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Abstract: With the emergence of technologies such as electronic health and mobile health
(eHealth/mHealth), cloud computing, big data, and the Internet of Things (IoT), health related data
are increasing and many applications such as smartphone apps and wearable devices that provide
wellness and fitness tracking are entering the market. Some apps provide health related data such
as sleep monitoring, heart rate measuring, and calorie expenditure collected and processed by the
devices and servers in the cloud. These requirements can be extended to provide a personalized life
expectancy (PLE) for the purpose of wellbeing and encouraging lifestyle improvement. No existing
works provide this PLE information that is developed and customized for the individual. This article
is based on the concurrent models and methodologies to calculate and predict life expectancy (LE) and
proposes an idea of using multi-phased approaches to the solution as the project requires an immense
and broad range of work to accomplish. As a result, the current prediction of LE, which was found to
be up to a maximum of five years could potentially be extended to a lifetime prediction by utilizing
generic health data. In this article, the novel idea of the solution proposing a PLE on an individual
basis, which can be extended to lifetime is presented in addition to the existing works.

Keywords: Life Expectancy (LE); Personalized Life Expectation (PLE); Predicted Life Expectancy
(PrLE); Mobile Health (mHealth)

1. Introduction

The problem of processing datasets such as electronic medical records (EMR), and their integration
with genomics, environmental factors, socioeconomic factors and patient behavior variations have
posed a problem for researchers in the health industry. Due to the evolution of data science technologies
such as big data virtualization and analytics, data wrangling and with the cloud, health workers now
have an improved way of processing and developing meaningful information from huge datasets
that have been accumulated over many years. For example, a case study [1] shows that big data
and machine learning techniques can benefit public health researchers with analyzing thousands of
variables to obtain data regarding life expectancy and anxiety disorders. They used the demographics
of selected regional areas and multiple behavioral health disorders across regions to find correlations
between individual behavior indicators and behavioral health outcomes. Smart environment and
wireless network technologies [2–5] have also been used to improve the monitoring of chronic diseases
with the evolutions in the Internet of Things (IoT) and cloud computing by building smart cities
and homes, which allowed the rapidly growing elderly population to access healthcare resources in
a cost-effective way.

Banaee et al. [6] proposes the idea of a potential application model that can be elaborated on as
an application of using personal health status. As described in Figure 1, it may be possible to create
a prediction of personal life expectancy, which can be further used to calculate health indexes on
a generic level for which the individualized expectancies may be compared against.
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Figure 1. Health Status and personalized Life Expectancy (Adapted from [7]). 

This model can also depict the life expectancy predicted by an inference system, which transmits 
health data over wireless sensor networks [8]. Generic life expectancies may be calculated from 
multiple sources obtained and analyzed by big data. These values can be used to create a personalized 
graph that most resembles the individual in question, with consideration for personal characteristics 
such as their age, gender, ethnicity, living environment and current comorbidities or lifestyle habits. 
There may be an enormous number of variables to consider, of which increasing the number may 
obviously increase the accuracy of a LE prediction. This personalized graph can then be compared 
with other individuals who may be living similar lifestyles and share similar traits to provide an idea 
of the generic life expectancy. This concept is described in Figure 1 with the red and black lines 
superimposed on each other. During point A, the graph shows that the user was ill and there was a 
decrease in the overall health status until point C when the user recovered, followed by another case 
of illness at point C until they recovered finally at point E. Point F describes the present moment in 
time, at which point any values following this point would be an inferred prediction of the 
individual’s health status for the future. This prediction would be an inference made of physiological 
data analyzed by the cloud computation. Whilst the red line shows a trend line of the history of the 
user’s health status and a rough estimate of his or her future health, the graph may also show fine 
trends as depicted by the green line. This would be used to inform short term information about 
whether the user’s health is improving or declining on a more detailed level. 
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the inference result, as some sensed data may be interdependent and affect one another; e.g., insulin 
levels and blood pressure. Thus, in inferring whether a change in the user’s health status should 
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This model can also depict the life expectancy predicted by an inference system, which transmits
health data over wireless sensor networks [8]. Generic life expectancies may be calculated from
multiple sources obtained and analyzed by big data. These values can be used to create a personalized
graph that most resembles the individual in question, with consideration for personal characteristics
such as their age, gender, ethnicity, living environment and current comorbidities or lifestyle habits.
There may be an enormous number of variables to consider, of which increasing the number may
obviously increase the accuracy of a LE prediction. This personalized graph can then be compared with
other individuals who may be living similar lifestyles and share similar traits to provide an idea of the
generic life expectancy. This concept is described in Figure 1 with the red and black lines superimposed
on each other. During point A, the graph shows that the user was ill and there was a decrease in
the overall health status until point C when the user recovered, followed by another case of illness
at point C until they recovered finally at point E. Point F describes the present moment in time, at
which point any values following this point would be an inferred prediction of the individual’s health
status for the future. This prediction would be an inference made of physiological data analyzed by
the cloud computation. Whilst the red line shows a trend line of the history of the user’s health status
and a rough estimate of his or her future health, the graph may also show fine trends as depicted by
the green line. This would be used to inform short term information about whether the user’s health is
improving or declining on a more detailed level.

