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Abstract: The disposal and the reuse of industrial wastes have become increasingly difficult
due to the elution of hazardous anions, such as F−, [B(OH)4]−, AsO4

3−, and CrO4
2−. Effective

methods for removing hazardous ions and reusing solid wastes are urgently required. In this study,
Ca(OH)2, MgCl2, and BaCl2 were added to reduce the elution concentrations of F, B, As, and Cr by
coprecipitating insoluble inorganic salts. After this, ordinary Portland cement (OPC) was added
to the ion exchange and solidified with these hazardous ion-containing substances. The addition
of crushed stone powder (CSP), which was a by-product of the process of crushing aggregates or
sawing stone, inhibited the elution of hazardous ions and improved the inhibition effect of OPC.
The elution concentrations of F, B, As, and Cr were successfully reduced from their maximum elution
concentration of 10 mg/L to below the environmental standards values of Japan. A simultaneous
inhibition method for the elution of F, B, As, and Cr from industrial wastes has been developed
successfully and would be able to promote the reuse and recycling of CSP and other industrial wastes.

Keywords: hazardous anions; solidification; crushed stone powder

1. Introduction

Fluoride (F, F−), boron (B, [B(OH)4]−), arsenate (As(V), AsO4
3−), and chromium (Cr(VI), CrO4

2−),
which are eluted from industrial wastes, such as slag, incineration ash, and so on, are usually present
as anions and oxyanions. The environmental standards of the Soil Contamination Countermeasures
Law of Japan [1] stipulate that the maximum concentration values of F, B, As(V), and Cr(VI) are 0.8, 1.0,
0.01, and 0.05 mg/L, respectively. It is difficult to remove these harmful ions due to their high solubility.
The disposal and the reuse of hazardous ion-containing industrial wastes have become increasingly
important. In Japan, intermediate waste treatment, such as burning, crushing, and so on, has been
carried out to reduce the quantity of the industrial wastes. However, there are still about 17.2 million
cubic meters of wastes in 2014, which are left in landfills due to the presence of hazardous materials [2].
A stabilization/solidification (S/S) process using cement and other cementitious materials has become
increasingly popular in the immobilization of hazardous ions and oxyanions [3–8]. The immobilization
of wastes or contaminates has been reported that may involve the three following mechanisms:
(a) chemical fixation of the contaminate, which occurs by chemical reaction between hydration products
of the cement and the contaminate; (b) physical adsorption of the contaminate on the surface of the
hydration products of the cements; and (c) encapsulation of the contaminate in the pores of the
cement [8]. In addition, ettringite [Ca6Al2(SO4)3(OH)12·26H2O], which is formed during the hydration
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of ordinary Portland cement (OPC), showed a high removal preference for F [9–11], B [11–15], As [16,17],
and Cr [12,18–21] due to its ion exchange capacity by replacing SO4

2− of ettringite. In our precious
study, F concentration eluted from CaF2 pure reagent could be reduced from 288.5 mg/L to 0.47 mg/L
in alkaline regions with the addition of Ca(OH)2, MgCl2, and OPC [22]. The coprecipitation effect of
Ca2+, ion exchange effect of ettringite, and solidification effect of Ca-bearing hydrates contribute to
the decrease in the elution concentration of F. This has been successfully applied for the inhibition
of F eluted from paper sludge and coal ash. This method allows treated fluorine-containing wastes
to be applied as earth cover or road bed materials. We also studied the solidification/stabilization
of arsenic in red mud and gypsum [23,24]. The As concentrations eluted from these wastes were
successfully reduced to below the required environmental standards (As ≤ 0.01 mg/L) using Fe(III)
and/or Fe(II). The elution of As was reduced by forming insoluble Fe–As compounds, such as FeAsO4,
using Fe(III), and/or Fe(II). Gypsum waste was successfully reused as a soil conditioner without arsenic
contamination. However, this method was only carried out under weak acidic conditions and Fe–As
compounds subsequently have a strong dependence on pH [25–28]. Moreover, there are usually many
hazardous ions, such as F−, [B(OH)4]−, AsO4

3−, and CrO4
2−, that coexist in these industrial wastes.

