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Abstract: While the importance of continuous monitoring of electrocardiographic (ECG) or
photoplethysmographic (PPG) signals to detect cardiac anomalies is generally accepted in preventative
medicine, there remain numerous challenges to its widespread adoption. Most notably, difficulties arise
regarding crucial characteristics such as real-time capability, computational complexity, the amount
of required training data, and the avoidance of too-restrictive modeling assumptions. We propose
a lightweight and model-free approach for the online detection of cardiac anomalies such as ectopic
beats in ECG or PPG signals on the basis of the change detection capabilities of singular spectrum
analysis (SSA) and nonparametric rank-based cumulative sum (CUSUM) control charts. The procedure
is able to quickly detect anomalies without requiring the identification of fiducial points such as
R-peaks, and it is computationally significantly less demanding than previously proposed SSA-based
approaches. Therefore, the proposed procedure is equally well suited for standalone use and as
an add-on to complement existing (e.g., heart rate (HR) estimation) procedures.

Keywords: nonparametric change point detection; singular spectrum analysis; cumulative sums;
ECG; PPG; arrhythmias; cardiac monitoring

1. Introduction

The ubiquity of powerful smartphones and other smart devices, which nowadays incorporate
a plethora of advanced sensing capabilities, has led to an increasing trend in the consumer sphere
to continuously gather and evaluate physiological signals [1,2]. In particular, cardiovascular
parameters such as heart rate (HR) and pulse rate (PR), extracted respectively from measurements
of myocardial electrical potentials through electrocardiographic (ECG) observations [3–6] and from
measurements of volumetric changes in blood perfusion during cardiac cycles by optical means
through photoplethysmographic (PPG) observations [7–9], are being recorded and analyzed in apps,
fitness trackers and so forth, with great potential benefits for public health [1,10–12].

Virtually all of such consumer-oriented apps and devices fall into the category of fitness and
well-being products, thereby avoiding the substantial burden of having to comply with requirements
imposed by medical device regulatory frameworks [13,14], which is reflected by often notoriously
inaccurate and unreliable results [15,16]. Moreover, functionality is usually limited to providing
estimates of the average HR.

While low-resolution averaged HR estimates may be of some use in fitness and well-being
scenarios, from a clinical perspective, the detection of sudden changes in the signal structure is of
the utmost importance. ECG recordings from a healthy heart are characterized by a sinus rhythm,
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wherein the normal cardiac cycle begins with an action potential in the sinoatrial (SA) node, located in
the right atrium, which propagates and depolarizes neighboring cells. The depolarization of the
SA node spreads rapidly throughout both atria, specifically to the left atrium through Bachmann’s
bundle and through internodal pathways in the right atrium to the atrioventricular (AV) node.
Full depolarization gives rise to the P-wave, which initiates atrial contraction. From the AV node,
excitation is further propagated after an initial delay of about 100 ms through the bundle of His,
which splits up into the right bundle branch and the left bundle branch, initiating respectively the
depolarization of the right and left ventricle, yielding to the conspicuous QRS-complex, which ends
with completely depolarized and contracting ventricles. Ventricular repolarization following the
contraction eventually results in the T-wave and concludes the normal cardiac cycle. We note that
both left and right bundle branches eventually differentiate into a large number of Purkinje fibers,
the repolarization of which is thought to occasionally result in an additional U-wave [3].

Deviations from the normal sinus rhythm are referred to as arrhythmias and comprise a large
number of specific arrhythmias (see, e.g., [17]). Heart rhythms exhibiting variations in timing, such as
those that are either below 60 beats per minute (bpm) or above 100 bpm, as well as rhythms disrupted
by changes in the morphology, for example, as a result of ectopic beats (i.e., heart beats whose origin is
different from and outside of the region typically responsible for impulse generation, namely, the SA
node) such as premature ventricular contractions (PVCs) or premature atrial contractions (PACs),
all qualify as arrhythmias. Furthermore, they all tend to induce distinctive changes in the ECG signal,
thereby allowing for a change detection approach, which must not necessarily be based on templates
corresponding to the various arrhythmia-induced changes [18]. Additionally, many arrhythmias,
although usually not acutely life-threatening, are paroxysmal and asymptomatic and therefore likely
to go unnoticed for long periods of time, which carries the risk of exacerbation and possibly the
development of more serious types of arrhythmias [3,17,18]. Outpatient cardiac monitoring through
wearable devices and apps is commonly accepted as a promising approach to tackle this issue and
improve treatment outcome while at the same time lowering overall healthcare costs [1,10–12,18,19].