F(x) =
d(g[PQ])

d(x)
, where x = age, and g[PQ] = health index function from point X1 to X2, (1)

The Health index function g[PQ] is based on the differential of health status between age X1 and X2.
For example, when F(x) < 0, the health index function would suggest a decline in health whereas F(x)
> 0 suggests that the health status is improving (recovery) during the period of A (X1) and B (X2).
Periods of illness may be reflected in the health index by a sum illness cycle, which would describe the
number and the total durations of illness days. Inference should take into account the information
held within its own database along with that received from external agents, such as from monitoring
centers (MC) or caregiver terminals (CT) in mHealth networks.

As presented in [8], the health status of each user would vary from the average values and
thresholds of other users, and fine calibration or optimization may be required and could be undertaken
by a trained professional, for example a physician. A combination of variables may alter the inference
result, as some sensed data may be interdependent and affect one another; e.g., insulin levels and
blood pressure. Thus, in inferring whether a change in the user’s health status should trigger a health
alarm warning of a potential health event, sensed data should be interpreted together with related
variables that are known to affect each other. As time progresses, a user’s profile data is continuously
optimized due to the number of inferences made over a longer period of time, and inform a database as
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to the PLE prediction of each person. As this data is increasingly updated, inferences can be completed
more accurately and efficiently.

Smartphones act as a manager within a mHealth network architecture and as an agent in an IoT
network, thus exist as an important link for communication between MC, CT and IoT networks after
receiving information from sensor nodes. This article describes a new approach towards individualized
life expectancy predictions. It discusses health status calculations from inferring data collected by
sensor nodes along with calculations done using big data in the cloud. Inference is suggested to
be done within the sensor nodes, in order to have control over data sent to the cloud. Smartphone
applications can be used to track health status histories and to access future predictions created from
inferred data.

As raw and processed data consist of sensitive information, strong security measures are required
to protect user privacy such as personal details (e.g., date of birth, identification). Security aspects
are therefore critical in dealing with health-related information such as privacy in wireless body
area networks (WBAN), and has been included for review in this article despite extensive and
comprehensive research having being completed by many researchers in network and information
security in the health area [9–11]. During app implementation, development of algorithms and logics
on the predictions for individual and generic data need to be considered as this is crucial to analyzing
and producing meaningful and useful information. These aspects have not been completed yet as
network infrastructure and merging of technologies continue to be immature for these purposes.
This article reviewed existing works and identified that no work has been attempted to predict
a personal life expectancy and contributes to the area with an idea of how life expectancy can be
predicted on a personal level by providing detailed variables of required data and practical network
topology that can be used for producing the predictions.

2. Analysis of Existing Works

As a result of the evolution of biotechnologies and related technologies such as the development
of sophisticated medical equipment, humans are able to enjoy longer life expectancies than previously
before. For example, a clinical research center claims that in 10 to 12 years from now, for every year
that humans live, science is extending the life for more than a year using health intelligence platform
integrating genomics, advanced clinical imaging and robust machine learning in a spa-like setting [12].
Predicting a human’s life expectancy has been a long-term question to humankind [13], and there have
been many attempts to make the prediction accurate and popular since the prevalence of smartphones
and apps. However, the effectiveness of those apps is limited due to the constraints of developing
a classification of meta-data, such as the complexity and variety of environmental, geographic, genetic,
and living factors of humans. For example, a report showed that people living in a village called
Yuzurihara in Japan, also known as “the village of long life”, were ten times more likely to live beyond
the age of 85 than anywhere in North America. These people also had similar traits such as smooth
skin, flexible joints and thick hair [14]. This implies that geographic and living environments affect the
longevity of human life, and the use of statistics can make it possible to forecast a life expectancy of
a person who lives in a similar environment village with a similar lifestyle.