These hazardous ions usually need to be treated separately under certain conditions with different
reagents, which further complicates the disposal and the reuse of industrial wastes. An effective
method for the simultaneous suppression of these hazardous ions and the reuse of industrial wastes is
urgently required.

Crushed stone powder (CSP) occurs as a waste by-product from the process of crushing aggregates
or sawing stone. The generation rate of CSP during manufacturing processes was 1–25% [29–34].
This suggests that a considerable quantity of CSP would be generated in countries that are rich in the
rock deposits, such as Portugal, Spain, and so on. It is difficult to utilize or dispose of this CSP because
of its small grain size, the mixing of metals, and so on [31]. Therefore, it is generally disposed of in
landfills. However, because of the continuous depletion of natural resources, the limited landfill land
available, and increased transportation costs, there is a demand for the effective utilization of CSP.
In recent years, there have been an increasing number of studies that focus on the recycling of CSP in
concrete instead of in silica powder or sand [35–39]. However, further utilization of CSP in inhibiting
the elution of hazardous ions is rarely found.

The aim of this study is to develop an effective method to suppress the elution of F−, [B(OH)4]−,
AsO4

3−, and CrO4
2− from industrial wastes and to improve the reuse and recycling of CSP and other

industrial wastes.

2. Materials and Methods

2.1. Materials

For the hazardous ions, the standard solutions of [B(OH)4]− (B 1000 mg/L),
AsO4

3− (As 1000 mg/L), and CrO4
2− (Cr 1000 mg/L) were supplied by Kanto Chemical Co.,

Inc., Tokyo, Japan. F− standard solution (1000 mg/L) was made from NaF (99.0%, Kanto Chemical Co.,
Inc., Japan). The additives, which were namely Ca(OH)2 (96.0%), MgCl2·6H2O (99.0%), FeSO4 (99.0%),
and BaCl2 (99.0%), were supplied by Kanto Chemical Co., Inc., Japan. OPC was supplied by
Sumitomo Osaka Cement Co., Ltd., Tokyo, Japan. CSP, which was derived from the Fukushima
areas of Japan, was supplied by Kanno saiseki Co., Ltd., Japan. The phase composition of CSP
was characterized by X-ray diffraction. Chemical compositions and elution concentrations of the
hazardous ions were determined according to the testing methods for industrial wastewater of Japan
(JIS K 0102) [40] using ion chromatography and inductively coupled plasma mass spectrometer
with lithium metaborate fusion method [41]. The equipment used in this study were a Perkin
Elmer coupled plasma mass spectrometer (ICP-MS, ELAN DRC II, Kanagawa, Japan), Dionex ion
chromatography (IC, DX-100, Tokyo, Japan), Shimadzu atomic absorption spectrophotometers (AAS,
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AA7000HVG, Japan), Rigaku multipurpose X-ray diffraction spectrometer (XRD, Ultima IV, Tokyo,
Japan), and Hitachi field emission scanning electron microscope (SEM, SU8000, Tokyo, Japan).

2.2. Methods

For the hazardous ions, a solution containing 200 mg/L of F, B, As, and Cr was made from
1000 mg/L of the abovementioned standard solutions of hazardous ions. A total of 5 mL of hazardous
ions solution was mixed with 7 g of CSP, 3.0 g of OPC, 0.5 g of Ca(OH)2, 0.4 g of MgCl2, and 0.00,
0.10, 0.20, 0.30, and 0.40 g of BaCl2. The mixed samples were stirred for 30 min with a stirring glass
rod in a polypropylene bottle before being dried at room temperature for 48 h in a phenol culture
dish (Φ = 85 mm). The dried samples were crushed into a powder and subsequently placed in
polypropylene bottles with water so that the water-to-sample ratio was 10:1. After this, they were
shaken with a laboratory shaker (SA300, Yamato, Japan) at 200 rpm for 6 h before being filtered through
5C filter paper after centrifuging at 3000 rpm for 20 min with a low-speed centrifuge (LC-120, TOMY,
Tokyo, Japan). The elution examination of dried samples was conducted according to the testing
methods for industrial wastewater of Japan (JIS K 0102).

The pH measurements of the filtrates were obtained with a pH Meter (F-22, Horiba, Japan).
The elution concentration of F was measured using IC. B and Cr were measured using ICP-MS.
As was measured using AAS with a hydride generator. In addition, the crystal structure and phase
composition of dried samples were characterized by XRD. The microstructures of the dried mixtures
were examined using SEM.

