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1. Preparation

1.1. The Autocorrelation Function fACF(tx,ty) Analysis

The autocorrelation function fACF searches for correspondences of a surface with itself. If the surface heights
are white noise, the only shift (tx, ty) that matches the original surface is (0,0): fACF(0,0) = 1 and 0 elsewhere. Conversely
if the surface exhibits “macro” features, like peaks, valleys, scratches, etc. then  fACF decreases more slowly from its
maximum value 1 (reached in  tx=0,  ty=0).  If the surface is  isotropic (no preferred direction)  fACF is axisymmetric,
otherwise fACF has a higher decreasing rate across the pattern direction. Therefore fACF decreasing behavior is a means to
catch the direction of anisotropy when it occurs, and especially it quantifies the amount of anisotropy, as explained on
figure S1.

The aforementioned method needs a height z for the cutting plane. The ISO 25178 norm suggests z=0.2, however it is
not suitable (it is too low) for numerous anisotropic surfaces. We propose to average the values of Sal and Rmax for
z=0.3, 0.4 and 0.5. A complementary way of catching the decreasing behavior of fACF is to directly study its slope around
(0,0), figure S2.
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Figure S1. (a) A typical dental surface to be analyzed.
(b) The normalized 2D autocorrelation function.

(c) Two profiles are extracted along directions #1 and #2; #1 across the scratches and #2 along the scratches.
(d) The profile #1 (red curve) is more self repeating than the profile #2 because of shorter wavelengths.

(e) A plane that cuts the 2D facf surface at height z, defines an ellipsis—or just a part of it—with the small axis in direction #1 and the
big axis in direction #2. The anisotropy can be quantified by Rmax/Sal, and the groove length by Rmax—Rmax: semi-major axis, Sal:

semi-minor axis.
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Figure S2. (a) In each direction, the point of maximum slope is recorded.
(b) At the minimum radius of the curve, the slopes are determined. The highest is located in A and the lowest in point B.

(c) Three parameters are built: b.sl=αA, s.sl=αB and r.sl = b.sl/s.sl

1.2. Introduction of a Topological Parameter

A mixed parameter, dealing both with surface heights and height spatial repartition, is introduced. Discarding
the 15% lowest heights, the points above x% of the height amplitude are masked. Then morphological operations are
carried out on the mask in order to discard small cells. The remaining cells are therefore surface contiguous areas above
a given threshold. Three parameters are built: the number of cells Snb, the median cell relative area Smc and the masked
relative area Sk, figure S3.
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Figure S3. (a) The lowest 15% of the heights are ignored and the highest x% of the remaining are masked (left). After basic
treatments, tiny masked cells are removed (right).

(b) Comparison between a grazer (left) and a fruit/seed feeder (right)

1.3. A Fast and Accurate Way of Determining Asfc

The ISO 25178-2:2012(E) states that “The observed area is calculated as a function of scale by a series of
virtual tiling exercises  covering the measured surface in  a patchwork fashion.  The areas of  the tiles,  or patches,
represent the areal scales of observation. The tiling exercises are repeated with tiles of progressively smaller areas to
determine the observed areas to determine the observed areas as a function of the areal scales of observation.” Then,
the function log(relative  area)=f(log(element  area))  can  be determined.  The area-scale fractal  analysis  complexity
parameter Asfc is defined as a thousand times minus the line slope, figure S4.
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Figure S4. Typical relative area plot—ISO 25178-2:2012(E)

1.3.a. Determining the steepest part of the curve in a robust way

It can be reasonably stated that most of relative area plots are S-shaped, even if the trail can be more linear
than curved. Instead of arbitrarily defining a “central” region where to calculate the maximum of the slope, the whole
curve is fitted with a family Tn, of monotonic functions.

Tn (x )=y0+a . tanh(
x−x

0

b )
n

(1)

In most cases n=1 leads to an accurate fit, especially in the linear part of the curve, where the studied surface exhibits
self-similarity properties. The proposed model is parsimonious—only four parameters have to be determined, with a
least square procedure for instance—and then doesn’t suffer from overfitting. Some surfaces have better fit results with
n=2 but  it  doesn’t  change much the  Asfc value.  The location  xs of  the steepest  part  is  analytically determined by
canceling the second derivative of Tn. A simple calculus yields:

xs=x0+b .atanh(√
n−1
n+1 ) (2)

when n=1, it reduces to xs=x0.