Whilst the calculation of life expectancy is a complicated process and requires many variables
and circumstances to take into account, there have been several attempts to create an equation
despite it being impractical to simplify these variables into one equation. For example, Bhosale and
Sundaram [15] suggested a simple equation to compute a line of curve using only three health data
including heart rate, blood pressure level and respiration rate.

Jafelice et al. [16] attempted to compute the life expectancy of the HIV/AIDS (Human
immunodeficiency virus infection and acquired immune deficiency syndrome) population using
a fuzzy set-based model. Based on the assumption that viral load and CD4+ (cluster designation
positive cells) level are the most important variables to characterize HIV infection, they concluded that
AIDS has a direct influence in the mortality rate of a population.
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Agrawal et al. attempted to calculate the survival probability to estimate a 5-year survival of
a patient from a recent hospital visit. Their approach of using an online web tool taking 24 patient
attributes as inputs to generate a PrLE of five year survival calculation is the most relevant and
accurate so far [17]. To select the best modeling technique, they analyzed the top five modelling
schemes, which had accuracies from between 89.82% and 90.29%.

Figures 2 and 3 shows a screen menu to calculate a five year life expectancy calculation and
its result.
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Gil-Herrera et al. presented a theory to predict the life expectancy of terminally ill patients for life
expectancy prognostication. They used retrospective data of over 9000 patients to assist terminally
ill patients in making end-of-life care decisions [19]. However, these life expectancy have only been
shown for a specific group of patients such as terminally ill patients only.

There is an association of economic and environmental factors to life expectancy as discovered
by Kerdprasop et al. [20]. They tried to show the connection between natural resources and the
economic growth to the life expectancy of people in the countries along the Mekong river, and the
outcome reveals a strong relationship between environment and GDP growth to the life expectancy of
the population.

Pascariu et al. [21] proposed a methodology to forecast life expectancy of males and females
using the double-gap (DG) approach: (1) the gap between female life expectancy and the best practice
trend in the world, which determines future female life expectancy; and (2) the gap between male
and female life expectancy to obtain the country specific male life expectancy. They compared the
results with the Lee–Carter (LC) model [22] and the Cairns–Blake–Dowd (CBD) model [23], both of
which generate a matrix of forecast death rates and the forecasted life expectancies that are computed
using standard life table calculations. Their research approach includes a vast range of data sources,
which contain mortality data for 47 homogeneous populations in different countries and regions.
The time period was between 1950 and 2014 with the ages ranging from 0–95 in 38 countries and
regions. They constructed a model for forecasting the life expectancy of males and females for a given
age, using correlations amongst countries and gender.

Whilst this may show an improved forecast of male and female life expectancy by taking countries
into account, it is still far from providing an individualized life expectancy as they more focused
on PrLE of correlations among countries and between sexes as opposed to individuals. Figure 4
depicts the comparison of DG against other methodologies showing differences of the results with
better prediction.
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Figure 4. Actual and forecast life expectancy (USA) at birth and at age 65 generated by the DG (double
gap), LC (Lee and Carter model) and CBD (Cairns et al.) models for females and males, 1950–2050.
Prediction intervals at 80% and 95% levels are shown only for the DG model (Reproduced with
permission from Marius Pascariu [21]).

There have been many works done in the prediction of LE within the context of specific
diseases such as predicting LE in men diagnosed with prostate cancer [24], schizophrenia [25],
lung cancer [26,27], breast cancer [28], diabetes [29], limb ischemia [30], IgA nephropathy [31], oral
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squamous cell carcinoma [32], acute myeloid leukemia [33], and psychiatric disease [34]. These models
have also been researched with consideration of geographical and regional areas [35–37], income [38],
relationship with economic growth [39], and globalization [40]. There are multiple models of LE
including Sullivan [41], Lee and Carter [22], Cairns et al. [23] and Jafelice [16]. Table 1 shows LE
prediction works based on each category such as diseases, geographical areas and regions, relationships
with other factors such as income and economical variables as well as different modelling approaches.
Table 2 shows summary of variables used for the modelling technique with contributions made by up
to date methodologies.

Table 1. Summary of Reviewed Life Expectancy (LE) Predictions.

