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Abstract: Dynamic mechanical analysis (DMA) is the usual technology for the thermomechanical
viscoelastic characterization of materials. This method monitors the instant values of load and
displacement to determine the instant specimen stiffness. Posteriorly, it recurs to those values,
the geometric dimensions of the specimen, and Poisson’s ratio to determine the complex modulus.
However, during this analysis, it is assumed that Poisson’s ratio is constant, which is not always true,
especially in situations where the temperature can change and promote internal modification in the
specimens. This study explores the error that is imposed in the results by the determination of the
real values of complex moduli due to variable Poisson’s ratios arising from temperature variability
using a constant frequency. The results suggest that the evolution of the dynamic mechanical
analysis should consider the Poisson’s ratio input as a variable to eliminate this error in future
material characterization.
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1. Introduction

Studying the dynamic behavior of materials is a fundamental process in understanding their
viscoelastic mechanical behavior and determining their ability to dissipate energy under cyclic loading.
In practical terms, these characteristics may be dependent on the time, frequency, and temperature [1,2].
From the first dynamic experiments performed by Poynting in 1909 [3], there has been a constant
evolution in the technology of measuring the dynamic performance of materials [4–6], and many
researchers focused their work on the experimental study of viscoelasticity [7,8].

Currently, one of the most common techniques for performing this kind of test is dynamic
mechanical analysis (DMA). This kind of equipment evolved into a configuration that allows a
user-friendly environment to perform the dynamic testing of materials. It is able to monitor internal
friction, glass transitions, and other relaxation processes in terms of load, displacement, frequency,
and temperature [9]. To perform this test, the equipment generates an electromagnetic current that
is able to move a rigid rod with a sinusoidal motion. These movements are then monitored by
a displacement measuring device, either by a linear variable differential transformer (LVDT) or
optical encoder.

Due to the overall high stiffness of the instrument, its deformations are negligible when compared
with the tested specimen. Thus, the very high resolution and precision of these equipment are able
to characterize the viscoelastic behavior of materials. As a given load is applied to a specimen,
the equipment is able to monitor the delay that such specimen presents in terms of deformation,
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allowing the determination of phase lag. Thus, their dynamic response will be dependent on
their intrinsic elastic behavior, internal friction, and exterior stimuli such as temperature and load
variation [10].

In their experimental procedure, the DMA equipment use a formulation based on these fundamental
principles, and they measure two basic variables: the specimen stiffness (Ks = load/displacement) and
the phase lag (δ) [11]. By the association of these variables with the specimen’s geometrical parameters,
test configuration (e.g., shear, tensile, cantilever, etc.), and Poisson’s ratio (ν), an algorithm is applied
to determine the material complex modulus (E*) [12].

Although the input data remains the same throughout the experimental testing, this may not be
true for the intrinsic characteristics of the tested specimen. For example, it is known that Poisson’s ratio
has a relevant role in the dynamic properties of materials [13–18] and is sensible to any temperature
changes in the material [19,20]. Such fact is even more relevant when this change occurs at relatively
low temperature, e.g., glass/rubbery transition in polymers.

This study intended to evaluate the effect of the change in Poisson’s ratio on the complex modulus
(E*) experimental results using DMA. Additionally, the error obtained by considering a constant
Poisson’s ratio was discussed and quantified. Finally, an example of epoxy resin was analyzed to
interpret the real application of the findings.

2. Methodology

2.1. Materials

A solvent-free structural epoxy (S&P® Clever Reinforcement Company 220 epoxy adhesive, Seewen,
Switzerland) was used to produce rectangular beams (chemical composition and specimen dimensions
in Table 1). These specimens were cured for five days at 20 ◦C to allow a complete polymerization.

Table 1. Composition and dimensions of tested specimens.

Chemical Composition Specimens

Component A (Resin)
(i) Bisphenol A
(ii) 1,3-bis(2,3epoxypropoxy)-2,

2-dimethylpropane

Dimension Value (mm) SD (mm)

Thickness 1.23 0.08

Component B (Hardener)

(i) Poly(oxypropylene)diamine
(ii) Piperazine
(iii) 3,6-diazaoctanethylenediamin
(iv) Triethylenetetramine

Width 4.51 0.08
Length 30.20 0.11

2.2. Tensile Testing

Specimens (five in total) were produced and tensile-tested according to EN ISO 527-1:2012
recurring to an INSTRON 8874 universal testing equipment. The specimens were pulled with a
testing speed of 1 mm/min in deformation control until fracture occurred. The instant values of load
and strain from the load cell and mechanical strain-gauge, respectively, were recorded to plot the
specimen’s stress–strain curve. Additionally, a second mechanical strain gauge was placed in the
transverse direction to determine the specimen’s Poisson’s ratio.