To address the computation efficiency question—induced by the series of tiling exercises—the surface itself
isn’t tiled as explained in ISO 25178. The different scales are those of the grids that are used to discretize the surface.
The grids are chosen regular with lateral steps from (hx, hy) for the finest grid to (Hx, Hy) for the largest grid. The finest
grid is the one of the original surface, and the coarsest grid is an 8 × 8 grid. The original grid is the only one for which
the surface points match the grid points, for the other grids the surface heights are obtained by interpolation. The
intermediate grids are defined so that the element size has a geometric progression, hence its location is evenly spaced
on a logarithm axis.

Three surface interpolation methods are tested: linear (linear Finite Elements), interpolant cubic splines, and Hermite
(Hermite Finite Elements), summarized in figure S5.
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Figure S5. The chosen interpolation methods (left: linear FE, middle: Hermite FE, right: cubic spline). “dof” stands for “degree of
freedom”. In the upper part, one can see that from left to right, the smoothness increases. Below, calling u the unknown, it can be

seen that increasing smoothness requires to take into account more derivatives. As the spline method guarantees curvature continuity,
the unknown and its derivatives must be computed globally.

The surface heights are computed on the different grids with one of the three interpolation procedures that are
proposed – linear (finite element style), Hermite (finite element style) and cubic spline. 128 grids are used to draw the
relative area curve.

Provided the interpolating function f(x,y), the area of a surface element defined on [x i , xi+hx ]×[ y j , y j+hy ] is obtained

by  integration  of  √1+( ∂ f∂ x )
2

+( ∂ f∂ y )
2

.  Such  an  expression  being  barely  easy  to  analytically  integrate,  the  Gauss

integrating method is used with two points in each direction, which ensures the exact integration of a third degree
polynomial on both directions, figure S6.
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Figure S6. Gauss integrating points

Validation

The set  of  surfaces that  we previously studied  [1] is  used to  compare Toothfrax© results  with the three methods
proposed here.
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Figure S7. Global comparison of the presented methods with Toothfrax© results on the 45 SA surfaces (left). Detailed view on
small values pointing out some disparities (right)

Three observations are to be made on the figure S7. First, there is a satisfying concordance between the new values and
Toothfrax© values, considered here as the reference. Second, even if the three methods (linear, spline and Hermite)
yield close results, the smoothest methods (spline and Hermite) are slightly better. The spline and Hermite methods are
very close, and because the fastest of the two is the Hermite one, it will be the preferred approach. Third, two points
deserve further investigation because of the gap regarding the reference.

To understand why the values are so different, a detailed analysis of the Asfc is carried out.

It clearly appears on figure S8(left) that Toothfrax© locates the steepest part of the curve near the trail, where it is
somewhat “chaotic”. This zone is related to the biggest tiling elements for which it’s hard to speak of self-similarity.

 

Figure S8. Relative areas for the surface #1 (left) and for surface #2 (right)

Hermite interpolation exhibits a much more S-shaped curve where the maximum of the tangent slope locates towards
smaller elements. The second surface case – figure S8(right) – is different: the curves are the same, but the steepest
parts are located differently. Once more, Toothfrax© identifies the curve trail as the steepest part of the curve whereas
the hyperbolic tangent approximation locates it closer to the middle, as it can be clearly seen.

It  seems that  the  maximum of  slope  for  the  surface  #2  may  be  greater,  but  it’s  also  one  of  the  benefits  of  the
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approximation: it brings stability when the curve trail deviates from an “S” trail.

A way to make Toothfrax© and Hermite results coincide is to subtract a “macro-geometric” shape from the surface.
The reason is quiet simple: increasing the surface global flatness makes the tiling mesh closer to its projection on the
horizontal plane. Hence the surface patchwork used to assess the developed area is close to the points of the same scale
grid used in our approach.

If the previous study is carried out on SC surfaces, the conclusions are therefore different: the figure  S9 shows very
small differences between Toothfrax© results and a Hermite-based Asfc calculus. Using Hermite interpolation, SA and
SC surfaces lead to very close results, figure S10.

 

Figure S9. Global comparison of Hermite method with Toothfrax© on the 45 SC surfaces (left). Detailed view on small values
(right)

 

Figure S10. Global comparison of the Hermite method on the 45 SA and SC surfaces (left).
Detailed view on small values (right)
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Table S1. Interpolation method comparison.