Diseases Based Geographic Areas Relationships Modelling Techniques

Cancer [24], schizophrenia [25], lung
cancer [26,27], breast cancer [28],
diabetes[29], limb ischemia [30], IgA
nephropathy [31], oral squamous cell
carcinoma [32], acute myeloid
leukemia [33] and psychiatric disease
[34]

America, Europe,
and Asia [35–37]

Income related [38],
relationship with
economic growth [39]
or globalization [40]

Sullivan [41], Lee and
Carter [22], Cairns et al.
[23], Jafelice [16],
Agawal et al. [17] and
Pascaliu et al. [21]

Table 2. Summary of Modelling Techniques.

Modelling
Techniques Authors Variables Contribution

[41] Sullivan Skin color, sex, at birth
and age of 65

Used a life table model to calculate
LE based with/without disability
for mortality and morbidity.

[22] Lee and Carter

Age groups,
period-specific intensity
index, direct time series
methods

Used singular value decomposition
model to account for almost all the
variance over time in age-specific
death rates as a group.

[23] Cairns et al.

Mortality-rate dynamics
at all ages to simulate the
distribution of a survivor
index over various time
horizons

Proposed calculating the market
risk-adjusted price of a longevity
bond using two-factor model
stochastic for the development of
longevity through time.

[16] Jafelice and Barros Viral load and CD4+
level

Developed Fuzzy set-based model
to compute the life expectancy of
HIV infected populations to
determine the average number of
individuals and the life expectancy
for specific population groups with
no anti-retroviral therapy

[21] Pascariu et al. Male or Female at the
age of 0 and 65

LE forecasts based on the
double-gap life expectancy
forecasting model and compared
with the Lee and Carter approach
and the Cairns et al. strategy. The
Double-Gap model approached the
use of combination of models for the
most promising forecasting tools.

[17] Agrawal et al.
Electronic health records
(EHR), Age, sex, health
data including vitals

Used predictive models for five-year
life expectancy of patients, built on
electronic health records (EHR) of
nearly 7500 patients aged 50 and
above with more than 75 modeling
configurations. They developed an
online tool which takes a
non-redundant subset of 24 patient
attributes as the input and generates
a patient-specific prediction of
5-year survival.

As a result, for the purpose of this article it is concurred that Agrawal et al. [17] provides the most
accurate and useful methodology to calculate individual LE despite it only showing five years of LE.
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This has so far been the only tool that has been proposed to calculate a PLE for an individual utilizing
personalized attributes entered in to questionnaires provided by a web application, whilst others
are based on predictions of LE for a group based on larger demographic classifications. However,
the variables required to enter to their questionnaire on the website are complex and users are unlikely
to enter most of the data due to the difficulty of technical data to obtain. Data that are of a technical
nature would be reasonably expected to be entered in by a health practitioner as shown in Figure 2.

Challenges appear in integrating wireless technologies such as wireless local area networks
(WLAN) and wireless personal/body area networks (WPAN)/WBANs with existing health networks
to meet the quality of service (QoS) requirements for different kinds of medical devices and applications
in an integrated and ubiquitous network [42]. Whilst most mHealth users are exposed to wireless
networks such as WiFi, which connects to public networks such as cellular, there are compliance issues
of using medical sensor devices that may affect WiFi access points as well as cellular networks in terms
of electromagnetic field exposure regulations. A government agency such as the European Council
issued a directive as to the minimum health and safety requirements regarding the exposure of workers
to the risks arising from physical agents (electromagnetic fields) [43,44]. As there have been advances
in wireless technologies for healthcare applications and networks, many works in areas such as
characterizing electric field (E-field) exposure within the wireless (WiFi) environments [45,46] and the
evaluation of electromagnetic dosimetry of wireless systems in complex indoor scenarios with human
body interaction [47] or in sensor networks [48] have already been done. Thus, it is not within the
scope of this review article to review the impacts to humans by sensor devices and mHealth networks
environment whilst it is important to consider those challenges along with managing privacy issues.

Another challenge is the access of health data of general users, whose data may not be stored
in medical facilities or databases as many users may not have visited the hospital in the past as
well as the lack of uniformity in how data is stored. Additionally, each country and state may have
their own regulations in the handling of patient data and security management. It sounds simply
to centralize health data by integrating heterogeneous health networks and to combine them in one
location. However, the aforementioned laws and regulations may present to be a big hurdle as it
relates heavily to the issue of privacy and consent. For example, a user in a developed country may not
agree to provide his or her data to be used in another country’s facilities or networks. Once data have
been integrated to a centralized cloud server, a separate issue remains to develop algorithms of how to
classify and process big data to create meaningful information. Whilst the latter is a technical issue,
the former will be critical as it requires government policies and regulations with multiple parties.