3. Results and Discussion

The solutions of hazardous ions (200 mg/L) were added and mixed with CSP and OPC so that the
maximum elution concentrations of these hazardous ions during elution examination were 10 mg/L
in the case where all hazardous ions had been eluted.

A decrease in the elution concentrations of F, B, As, and Cr was observed with an addition of
CSP (Table 1). The elution concentrations of these hazardous ions were 7.15, 8.60, 2.75, and 4.46 mg/L
(pH = 8.6), respectively, after the elution experiment. CSP is mainly comprised of components of quartz
(SiO2, File No. 01-046-1045) and albite (NaAlSi3O8, File No. 01-001-0739) (Figure 1). Furthermore,
it has a high content of SiO2 (52.9%) and Al2O3 (14.4%) (Table 2). In recent years, geopolymer
as a type of alkali-activated aluminosilicates, such as calcium aluminosilicate hydrate and alkali
aluminosilicate, was reported to immobilize hazardous ions [5,8,42,43]. Albite belongs to a type of
sodium aluminosilicate. Geopolymer created from albite would form during the mixing of CSP and
water. The forming of the geopolymer would greatly contribute to the immobilization of hazardous
ions. The pH values of the filtrates of all the samples were above 12.2 with an addition of OPC.
The inhibitory effects of OPC and CSP on the elution of F, B, As, and Cr are illustrated in Table 1.

Table 1. Experimental conditions and the elution concentrations of F, B, As, and Cr with additions of
crushed stone powder (CSP) and/or ordinary Portland cement (OPC).

Sample No. 200 mg/L of Hazardous
Ions Solution (mL)

CSP (g) OPC (g) Weight Ratio of
OPC (wt.%)

Elution Conc. (mg/L)
pH

F B As Cr

1 4.00 8.00 0.00 0 7.15 8.60 2.75 4.46 8.6
2 1.00 - 2.00 - 0.45 0.01 0.01 4.76 12.4
3 1.72 - 3.43 - 0.65 0.01 0.00 6.29 12.5
4 4.00 - 8.00 - 0.70 0.02 0.00 5.80 12.6
5 5.00 8.00 2.00 20 0.64 0.01 0.00 3.78 12.2
6 5.72 8.00 3.43 30 0.47 0.00 0.00 2.41 12.4
7 8.00 8.00 8.00 50 0.35 0.00 0.00 4.20 12.4
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Table 2. Chemical compositions of CSP and elution concentrations of the hazardous ions by the testing
methods for industrial wastewater of Japan (JIS K 0102).

Type of
Material

Chemical Compositions (wt %) Elution Conc. (µg/L)

SiO2 Al2O3 Fe2O3 Na2O MgO K2O CaO Other F B As Cr

CSP 52.9 14.4 2.1 3.2 0.6 1.2 2.9 22.6 82.0 0.6 0.0 2.6Technologies 2018, 6, x FOR PEER REVIEW  4 of 10 
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Figure 1. XRD pattern analysis of CSP.

3.1. Suppression of F Elution

A significant decrease in the elution concentration of F was observed when only OPC was added.
The elution concentration of F was reduced to 0.45 mg/L with an addition of 2.0 g of OPC, which was
a value below its environmental standards (F ≤ 0.8 mg/L). Portlandite (Ca(OH)2), calcium silicate
hydrates (Ca3SiO5 and Ca2SiO4), and ettringite (Ca6Al2(SO4)3OH12·26H2O) are formed during the
hydration of OPC. F could be reduced by coprecipitating CaF2 [9] due to the high content of Ca2+,
which originates from cement hydrates. Our previous studies have shown that the solubility of
CaF2 increases with an increase in pH in the alkaline range due to the competition between F−

and OH− [22]. However, ettringite with a high ion exchange capacity was formed during the
hydration of OPC, and therefore, the elution of F was inhibited due to the replacement of the
exchangeable anion, such as SO4

2− in ettringite by F. The coprecipitation effect of Ca2+, ion exchange
effect of ettringite, and solidification effect of Ca-bearing hydrates contribute to the inhibition of
the elution of F. Additionally, under the conditions of the same added amount of OPC, the elution
concentrations of F were lower than those without additions of CSP. SiO2 and Al2O3 in CSP could
improve the solidification effect of Ca-bearing hydrates by becoming involved in the pozzolanic
reaction. Furthermore, it is possible for CSP to react with OPC to generate calcium aluminosilicate
hydrate and alkali aluminosilicate to immobilize F and other hazardous ions. Moreover, due to its
small particle size, CSP could also fill in the gaps of cement paste, enhancing the density of the cement
paste and improving the inhibitory effects of OPC.