Interpolation

method

Computational

speed

Accuracy and

smoothness
Implementation Continuity

Interpolation

scope

Linear FE +++ + +++ C0 local

Cubic splines + +++ ++ C2 global

Hermite FE ++ +++ + C1 local

The pros and cons of the interpolation methods are summarized in table S1. As demonstrated above, determining Asfc
using both Hermite FE interpolation and a hyperbolic tangent function approximation is  an efficient  and accurate
method. It can be concluded that the Asfc parameter is worth being computed with the Hermite approach because of its
accuracy and speed (less than 8 seconds on a single thread for a 2168×1555 px surface against several minutes for
Toothfrax© with the recommended parameters) on SC surfaces.

1.3.b. Sample Size Influence on Asfc

Another question to address about the Asfc parameter is the right surface size. As for the other parameters—
height parameters, spatial parameters, etc.—it’s easier to decide. For none of them a multiscale analysis is needed, so
providing a large enough surface sample ensures consistent values. In the preceding study [1] it has been stated that
512 × 512 px samples are large enough for the whole set of parameters, because it  represents a 66 × 66 µm² area.
Throughout the tests carried out by the authors on several  surface sets,  it  appears that  this size can be reduced to
256 × 256 px without consistency loss. However, as the  Asfc parameter must apply to a sample that embeds enough
scales, a closer look is required.

A SC surface, belonging to the African fruit-browsing duiker is cut according the scheme presented in figure S11. This
surface is chosen because it exhibits local reliefs that ensure a globally high Asfc value, but what about the surface parts
that are flatter?  Asfc—as well as  Rmax and  SKu parameters, for comparison purposes—is calculated and normalized
with its reference value, calculated on the sample 1037 × 743. The reference is chosen so that it seems to be the largest
one that remains nearly isotropic. Larger surfaces include important reliefs that unavoidably change the Asfc value.

Figure S11. Different surface sizes are tested to assess Asfc robustness against the sample size. The white sample results are used to
normalize the other sample results.

9/16



Figure S12. Asfc, Sku and Rmax as a function of the subsurface size.

The figure S12 shows that Asfc strongly depends on the subsurface chosen: when the reference subsurface is enlarged, a
wide hole is included and, as expected, the fractal parameter increases. Then, larger subsurfaces dilute this inclusion and
the parameter value decreases. Similar variations are observed for Sku, whereas Rmax is less affected.

Generally speaking, it’s clear that choosing too small a sample—it’s about definition, not its size—would give a rough
Asfc relative area curve. Moreover, catching features like the hole above the reference surface needs at least 512 × 512
px. In the other hand, as previously seen, the curve shows that expanding the sample dilutes the hole effect. Different
subsamplings are therefore tested: 512 × 512 px and 1024 × 1024 px subsurfaces along with 81, 144 and 256 samples.

We found that sampling a surface with 256 subsurfaces 256 × 256 evenly spaced, is a satisfactory trade-off
between computing time and information quality regarding the height and spatial parameters. A small parametric study
is carried out to show the influence of the sample size and the subsurface size, figure S13. Assuming that Asfc should be
determined on subsurfaces of at least 512 × 512 px – to guarantee enough scales – the results suggest that for 81 and
higher samples, the Asfc range of values is 11.7–22.9 As statistics are to be determined – in particular quantiles 5% and
95% – and for consistency purposes, the surfaces are finally sampled with 256 subsurfaces 512 × 512 for Asfc.
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Figure S13. Effect of sample size and subsurface size on Asfc
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2. Results

All links below were verified on April 28, 2018.

2.1. T1, Old World Monkeys

Colobus polykomos, CO Cercocebus atys lunulatus, CE Papio hamadryas, PA

Michal Sloviak
https://www.biolib.cz/en/image/id230

348/

Michal Sloviak
https://www.biolib.cz/en/image/id131

978/

Lubomír Prause
https://www.biolib.cz/en/image/id287

925/

Point A: CE (internal ref: 81-46-3)

max_Sm_SB = 2.7e-6 med_Sh_SC = 26.62

Point B: CO (internal ref: 81-07-96)

max_Sm_SB =1.9e-7 med_Sh_SC = 75.67

SB: cleaned surface - second order polynomial surface. SC: cleaned surface - eighth order polynomial surface.

Sm: (sub)surface mean. Sh: percentage of surface nearly horizontal.

max: absolute maximum. med: median value.

→ Point A exhibits more elevated samples on the SB surface than Point B but less flat zones on SC.