When dealing with health-related information and applications converged with IoT which may
interact with health devices, adaptive security management techniques are essential to provide
a sufficiently secure and robust system. Savola et al. [49] developed a context-aware Markov game
theoretic model for security metrics risk impact assessment to evaluate and validate the run-time
adaptivity of IoT security solutions by analyzing objective decomposition strategies for IoT eHealth
applications. When healthcare information systems have been implemented and used along with
IoT, which are deemed to be extremely sensitive as they contain patients’ private information,
the healthcare system should guarantee adequate protection of the confidentiality and integrity of
patient information. At the same time, the patient information and their health data also needs to be
available for authorized health service providers, so that they can provide the proper treatment of
the patient [50]. These information and data should be available immediately for urgent cases and
the method and ways of accessing them should not be complicated. In other words, ease of access to
the data and providing security should be accomplished at the same time, which can be a dilemma.
To achieve the goal, it requires changing the business models and the way the IT infrastructure is
being delivered as well as the underlying architecture of how they deliver the applications. Zhang
and Liu attempted to develop an electronic health record (EHR) security reference model using
a use-case scenario describing the security countermeasures and state of the art security techniques
as a basic security guard [51]. As mHealth is increasing in prevalence with smartphone applications,
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there have been works done in the underlying networks and application security services integrated
into health networks by looking for mobile specific requirements [52,53]. Due to the demand, IEEE
11,073 workgroup formed a sub-workgroup for cybersecurity to support secure health data exchange
between personal health devices (PHD) and their clients. Their objective of the cybersecurity standards
is to specify the process and capability of preventing unauthorized access, modification, misuse, denial
of use, or the unauthorized use of information that is stored on, accessed from, or transferred to and
from a PHD [54]. Therefore, it is required to define and distinguish the constraints of communication
and collaboration when developing policies of processes and systems [11] since healthcare systems
cannot provide security as a one for all solution in the context of heterogeneous networks and
different environments and regulations in each country and states. It also requires the consideration
of complexities such as heterogeneous networks, organizational silos and applications requirements,
compliance for regulations, security and network capabilities, and costs when building a security
solution. For example, light-weight security may be developed for security functions on a smartphone
application of group life expectancy against a personal application that may need to protect private
information as the size of software directly affects the performance of small devices, which have
power constraints.

3. Review Conclusions

Whilst there have been a few attempts to calculate the LE for classified groups and diseases, little
has been done to foresee and predict generic or personalized life expectancy, and could be attributed
to several contributing factors.

1. The overwhelming number of variables that could be considered in predicting LE;
2. Lack of accumulated data in one storage location for data processing and analysis to generate

meaningful data;
3. Difficulty of centralizing heterogeneous networks from different countries and regions;
4. Unpredictable and fast changing lifestyle of humans with the increase of sophisticated technologies;
5. Limited methods of health data collection such as data only from patients in a healthcare

environment (hospitals, insurance companies), which may exclude the general population.

Due to the fast-emerging technologies of big data, machine learning, artificial intelligence, and virtual
and smart environment, it may be possible to handle some of the constraints above. Moreover,
the prevalence of smartphones in the working generations even in developing countries makes it
a possibility to collect health data anytime and to predict how long a person can live based on their
health and medical history. Security aspects are essential as it deals with sensitive personal information
and should be considered in PLE solution with various security levels for the nature of information.
This paper proposes an idea of how prediction of life expectancy to an individual user can be achieved
as well as exercising how mHealth can be utilized to help collect and process health data from users.

4. Work in Progress

This section describes an individualized information of life expectancy through health data
collected, processed and created based on big data. Information is provided by two ways:
(1) smartphone app for brief summary; and (2) a report with a full and comprehensive report processed
by big data in the monitoring center of the health service providers. There has been a great level of
work in health data processing including knowledge management, managing medical images and
data, integration of hospital care data, clinical research and bioinformatics data and information system
security and data protection [55]. We are not focusing on existing works in data processing, which have
already been identified and reported. Similarly, existing health networks can be used to provide PLE
service along with mHelath applications. Therefore, established networks and systems that have been
broadly researched have not been discussed [56]. Rather, we look at the data collection by mobile users
who can use their smartphone and application to access the PLE services.
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4.1. Raw Data Collection

Data to collect for building generic and personalized LE information include many parameters to
integrate such as behavioral parameters, health status monitoring, physiological signals (e.g., blood
pressure, etc.), diet, physical activities, and genetics. Not to mention, narrowing down the sampled
groups into low-level sub-groups can help increase the accuracy of predicting LE as attempted by
Fries [57] for eliminating premature death to calculate the average life span as premature death rate
significantly affects the whole LE rate.

