aneurysm.

Spring Principal Exit DX Fall
Principal Exit DX

Aneurysm Other Aneurysm Other

Admission DX
Aneurysm 325 396

Admission DX
Aneurysm 229 275

Other Dx 447 183,096 Other Dx 347 148,920

Summer
Principal Exit DX Winter

Principal Exit Dx

Aneurysm Other Aneurysm Other

Admission DX
Aneurysm 274 340

Admission DX
Aneurysm 266 304

Other Dx 415 173,230 Other Dx 356 156,992



Technologies 2018, 6, 111 8 of 12

Table 6. Recall, precision and F-Score of the admission diagnosis for aneurysm.

Spring Summer Fall Winter

Recall [TP/(TP + FN)] 0.4210 0.3977 0.3976 0.4277
Precision [TP/(TP + FP)] 0.4508 0.4463 0.4544 0.4667

F-Score [2TP/(2TP + FP + FN)] 0.4354 0.4206 0.4241 0.4463

4.3. Seasonal Comparison of LOS between Correct–Incorrect Diagnoses

4.3.1. Example 1: Pneumonia

For each week, two median LOS values were calculated: the median LOS when pneumonia
was correctly diagnosed on admission (AD = PED = pneumonia), and the median LOS when
pneumonia was misclassified as a different condition on admission (AD = other Dx, PED = pneumonia).
The difference of these two medians and the 95% CI of the difference of medians was then estimated
and visualized with time-series plots (Figure 3). For all 52 weeks, the LOS difference was positive
and varied between 0–1 days. The 95% CI of the difference of medians also remains consistently
positive across the entire calendar year. This is a significant difference from the health systems
management perspective.

Technologies 2018, 6, x 8 of 12 

 

difference of these two medians and the 95% CI of the difference of medians was then estimated and 
visualized with time-series plots (Figure 3). For all 52 weeks, the LOS difference was positive and 
varied between 0–1 days. The 95% CI of the difference of medians also remains consistently positive 
across the entire calendar year. This is a significant difference from the health systems management 
perspective. 

 

Figure 3. LOS difference of medians and 95% CI between correct and incorrect Dx of pneumonia on 
admission. 

4.3.2. Example 2: Aneurysm 

In a similar manner, for each week, two median LOS values were calculated: the median LOS 
when aneurysm was correctly diagnosed on admission (AD = PED = aneurysm), and the median LOS 
when aneurysm was misclassified as a different condition of admission (AD = other Dx, PED = 
aneurysm). The difference of these two medians and the 95% CI of the difference of medians was 
then estimated and visualized with time-series plots (Figure 4). For the majority of the 52 weeks, the 
LOS difference was positive, and varied between 0 and four days. The 95% CI of the difference of 
medians also remained consistently positive during the majority of the weeks. From the time-series 
plot below, the difference of the LOS medians appears to be gradually higher during early summer 
and lower during spring. 

These interesting fluctuations need to be further examined, so as to gain an understanding how 
seasonality may have an effect on prolonged hospital stays when health systems fail to detect 
conditions in a timely manner upon admission. 

 

Figure 4. LOS difference of median and 95% CI between correct and incorrect Dx’s of aneurysm on 
admission. 

4.4. Seasonal Comparison of Charges between Correct–Incorrect Dxs 

4.4.1. Example 1: Pneumonia 

For each week, we calculated the mean hospital charges when pneumonia was correctly 
diagnosed on admission (AD = PED = pneumonia) and the mean hospital charges when pneumonia 
was misclassified as a different condition of admission (AD = other Dx, PED = pneumonia). The 
difference of these two means and the 95% CI of the difference of means was then estimated and 

Figure 3. LOS difference of medians and 95% CI between correct and incorrect Dx of pneumonia
on admission.

4.3.2. Example 2: Aneurysm

In a similar manner, for each week, two median LOS values were calculated: the median LOS when
aneurysm was correctly diagnosed on admission (AD = PED = aneurysm), and the median LOS when
aneurysm was misclassified as a different condition of admission (AD = other Dx, PED = aneurysm).
The difference of these two medians and the 95% CI of the difference of medians was then estimated
and visualized with time-series plots (Figure 4). For the majority of the 52 weeks, the LOS difference
was positive, and varied between 0 and four days. The 95% CI of the difference of medians also
remained consistently positive during the majority of the weeks. From the time-series plot below,
the difference of the LOS medians appears to be gradually higher during early summer and lower
during spring.