The reflections assigned to quartz, albite, tricalcium silicate (Ca3SiO5, ICSD file No. 00-055-0738),
dicalcium silicate (Ca2SiO4, ICSD file No. 00-039-0298), calcite (CaCO3, ICSD file No. 01-072-1937),
and portlandite (Ca(OH)2, ICSD file No. 01-076-0571) were observed in the mixture with OPC and CSP
OPC (Figure 2b). The generation of calcium aluminosilicate could not be confirmed by XRD, which is
possibly due to the reflections assigned to calcium aluminosilicate being too weak to be seen. Ettringite
with a high ion exchange capacity is a rod-like particle with 1–2 µm length. These particles were
confirmed in the SEM images of the mixtures of OPC and the hazardous ions with/without an addition
of CSP (Figure 3). Consequently, ettringite would form in the mixtures of OPC and the hazardous
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ions with/without an addition of CSP. Hence, the coprecipitation effect of Ca2+, ion exchange effect of
ettringite, and solidification effect of Ca-bearing hydrates would contribute to the decrease in elution
concentrations of these hazardous ions.

Figure 2. XRD patterns of hazardous ions mixed with 8.0 g of OPC (a) with CSP and (b) without CSP.
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of OPC and (d) 3.43 g of OPC and 8.0 g of CSP after reaction.

3.2. Suppression of B Elution

B was reported to be precipitated with Ca(OH)2 and OPC as calcium borate (CaO·B2O3·6H2O) [44–46].
The solution would become alkaline with an addition of OPC. B would be reduced by the formation of
calcium borate. In this study, the elution concentration of B was reduced to 0.01 mg/L, which is far less
than its environmental standards (B ≤ 1.0 mg/L), with an addition of 2.0 g of OPC. The coprecipitation
effect of Ca2+, ion exchange capacity of ettringite, and solidification effect of Ca-bearing hydrates contribute
to the inhibition of the elution of B. However, the coexistence of F and B possibly leads to the generation of
BF4

−, which further complicates the treatment of F and B [47]. In this study, the elution concentration
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of BF4
− was not detected by IC as the generation of BF4

− requires certain conditions. The elution
concentrations of F and B were all successfully reduced with an addition of OPC.

3.3. Suppression of As Elution

As could be reduced by forming insoluble Ca–As precipitates with Ca2+ [48–51], such as
Ca3(AsO4)2·xH2O, Ca5(AsO4)3OH, and Ca4(OH)2(AsO4)2·4H2O. In alkaline regions, the dominant
species of As(V) in solution are HAsO4

2− and AsO4
3− at pH > 7 (Figure 4). Zhu et al. studied the

solubility and stability of calcium arsenates under different pH values [48]. The results showed that
Ca3(AsO4)2·xH2O, Ca5(AsO4)3OH, and Ca4(OH)2(AsO4)2·4H2O were identified in the experiment
over a wide range of pH (3.0 < pH < 13.4) and for Ca/As molar ratios between 1.0 and 4.0. In this
study, the elution concentration of As was reduced to 0.01 mg/L with an addition of 2.0 g of OPC.
This elution concentration meets the environmental standards of As (As ≤ 0.01 mg/L). Due to the high
content of Ca2+ originating from OPC, the elution of As was inhibited by the coprecipitation effect of
Ca2+, ion exchange capacity of ettringite, and solidification effect of Ca-bearing hydrates. Additionally,
the presence of carbonate (≥0.3 mol/L) would capture Ca2+ to generate CaCO3, suppressing the
generation of Ca–As compounds and resulting in the release of As into the aqueous solution [51].
Therefore, the prevention of the carbonation of Ca2+ could be a way of promoting the inhibitory effect
on As.
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3.4. Suppression of Cr Elution