Smartphone users download the app and complete the initial data entry, which include generic
and personal criteria. These data are added to cloud servers, which classify and group based on
the user’s category. Questionnaires and answers to be collected are comprehensive and can vary
from basic profile to technical contents that may not be answered by the user but their physicians as
below examples. Alternatively, these answers can be obtained by the health service providers who are
connected to a health network, which provides the user’s medical data by having a digital signature
from the user; e.g., terms and conditions agreed to on the app screen as some users may not wish to
disclose their medical data due to privacy concerns.

Distribution and collection of data can be major and fundamental requirement of the solution,
as these data are used to set out the outcome; i.e., PLE results. During the process of solution design,
including requirements definition, high-level design of network and application features and products,
there should be clear roles and responsibilities of each party and stakeholder, including users, service
providers, and regulators.

4.1.1. General Questionnaire

When a user responds to the questionnaire for the first time, they are requested to enter basic user
profile and general information, which can be responded to without consulting their physicians, as
shown in Table 3.

Table 3. General questionnaires, which can be completed by users. These data can be provided without
consulting a user’s health service provider.

Classification Attributes

Personal information Gender, age race, country of birth, location

Body physique Weight, height, Body Mass Index (BMI)

Life events
Education, marital status, retired status, residential type (urban/rural),
living conditions (e.g., alone, with partner), pets, driving habits,
relationship with family & friends

Work Occupation, income, physical/office work, night shifts, full/part-time
employment, working hours

Fitness Exercise, general health, frequency, and amounts

Health conditions & diseases Diabetes, high blood pressure, cholesterol levels, cardiovascular
conditions, cancer, allergies

Diet Vegan, vegetarian, meat intake, seafood, gluten, and other
diet restrictions

Family history Age of death of grandparents and parents, known family history of
genetic conditions

Lifestyle Alcohol consumption, smoking, hobbies, sleeping habits

4.1.2. Technical Questionnaire

Some data are more technical in nature and cannot be entered by the user in response to the
smart device app when the user first registers. Complex data such as blood and medical investigations
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(e.g., Electrocardiogram (ECG), Ultrasound, Computed Tomography (CT), Magnetic Resonance
Imaging (MRI)) and the diagnosis and test results of certain medical conditions (e.g., heart failure,
kidney disease, cancer) would only be able to be provided by the user’s health service provider
and would necessitate their consultation [17]. However, users may still be able to answer limited
technical questions depending in their level of knowledge. Table 4 includes technical and non-technical
information that can be obtained from a centralized server with the consent of the user in addition to
the initial survey by the smartphone app.

Table 4. Technical questionnaires, which can be completed by users by consulting their health
service provider. This information would be required to fully access the centralized health service
network server.

Comorbidity count Mean creatinine (mg/dL)

Number of visits for primary care, hospitalization in the past Lowest sodium (mEq/L)

Mean diastolic blood pressure (mm Hg) Lowest calcium (mg/dL)

Mean albumin (g/dL) Digoxin prescription

Highest blood urea nitrogen (mg/dL) Loop diuretic prescription

Additional questions specific for each individual may be included by the health service provider,
such as questions relating to a current diagnosis. All these data come from data sources processed and
classified by big data.

A high-level approach may also be used for health determination attribute classifications [58]:

• Individual lifestyle behaviors e.g., spending patterns, exercise, diet;
• Physical and social environments e.g., living density, pollution levels;
• Socioeconomic factors e.g., education level, financial status;
• Health outcomes e.g., illnesses;
• Health systems e.g., health insurance status.

4.1.3. Data Source Selection

The method of selecting samples and training data in the cloud is important as it determines the
quality of data accuracy. This may require integrating information from multiple data sets. Table 5
shows a primary dataset (sub-regional area information for important health outcomes) complemented
by integration with a second dataset (census-level information).

Table 5. Dataset integration. The first dataset has restrictions of geographic granularity due to privacy
reasons. The second dataset can be used to complement to improve the quality of data sources (Adapted
from [1]).