12/16

https://www.biolib.cz/en/image/id287925/
https://www.biolib.cz/en/image/id287925/
https://www.biolib.cz/en/image/id131978/
https://www.biolib.cz/en/image/id131978/
https://www.biolib.cz/en/image/id230348/
https://www.biolib.cz/en/image/id230348/


2.2. T2, European Ruminants

Cervus elaphus, CE Bos Taurus (Camargue), BO Rupicapra rupicapra (Alpes), RU

Luc Viatour
https://commons.wikimedia.org/w/ind

ex.php?curid=16566391

No known author
https://www.lestaxinomes.org/media1

991

Michal Sloviak
https://www.biolib.cz/en/taxonimage/i

d125571/?taxonid=249237

Point A: RU (internal ref: 8934)

fst.05_Stri_SB = 1.16 mea_Sk1_SC = 17.8

Point B: BO (internal ref: 99264)

fst.05_Stri_SB = 1.70 mea_Sk1_SC = 2.64

SB: cleaned surface - second order polynomial surface. SC: cleaned surface - eighth order polynomial surface.

Stri: anisotropy ratio. Sk1: percentage of surface above 85% of the height amplitude (once cleared from the first 15%)

fst.05: quantile 5%. mea: mean value.

→ Point A exhibits less striations on the SB surface than Point B but more elevated plateaus on SC.
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2.3. T3, African Ruminants

Alcelaphus buselaphus, AB Tragelaphus scriptus, TS Cephalophus silvicultor, CS

No known author
https://commons.wikimedia.org/w/ind

ex.php?curid=5304683

Bernard Dupond
https://commons.wikimedia.org/w/ind

ex.php?curid=40724289

Klaus Rudloff
https://www.biolib.cz/en/image/id260

658/

Point A: CS (internal ref: 404)

max.25_r.sl_SB = 2.02 med_Ssk_SC = -0.6

Point B: AB (internal ref: 8-20)

max.25_r.sl_SB = 3.64 med_Ssk_SC = -0.12

SB: cleaned surface - second order polynomial surface. SC: cleaned surface - eighth order polynomial surface.

r.sl: anisotropy ratio based on fACF slopes. Ssk: skewness

max.25: mean above last quartile. med: median value.

→ Point A exhibits less striation on the SB surface than Point B but more height distribution asymmetry on SC samples.
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2.4. Q1, Cervus

Point A: BR (internal ref: 551) Point B: GR (internal ref: E_13)

max.25_r.sl_SC = 1.98, min.25_Sk1_SC = 0.3 max.25_r.sl_SC = 3.36, min.25_Sk1_SC = 2.79

SC: cleaned surface - eighth order polynomial surface.

r.sl: anisotropy ratio based on fACF slopes. Sk1: percentage of surface above 85% of the height amplitude (once cleared
from the first 15%)

max.25: mean above last quartile. min.25: mean below first quartile

→ Point A exhibits less striation and less elevated samples than Point B. Even if the Point A samples seem flatter, when
the heights of a sample are normalized, there are fewer heights above 85% than for Point B samples.

2.5. T4, Cervids

Alces alces, AA Capreolus capreolus, CC Cervus elaphus, CE

Jerzy Strzelecki
https://commons.wikimedia.org/wiki/
File:Alces_alces_14(js),_Biebrza_Nat

ional_Park_(Poland).jpg

Lucille Billon
https://inpn.mnhn.fr/espece/cd_nom/6

1057

No known author
http://www.mapama.gob.es/es/red-

parques-nacionales/nuestros-
parques/donana/visita-

virtual/fauna/Ciervo.aspx
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2.6. Q2, Browse, Grass and Dust (Sheep Experiment)

Point A: L5 (internal ref: 70-519) Point B: L1 (internal ref: 21-155)

fst.25_Scm2_SC = 0.07
     max_Sk2_SB = 8.85

fst.25_Scm2_SC = 0.24
       max_Sk2_SB = 45.76

2.7. T5, Seeds, Browse, and Grass (Sheep Experiment)

Point A: L5 (internal ref: 80729) Point B: L7 (internal ref: 07898)

fst.25_Stri_SC = 1.48 fst.25_Stri_SC = 1.51

Point C: L7 (internal ref: 80718)

L1 L5 L7 LO

L6: L5 + dust L8: L7 + dust

fst.25_Stri_SC = 1.80
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