2.3. Dynamic Mechanical Analysis

Specimens (five in total) were tested using dynamic mechanical analysis (TA Q800) with a single
cantilever configuration. One clamp was completely fixed and the other clamp applied a constant
amplitude of 5 µm in the vertical direction with a frequency of 1 Hz, while the other directions had
their displacement restrained. A temperature ramp of 1 ◦C/min until 120 ◦C was implemented during
the experimental testing to analyze the influence of temperature on the complex modulus of the
specimens, and to generate a variation in Poisson’s ratio.
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During the DMA tests, the overall stiffness (Ks) as a function of temperature (K = f(T)) was
monitored by the recording of the instant values of load (L) and constant amplitude (d = 5 µm).
The phase angle (δ) was also determined to calculate the instant values of internal friction (tan(δ)).

2.4. Finite Element Analysis

A specimen in a cantilever configuration was modeled (Figure 1a) and subjected to a static
structural simulation by finite element analysis (FEA) using ANSYS 17. A fundamental rectangular
beam had one end fixed, while a deformation of 5 µm in the vertical (YY) axis was imposed on the
other end. To ensure the same boundary conditions of the experimental analysis, it was imposed
that the displacements in the XX and ZZ axes were restrained. As the outputs for the simulated
results, the values of maximum stress and width strain due to Poisson’s effect were monitored.
A representation of the used mesh may be observed in Figure 1b.
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The element size displayed in Figure 1b was selected from a mesh convergence analysis where the
element size was changed and the consequent specimen stress was monitored (Figure 2). According to
such analysis, the value of stress increased on an exponential function when the mesh was refined.
It may be observed that such function had a base value of σ = 0.2868 MPa, and, from this value,
the instant mesh error may be calculated. Thus, an acceptance threshold was defined as the value
where the mesh error was lower than 1%, corresponding to an element size of 0.1 mm.
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Figure 2. Mesh convergence analysis.

An isotropic linear elastic approach was used due to the small deformation that was imposed
in the specimen; thus, the overall analysis implied the definition of the complex modulus (E* ≈ E)
for the imposed strains and Poisson’s ratio (ν). However, the base material properties definition had
two different approaches: (i) using a constant value of Poisson’s ratio, as a regular DMA experimental
procedure; (ii) using the real instant value of Poisson’s ratio, according to the suggested method.
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3. Results

3.1. Theoretical Modeling

Given the configuration of the DMA equipment, the fundamental magnitudes that were monitored
during test were the loads (L) and displacements (d) that were applied in the specimens. Thus,
the fundamental procedure for the determination of the viscoelastic properties of the specimens started
with the monitoring of the instant values of stiffness (Ks = F/d).

The DMA equipment then processed these instant values to determine the complex modulus (E*),
as a function of the specimen geometry and Poisson’s ratio (ν). For example, on a single-cantilever
configuration and using a rectangular-beam specimen (L—length × t—thickness × w—width),
this process is performed by the use of Equation (1), where I is the moment of inertia (I = t3w/12) and
F is a geometric factor described by Equation (2) [21].

E∗ =
Ks

F
L3

12I

[
1 +

12
5
(1 + ν)

(
t
L

)2
]

. (1)

F = 0.7616− 0.0271

√
t
L
+ 0.1083 ln

(
t
L

)
. (2)

Interpreting Equation (1), it may be seen that Poisson’s ratio has a predominant role in the
determination of the complex modulus (E*) from the specimen stiffness (Ks). More importantly,
this formulation considers that it presents a constant value, i.e., it remains stable during the
experimental test. In fact, it is known that this is not true, and the value of Poisson’s ratio may
change, especially due to temperature-dependent changes in the internal structure of the material.

By manipulating Equation (1) to a differential configuration due to the linear change of Poisson’s
ratio, a variation on the complex modulus as a function of specimen stiffness may be determined using
Equation (3).

∆E∗

Ks
=

L3

12FI

[
1 +

12
5
(1 + ∆ν)

(
t
L

)2
]

. (3)

From the classic theory of elasticity, it is known that Poisson’s ratio may assume values between
−1 and 0.5 for a three-dimensional isotropic body (although, for two dimensions, this range is −1
to 1 [22]); thus, it may established that, in these conditions, the variation in Poisson’s ratio (∆ν) may
change between −1.5 and 1.5. Even though many materials are not isotropic, this approach was used
to simplify the analysis. Figure 3 shows a plotting of Equation (3) for different values of width (w),
Poisson’s ratio variation (∆ν), and specimen length aspect ratio (a = L/t).
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and Poisson’s ratio variation.

According to these results, it may be observed that the changes may have a profound effect on the
variation of the complex modulus, especially for situations where Poisson’s ratio increases and the
length of the beam is preponderant to the other dimensions. This is frequent in DMA experiments
where polymers that experience glass transition are tested, and thus, the following subsections explore
the testing and discussion of this case using an epoxy resin as a study case.