Sub-Regional Area (SRA)-Level Dataset (First Dataset) Census-Tract Level Dataset (Second Dataset)

Health and human service agency (HHSA) Behavioral Health
Data (Hospitalizations & Emergency Department visits for
behavioral health conditions)

Census-tract level dataset

HHSA Demographics (Demographics) American Community Survey 2012 (5-Year Estimates)
(Census demographics)

Environmental Systems Research Institute (ESRI) Market
Potential Data (Consumer buying patterns and behaviors) CalEnviroScreen 2.0 (Pollution data)

San Diego Association of Governments (SANDAG) Healthy
Communities Atlas (Data on physical and built environment) Loop diuretic prescription
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4.1.4. Other Factors

Other factors (such as in Table 6) should also be considered when the predictive model is designed.
It is still unknown which attributes are relevant to maximize the accuracy of the PrLE. With a constantly
growing database of health information, it is crucial to assess and prioritize relevant and important
health attributes (e.g., with machine learning, artificial intelligence) to improve the quality of the PrLE.
Figure 5 depicts the overall and summarized questionnaires.

Table 6. Environmental factors that affect PrLE (Adapted from [1]).

Average violent crime rate Composite score: pedestrian traffic safety

Total park acreage Percentage of block groups that interest with parks

Fast food density per square mile Percentage of sidewalk coverage

Block groups with minority areas Count of grocery stores locations
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Figure 5. Questionnaires for Life Expectancy calculation. Questions are customized and further
developed for specific groups and individuals. For example, a diabetic patient may have detailed
questions relating to their diabetic history, types, and dietary intakes.

4.2. Information Flow of Data Creation

When data are transferred to the cloud server, they are compared against the generic data of the
user group to create an individual’s data. These data are fed back to the generic data for training
purposes and inference at sensors.

There are two pieces of information to be provided: (1) generic life expectancy graph of the group
where the user belongs to; and (2) individualized result of the user. A monitoring center server in the
cloud collects physiological data from individual smart devices such as smartphones, which collect
and process sensed data in WBAN. These data are classified and analyzed for data accuracy prior to
inferring, optimizing and transmitting to smartphones to be used by the app. Information flow of data
transmission is shown in Figure 6. Steps 1 & 2 refer to initial data collection and entry followed by
Steps 3 & 4 for data inference and optimization. Step 5 is for presenting PLE outcome, and Step 6 refers
to data updates for fine-tuning with ongoing data feedback to the cloud server.
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fine-tuned prediction.

Possible scenarios of health data collection and transfer to cloud servers are described below:

1. A user installs a PLE app on their smartphone and adds personal information and health data as
requested by the app. The user also gives a consent to the service provider so that they can access
and retrieve their health data from the user’s health record located in a central server.

2. The app communicates with the central server which initiates user registration and basic
provisioning processes. It also pairs up (if needed) with the user’s body sensors to be ready for
data transfer.

3. The user’s body sensors collect and transfer the sensed data to the smartphone and follow
instructions of when and how to collect and transmit data.

4. When data have been collected, the smartphone app transmits them to the central server that will
prepare and generate the initial results, and send them back to the app for optimization. The app
may collect further data from the sensors as programmed prior to displaying the outcome of PLE
for the user.

5. The central server continuously updates and improves data quality to input to the generic
group data as classified and grouped for the user. Each element fine tunes the data by inference
algorithms before transmission, and discern how to handle the priority; e.g., QoS.

4.3. App Design

Health data are transferred from sensors to a smart device via low-powered wireless protocols
such as Bluetooth low energy (BT-LE), WiFi (802.11), and Zigbee. The app displays the received data
and transfers them to a server in the cloud for data processing. The screen menu can be combined
as a part of existing mHealth mobile applications (as shown in Figure 7). There are two phases of
personal data collection: general and technical health information. As the current health and fitness
related apps integrate multiple functions, PLE features can be implemented within the existing apps
as current mHealth services, which already require handling of physiological data.
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Figure 7. mHealth mobile app screens (example). (a) Existing health mobile app can integrate PLE
feature as additional services (b) as both functions require the same physiological data to transfer to
a monitoring center for PLE calculation.

5. Applications

Along with existing heath applications such as fitness tracking, chronic disease monitoring and
real-time patient monitoring, the PLE application can be useful for users to improve their lifestyle and
exercise by planning goals on a short and long-term basis. For example, the current PLE outcome of
85 years will be adjusted when the user changes their attributes such as smoking cessation, reducing
alcohol consumption, commencing regular exercise, or modifying dietary plans.