The immobilization of Cr(VI) by OPC was achieved due to the formation of the low solubility
complex compounds, such as CaCrO4 [53,54] and CrO4-ettringite. CaCrO4 was formed by the reaction
between Cr and Ca2+ at a high pH value. CrO4-ettringite was formed by the ion exchange between
CrO4

2− and SO4
2− in ettringite. Some researchers studied the inhibitory effect of calcium silicate

hydrate on Cr [55–57]. In the study of Zhang et al., in terms of calcium silicate hydrate (C–S–H), one of
the most important hydration products of OPC, it seemed that the chemical incorporation degree
of Cr(VI) was relatively low and just a sorption mechanism was more possible [21]. In this study,
although the elution concentration of Cr decreased with an addition of OPC, it was still higher than its
environmental standards (Cr ≤ 0.05 mg/L).

Ca(OH)2, MgCl2, and BaCl2 were added to decrease the quantity of eluted Cr by forming insoluble
salts. The addition of Ca(OH)2 results in a reduction in the elution of F, B, As, and Cr. MgCl2 was
able to prevent the carbonation of Ca2+ [58,59] and coprecipitate with F and B to create MgF2 and
Mg[B(OH)4]2. BaCl2 could suppress the elution of Cr by coprecipitating into the form of BaCrO4 [60].
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Additionally, As could also react with Ba2+ to form the insoluble salt Ba3(AsO4)2 (Ksp = 2.59 × 10−9,
20 ◦C), which is stable within the pH range of 12–14 [61]. FeSO4 was added to compare the inhibitory
effect on Cr with BaCl2.

The pH values of the filtrates of all the samples were above 12.1 with the additions of CSP,
OPC, Ca(OH)2, MgCl2, and BaCl2. The elution concentration of Cr decreased significantly with these
additives and further decreased with an increase in the added amount of BaCl2 (Figure 5). When 0.2 g
of BaCl2 was added, the Cr elution concentration was reduced to 0.01 mg/L, which is below its
environmental standard value. In contrast, the lowest elution concentration of total Cr, which was in
the forms of Cr(VI) and Cr(III), was 0.14 mg/L with an addition of FeSO4. BaCl2 is obviously superior to
FeSO4 in reducing the elution of Cr in this study. On the one hand, FeSO4 inhibited Cr(VI) by reducing
it to Cr(III). This process was generally carried out under acidic conditions. Otherwise, Fe(II) would
react with OH− to form Fe(OH)2 before oxidizing in the air to form Fe(OH)3 and weakening its
reduction ability. Moreover, Cr(VI) could be separated from Fe(II) by the generation of floccules,
which are namely Fe(OH)2 and/or Fe(OH)3, resulting in a decrease in the inhibiting effect on Cr [62].
On the other hand, additional operations are required to suppress Cr(III) after reduction reaction.
Therefore, the treatment of Cr by BaCl2 was simpler and more effective than FeSO4. In addition, it
was easy to react BaCl2 with SO4

2− to generate the insoluble salt BaSO4 (Ksp, BaSO4 = 2.45 × 10−4,
20 ◦C) due to its low solubility. This would lead to a reduction in the amount of SO4

2− of gypsum,
which plays an important role in the composition of ettringite, resulting in the suppression of the
hydration of OPC [63,64]. Therefore, the added amount of BaCl2 should be controlled. In this study,
the elution concentrations of F, B, and As were 0.20, 0.18, and 0.00 mg/L, respectively, with additions
of CSP, OPC, Ca(OH)2, MgCl2, and 0.2 g of BaCl2, while there were no obvious changes with an
increase in the added amount of BaCl2. The elution concentrations of F, B, As, and Cr were successfully
inhibited to be lower than the environmental standards values with additions of CSP, OPC, Ca(OH)2,
MgCl2, and 0.2 g of BaCl2.