3.2. Experimental Tensile Testing

Figure 4 shows the average results of the experimental tensile tests, in the form of a stress–strain
curve and instant Poisson’s ratio. It is shown that the structural epoxy displays a non-linear behavior
typical of these materials, where a static complex modulus (E* = 7.15 ± 0.12 GPa) was determined
using the tangent method. Additionally, it is shown that Poisson’s ratio (ν) changes slightly with the
applied stress; however, for the corresponding applied strains in the DMA testing, it was defined as
0.27 (±0.04).
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3.3. Dynamic Mechanical Analysis

Figure 5 displays the average results of DMA testing, namely the variation of the output values of
complex modulus (E*) and internal friction (tan(δ)) with temperature (T). The determination of the
complex modulus was performed by the monitoring of the instant values of stiffness (Ks), and using
Equation (1) with a constant value of Poisson’s ratio from the tensile test (ν = 0.27). From this analysis,
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it may be observed that the increase in temperature was able to promote the changes in the internal
structure based on glass transition (Tg) from the severe decrease in stiffness. From the maximum
internal friction peak method, it was determined that the average glass transition temperature (Tg)
was 78.7 (±1.24) ◦C. This method implies a deviation relative to other methods (e.g., storage modulus
inflection or loss modulus peak); however, it is commonly used in research dynamic mechanical
analysis [23].
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Changes in internal friction are related to a modification in the material hysteretic damping,
and they correspond to the energy that is dissipated as heat during the subsequent deformation
cycles. In this case, the epoxy thermal transition by free volume changes and relaxation was due to
the large-scale motions in the amorphous polymeric chains. From these variations, the material was
transformed into a rubbery state, and consequently, Poisson’s ratio also changed for the specimen to
display a near-isochoric behavior (ν ~0.5) [19,20].

3.4. Finite Element Analysis

Given the temperature dependence of Poisson’s ratio, the value for this elastic constant at room
temperature (ν = 0.27), and the fact that, during the rubbery state, the material had a near-isochoric
behavior (ν ~0.5), the input of the FEA Poisson’s ratio was modeled according to Figure 6. The smooth
transition was shaped according to the instantaneous slope values of internal friction that were
determined using DMA.
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According to the established FEA methodology, the results monitored the maximum values of
width change due to Poisson’s effect (Figure 7a) and the maximum stress value (Figure 7b).
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proposed model.

Technologies 2018, 6, x FOR PEER REVIEW  7 of 10 

 

According to the established FEA methodology, the results monitored the maximum values of 
width change due to Poisson’s effect (Figure 7a) and the maximum stress value (Figure 7b). 

 
(a) 

 
(b) 

Figure 7. Representation of FEA results in terms of width deformation and stress. (a) Deformation; 
(b) Equivalent Stress. 

Figure 8 is a plot that compares the FEA results considering a constant Poisson’s ratio as a classic 
DMA experiment would be performed, and a variable Poisson’s ratio (Figure 6) according to the 
proposed model. 

 
Figure 8. Comparison of results considering a constant and variable Poisson’s ratio. Figure 8. Comparison of results considering a constant and variable Poisson’s ratio.



Technologies 2018, 6, 81 8 of 10

It may be observed that there was a small increase in stress values when a variable Poisson’s ratio
was considered. However, the change in width strain was relevant, especially in the imposed shape
deformations to accommodate the isochoric behavior of the specimen.

4. Discussion—Influence of Poisson’s Ratio

According to the established results, the different values for the error in Poisson’s ratio may
be determined by comparing the values of complex modulus considering a constant and variable
Poisson’s ratio (Equation (4)).

Poisson′s Error (%) =
E∗ν=variable − E∗ν=constant

E∗ν=constant
× 100. (4)

These results are plotted in Figure 9 and compared with the values of width strain and internal
friction. Given the relationship between the Tg transition shown by the internal friction peak, there is a
consequent extreme dimensional change in width strain due to the increase in Poisson’s ratio.
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Considering that the classic DMA procedure uses Poisson’s ratio as an input value that remains
constant during the experimental testing, it is suggested by this analysis that there is a small error
when the values of complex modulus are acquired during such a procedure (Poisson’s error ~0.25%).
These changes may, however, be higher if the dynamic changes in Poisson’s ratio are more elevated.

Based on this analysis, it may be stated that the values of Poisson error are relatively low, and that
these changes are more concerned with polymeric materials. However, given the limits of Poisson’s
ratio allowed by the theory of elasticity and the current development of materials with negative
Poisson’s ratios [24,25], and the strong positive–negative transition that was observed in hard-body
systems [26] and experimentally in phase-changing gels [27], such errors may be much more significant
in future analyses.

5. Conclusions

Dynamic mechanical analysis was performed by considering Poisson’s ratio of the specimen as
constant. This study explores the influence of a variable Poisson’s ratio on the final results of this
procedure. Considering the modification of this elastic property, the following conclusions were drawn:
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- Given that the Poisson’s ratio may change due to external stimulation (e.g., temperature, loading,
time, etc.) there is an error associated with the consideration of its value as constant during the
DMA test;

- The error is more prominent in situations where Poisson’s ratio increases significantly, and is
attributed to shape variations in the specimen, especially in conditions where the final Poisson’s
ratio approximates an isochoric (ν ~0.5) behavior;

- It is suggested that the evolution of this technology should consider Poisson’s ratio as a variable
to eliminate this error in future material characterization.
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