The development of wearable devices is evolving rapidly to capture data and for use in
applications [59]. By wearing fitness tracking or monitoring devices, those attributes can be
automatically updated and sent to the cloud servers, which process and update the health index
defined by the user’s physician to assess the user’s health life, which eventually leads to updating the
user’s PLE. IEEE P11073 Personal Health Devices (PHD) or sensors attached on or implanted in the
user’s body also provide physiological data to the mHealth monitoring center, which is connected to
the centralized cloud servers for data optimization with increased data accuracy as shown in Figure 8.
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One of the potential stakeholders of this solution may be health insurance companies, who can
provide personalized insurance products by monitoring their customers’ health index. They may
provide customers with incentives to improve their health condition and lifestyle, for example by
revising their premiums in response to improvements in their customers’ health index obtained and
processed by the cloud computing program.

A strict policy and regulations should be imposed for third parties such as health insurance
companies regarding access to user data such as requiring patient consent and agreement, as well
as parameters on how that data can be used. It is essential to develop and agree upon transparent
security and privacy policies prior to engaging third parties for the usage of health data of users across
states and governments.

6. Conclusions and Future Works

Few works have been done to provide an individually customized life expectancy prediction.
We have reviewed existing works and techniques in the prediction of human LE, and reached
a conclusion that it is feasible to predict a PLE for individuals using evolving technologies and
devices such as big data, AI, machine learning techniques, and PHDs, wearables and mobile health
monitoring devices. We also identified that the collection of data will be a huge challenge due to the
privacy and government policy considerations, which will require collaboration of various bodies
in the health industry. The interworking of a heterogeneous health network is also a challenge for
data collection. Despite these challenges, we showed a possibility of a PLE prediction by proposing
an approach of data collection and application by smartphone, with which users can enter their
information to access the cloud server to obtain their own PLE. No attempt has been made to create
this novel idea of using smartphone integrating cloud servers for real-time data entry. We investigated
obstacles and barriers that can be resolved by future works described below. Previous works have
described a five year LE prediction, however it is not oriented as a personalized prediction but rather
utilizes a median model-predicted probability of 5-year survival of patients who are either sick or
healthy. It is proposed that this can be extended to a lifetime prediction by using big data to generate
a generic data, which can be used to create a PLE based on training data as a future solution. Building
a generic database will take a considerable amount of time for data collection and analysis, taken
from birth to death for various demographic groups to be useful and accurate in representing each
attribute classifications. Whilst current applications attempt to show PLE for smartphone users, they
are complicated and difficult to collect technical data requested by the questionnaire, as users are
unlikely to be able to provide these data themselves. This can be resolved by connecting the app to
the central cloud server with the mHealth networks which provide other health related applications.
A centralized cloud server plays a key role in collecting, processing, and creating meaningful value
using big data, which forms the input of the solution as well as creates generic data against each
user’s PLE requirements. Service providers shall envisage challenges and hurdles to obtain consent
of personal health ‘of heterogeneous health networks across developed countries. This will lead to
(3) classification of data based on processing big data and each group’s traits, which can be used as
personalized threshold ranges; (4) When this has been completed in a cloud, it can be connected to
a smart device app that can provide questionnaires developed by health specialists and collect answers
to customize the user’s PLE; (5) Optimization of the generic groups’ data is done by developing
an algorithm using machine learning for continuously building and optimizing the user’s generic data.

As the proposed solution requires processing and transmitting health information of users,
information security is a key aspect to consider such as privacy as well as ethical requirements
recommenced by regulation bodies, such as the Australian national health and medical research
(NHMRC). The scope of security and ethical requirements need to be clearly defined and specified for
future work as challenges are expected to build a centralized database with incorporation of health
networks. For example, North America, Asia, and Europe may have their own unique requirements to
satisfy in dealing with health data with different health research guidelines.
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To verify the accuracy of PLE prediction and validation of data quality, big data techniques
and analysis algorithms need to be developed and tested in a real-life situation with several sample
groups. As artificial intelligence technology is evolving and being applied rapidly, feasibility may be
increasing to collect health data from the public as well as existing health agencies such as centralized
health servers.
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Abbreviations

Life Expectancy (LE)—longevity of human life based on diseases or other variables such as geographical region;
race or regional traits; Personalized Life Expectation (PLE)—LE focused on personal or individual longevity rather
than groups or classified based on traits such as diseases; races and regional areas; Predicted Life Expectancy
(PrLE)—LE that has been predicted for the future from past health related data processed by cloud server. Mobile
Health (mHealth)—a branch of electronic health (eHealth) being provided by wireless body area networks; in
which sensors collect and transmit physiological or biological data to a monitoring center in the cloud for health
service providers to access
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