These interesting fluctuations need to be further examined, so as to gain an understanding
how seasonality may have an effect on prolonged hospital stays when health systems fail to detect
conditions in a timely manner upon admission.



Technologies 2018, 6, 111 9 of 12

Technologies 2018, 6, x 8 of 12 

 

difference of these two medians and the 95% CI of the difference of medians was then estimated and 
visualized with time-series plots (Figure 3). For all 52 weeks, the LOS difference was positive and 
varied between 0–1 days. The 95% CI of the difference of medians also remains consistently positive 
across the entire calendar year. This is a significant difference from the health systems management 
perspective. 

 

Figure 3. LOS difference of medians and 95% CI between correct and incorrect Dx of pneumonia on 
admission. 

4.3.2. Example 2: Aneurysm 

In a similar manner, for each week, two median LOS values were calculated: the median LOS 
when aneurysm was correctly diagnosed on admission (AD = PED = aneurysm), and the median LOS 
when aneurysm was misclassified as a different condition of admission (AD = other Dx, PED = 
aneurysm). The difference of these two medians and the 95% CI of the difference of medians was 
then estimated and visualized with time-series plots (Figure 4). For the majority of the 52 weeks, the 
LOS difference was positive, and varied between 0 and four days. The 95% CI of the difference of 
medians also remained consistently positive during the majority of the weeks. From the time-series 
plot below, the difference of the LOS medians appears to be gradually higher during early summer 
and lower during spring. 

These interesting fluctuations need to be further examined, so as to gain an understanding how 
seasonality may have an effect on prolonged hospital stays when health systems fail to detect 
conditions in a timely manner upon admission. 

 

Figure 4. LOS difference of median and 95% CI between correct and incorrect Dx’s of aneurysm on 
admission. 

4.4. Seasonal Comparison of Charges between Correct–Incorrect Dxs 

4.4.1. Example 1: Pneumonia 

For each week, we calculated the mean hospital charges when pneumonia was correctly 
diagnosed on admission (AD = PED = pneumonia) and the mean hospital charges when pneumonia 
was misclassified as a different condition of admission (AD = other Dx, PED = pneumonia). The 
difference of these two means and the 95% CI of the difference of means was then estimated and 

Figure 4. LOS difference of median and 95% CI between correct and incorrect Dx’s of aneurysm
on admission.

4.4. Seasonal Comparison of Charges between Correct–Incorrect Dxs

4.4.1. Example 1: Pneumonia

For each week, we calculated the mean hospital charges when pneumonia was correctly diagnosed
on admission (AD = PED = pneumonia) and the mean hospital charges when pneumonia was
misclassified as a different condition of admission (AD = other Dx, PED = pneumonia). The difference
of these two means and the 95% CI of the difference of means was then estimated and visualized with
time-series plots (Figure 5). For all 52 weeks, the hospital charges difference was positive and varied
between $1000–4000. The 95% CI of the difference of means also remained consistently positive across
the entire calendar year.
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of pneumonia.

4.4.2. Example 2: Aneurysm

Similarly, for aneurysm, for each week, two mean hospital charges values were calculated: the mean
hospital charges when aneurysm was correctly diagnosed on admission (AD = PED = aneurysm) and
the mean LOS when aneurysm was misclassified as a different condition of admission (AD = other Dx,
PED = aneurysm). The difference of these two means and the 95% CI of the difference of means was
then estimated and visualized with time-series plots (Figure 6). In the case of aneurysm, the mean
difference was mainly positive, although not consistently. The lower count of aneurysm cases per
week results in wider 95% CI ranges.
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5. Discussion

This research presented a methodological framework to quantify and visualize, using time-series
plots, the admission and discharge diagnosis discrepancies for Medicare patients. This approach
examines the uncertainty of diagnostic decisions during the admission phase. Due to the seasonality
of a number of conditions (such as respiratory ones), we hypothesized that clinical decision
makers face challenges in recognizing those conditions during different calendar year periods.
Additionally, our approach examines the temporal relationship between outcomes of care and the
correct identification of a Dx on admission. By examining these differences, we can shed light on the
temporal patterns of these discrepancies and their burden on the cost and quality of care. We presented
examples for two important health systems parameters: hospital charges and length of stay.