Technologies 2018, 6, x FOR PEER REVIEW  7 of 10 

 

additives and further decreased with an increase in the added amount of BaCl2 (Figure 5). When 0.2 
g of BaCl2 was added, the Cr elution concentration was reduced to 0.01 mg/L, which is below its 
environmental standard value. In contrast, the lowest elution concentration of total Cr, which was in 
the forms of Cr(VI) and Cr(III), was 0.14 mg/L with an addition of FeSO4. BaCl2 is obviously superior 
to FeSO4 in reducing the elution of Cr in this study. On the one hand, FeSO4 inhibited Cr(VI) by 
reducing it to Cr(III). This process was generally carried out under acidic conditions. Otherwise, Fe(II) 
would react with OH− to form Fe(OH)2 before oxidizing in the air to form Fe(OH)3 and weakening its 
reduction ability. Moreover, Cr(VI) could be separated from Fe(II) by the generation of floccules, 
which are namely Fe(OH)2 and/or Fe(OH)3, resulting in a decrease in the inhibiting effect on Cr [62]. 
On the other hand, additional operations are required to suppress Cr(III) after reduction reaction. 
Therefore, the treatment of Cr by BaCl2 was simpler and more effective than FeSO4. In addition, it 
was easy to react BaCl2 with SO42− to generate the insoluble salt BaSO4 (Ksp, BaSO4 = 2.45 × 10−4, 20 °C) 
due to its low solubility. This would lead to a reduction in the amount of SO42− of gypsum, which 
plays an important role in the composition of ettringite, resulting in the suppression of the hydration 
of OPC [63,64]. Therefore, the added amount of BaCl2 should be controlled. In this study, the elution 
concentrations of F, B, and As were 0.20, 0.18, and 0.00 mg/L, respectively, with additions of CSP, 
OPC, Ca(OH)2, MgCl2, and 0.2 g of BaCl2, while there were no obvious changes with an increase in 
the added amount of BaCl2. The elution concentrations of F, B, As, and Cr were successfully inhibited 
to be lower than the environmental standards values with additions of CSP, OPC, Ca(OH)2, MgCl2, 
and 0.2 g of BaCl2. 

 
Figure 5. The elution concentrations of Cr with additions of 7.0 g of CSP, 3.0 g of OPC, 0.5 g of Ca(OH)2, 
0.4 g of MgCl2, and a certain amount of BaCl2 and FeSO4. 

4. Conclusions 

The elution concentrations of F, B, As, and Cr were successfully reduced from their maximum 
elution concentrations of 10 mg/L to below the environmental standards values with the additions of 
Ca(OH)2, MgCl2, BaCl2, OPC, and CSP. Metal salts reduced the elution concentrations of F, B, As, and 
Cr by coprecipitation into insoluble inorganic salts. After this, OPC was added to the ion exchange 
and solidified with these hazardous ion-containing substances. The addition of CSP inhibited the 
elution of hazardous ions and improved the inhibition effect of OPC. A simultaneous inhibition 
method for the elution of F, B, As, and Cr from industrial wastes has been developed successfully 
and would be able to promote the reuse and recycling of industrial wastes.  

Author Contributions: A.S. and X.K. performed the experiments; X.K. wrote the paper; and A.S. and M.E. 
reviewed and edited the manuscript. M.E. supervised the findings of this work. All authors discussed the results 
and contributed to the final manuscript. 

Founding: This research received external funding. 

Conflicts of Interest: The authors declare no conflicts of interest. 

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6

C
r c

on
c.

 [m
g/

L]

Addition amount of BaCl2 or FeSO4 (g)

FeSO4 

BaCl2 

Figure 5. The elution concentrations of Cr with additions of 7.0 g of CSP, 3.0 g of OPC, 0.5 g of Ca(OH)2,
0.4 g of MgCl2, and a certain amount of BaCl2 and FeSO4.

4. Conclusions

The elution concentrations of F, B, As, and Cr were successfully reduced from their maximum
elution concentrations of 10 mg/L to below the environmental standards values with the additions
of Ca(OH)2, MgCl2, BaCl2, OPC, and CSP. Metal salts reduced the elution concentrations of F, B,
As, and Cr by coprecipitation into insoluble inorganic salts. After this, OPC was added to the ion
exchange and solidified with these hazardous ion-containing substances. The addition of CSP inhibited
the elution of hazardous ions and improved the inhibition effect of OPC. A simultaneous inhibition
method for the elution of F, B, As, and Cr from industrial wastes has been developed successfully and
would be able to promote the reuse and recycling of industrial wastes.
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