Our results show that only the 21.67% of cases are identified correctly on admission, while there is
a moderate to strong correlation between the frequency of the final diagnosis and the aforementioned
ratio. Clinical decision makers do not correctly recognize uncommon and rare conditions early on
admission. This finding needs to be further investigated to examine whether this is an inherent problem
with rare diseases (difficulty of differentially diagnosing them) or whether it holds implications
regarding the degree of preparedness of the health systems to detect rare and uncommon conditions.
Additionally, further examination is needed to see if the observed correlation is simply due to the
uneven number of cases grouped together during the CCS binning. Our methodology is anticipated to
be useful for health systems to understand these discrepancies for any condition of interest, and for any
outcome of interest, contingent to data availability. In addition, time-series plots provide insights about
seasonal trends and patterns that may need to be examined case-by-case in a more focused manner.
As our examples indicate, discrepancies have an effect on the cost of care and the LOS, while they often
show interesting patterns over the course of the year, and have variable effects on clinical outcomes.

The presented methodological framework, and our examples, not only add to existing knowledge
that there are discrepancies between admission and discharge Dxs, they also provide insights on the
seasonal aspects of these discrepancies as far as outcomes and cost of care are concerned. Physicians
at hospitals are typically the ones who assign admission diagnoses. Themselves, as well as hospital
administrators and hospital quality committees, should be aware that the correct Dx identification
on admission holds significant cost and quality implications. The authors believe that admission
diagnosis verification systems should be included in the functionality of future implementations
of clinical decision support systems. Those systems can integrate discrepancy-specific differential
diagnosis information [18]. For instance, physicians who select an admission Dx code that often
leads to a different Principal Exit Dx, would be presented with differential diagnosis resources
that would pinpoint to aspects of care that may be further examined. These resources can include:
(i) adjusted probabilities for other candidate diagnoses that appear more frequently in historical data,
(ii) differential diagnosis criteria, and (iii) links to knowledge resources that are tailored to the specific
diagnostic problem.



Technologies 2018, 6, 111 11 of 12

6. Limitations

Our work did not include confounding factors such as the geography of hospitalization,
the beneficiary characteristics, or hospital structural attributes. Our objective was to describe and
visualize discrepancies and their bivariate association with the hospital length of stay and hospital
charges. Therefore, the associations presented in this manuscript, do not necessarily mean causation,
as there are several confounders that need to be corrected for. Therefore, in the light of results reported
here, further studies are required in order to validate these findings. We also acknowledge that these
discrepancies differ in terms of the admission-discharge similarity and the level of risk from a delayed
diagnosis. For these reasons, we studied discrepancies after having binned the ICD-9-CM codes into
broader Clinical Classification Software (CCS) codes by using ICD to CCS Conversion table mentioned
in Supplementary Materials section. With this grouping, we are more confident that a mismatching
admission and discharge Dx is a real mismatch. The trade-off for this grouping is lost information due
to binning, but this is an inherent problem for any research that utilizes diagnostic binning.

Finally, while SynPUF data simulate the patterns of the real data, its inference value is
comparatively lower compared to the real claims data. Future research and the extension of this
work will need to be based on recent purchased medical claims data. With such data, additionally,
it will be possible to examine seasonal variations state by state; the frequency of various conditions
varies in different climates. For instance, the propagation of flu, a seasonal respiratory disease,
is different in the east versus the west coast during the flu season.

7. Conclusions

Hospitals need to prioritize conducting cost-benefit analyses to consider investing in more
thorough initial patient assessment systems and process flows. Investment considerations may include
the recruitment of specialty physicians for teleconsultation during the initial patient assessment [19,20],
and the purchase of new diagnostic equipment to improve the diagnostic accuracy. Continuing
professional development and medical education and training should be factored in during these
efforts. Finally, the authors believe that the integration of differential diagnosis protocols and
verification systems to existing electronic health records and the utilization of healthcare analytics [21]
that model a multitude of patient attributes to provide assistive diagnosis would contribute to an
improved initial diagnosis accuracy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7080/6/4/111/s1.
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