The automatic monitoring of ECG signals has been researched for decades, and various algorithms
have been proposed and implemented. However, the shift towards outpatient monitoring through
low-power wearable devices and apps introduces additional challenging requirements such as real-time
capability, the ability to cope with rather noisy and low-quality signals with various artifacts, and harsh
constraints on computational complexity and power consumption [18–20]. Various approaches for the
automatic online detection of cardiac arrhythmias have been proposed in the literature. Machine learning
approaches have been adopted by numerous authors [21,22], and as have wavelet- [22,23], artificial
neural network (ANN)- [24–26], and decision tree-based [27] approaches. For a more detailed review,
the reader is referred to recent review papers [18,28]. Most approaches require the extraction of certain
features from the signal, such as the location of QRS complexes [20,27,29,30] or R-peaks [22,23,31–33].
This is commonly performed using the algorithm proposed by Pan and Tompkins [34] or variations
thereof [18,28], resulting in an inherent vulnerability to inaccuracies in the initial estimation of these
fiducial points. The reliance upon rather restrictive modeling assumptions and the requirement of large
amounts of training data is not uncommon. On the other hand, recent research has resulted in improved
and numerically efficient QRS detectors that are particularly suited for mobile battery-powered
applications. Among the latter, we point out the fast QRS detection algorithm proposed by Elgendi [35],
as well as the general two event-related moving averages (TERMA) framework [36] by the same
author, for being highly efficient, yet much simpler and faster than conventional QRS detectors. It is
furthermore worth noting that Elgendi and colleagues in [37] and more recently in [38] were able to
show the good performance characteristics of TERMA-based QRS detectors to also hold for compressed
ECG signals. In particular, in [38], they were able to corroborate this for ECG records decimated by
a factor of up to 8, making TERMA-based QRS detectors particularly well suited for mobile health
applications in low- and middle-income countries (see also [39]).
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We propose a lightweight and model-free approach for the online detection of cardiac anomalies
such as ectopic beats in ECG or PPG signals on the basis of the change detection capabilities of
singular spectrum analysis (SSA) and nonparametric rank-based cumulative sum (CUSUM) control
charts. The procedure is able to quickly detect anomalies without requiring templates, extensive
training data sets or the identification of fiducial points such as R-peaks. This is accomplished
by leveraging the power and versatility of SSA to capture the essential signal structure as well as
potential changes therefrom. We note that, crucially and contrary to the aforementioned QRS detectors,
this is achieved without requiring a morphological dissection of the signal. From a computational
complexity perspective, while our proposed method is certainly more involved than a QRS detector,
it is significantly less demanding than previously proposed SSA approaches.

The proposed method is essentially composed of two consecutive steps: a SSA-based algorithm is
sequentially applied to the observed data to construct viable test statistics that reflect potential changes
in the cardiac signal, and these statistics are then monitored using distribution-free CUSUM-type
control charts.

The use of SSA in a sequential framework as a means for change detection as introduced
in Section 2 is based on works by Moskvina and Zhigljavsky, discussed in detail in [40] and
in a more condensed fashion in [41], although it should be noted that the concept was already
described earlier in [42]. This algorithm has successfully been applied to various real-world detection
problems, for example, anomaly detection in cognitive radio networks [43], smart power grids [44],
software engineering [45] and change point detection for complex-valued time series [46]. In the
biomedical context, it has shown to be useful for the identification of freezing of gait in patients with
Parkinson’s disease [47], and the detection of anomalies in periodic biosignals such as ECGs [48], as well
as in other biomedical applications [49].

Building on the prior technique outlined in Section 2, we introduce a novel SSA-based change
detection procedure (lightweight singular spectrum analysis change point detection: l-SSA-CPD) that
exhibits good performance characteristics while at the same time drastically reduces the computational
burden. As is shown in Section 3, this is accomplished by modifying the conventional SSA-based
change detection algorithm such that the computationally expensive task of computing the singular
value decomposition (SVD) is only performed at the very beginning instead of each time a new data
point becomes available. Furthermore, the proposed procedure uses more elaborate test statistics
that take into account the information derived from the angle between data vectors representing new
observations and the subspace representing the signal characteristics as well as the Euclidean distances.
Lastly, our procedure differs from previous approaches also in that rank-based control limits and the
reinitialization of control charts after an anomaly has been detected are used.

A performance evaluation of l-SSA-CPD using ECG and PPG records from the publicly available
Physionet Challenge 2015 training database (PC15) [50,51] are presented in Section 4.3 and compared
to a recently proposed competing algorithm by Pflugradt et al. [52].

Furthermore, we evaluate the performance of our simpler method against that of a previously
published work by Uus and Liatsis [48], which is related to our work in that it, too, is based
on leveraging the change detection capabilities of SSA. For the latter assessment, we used 10
cardiologist-annotated ECG records from the St. Petersburg Institute of Cardiological Technics
12-Lead Arrhythmia (INCART) database, which is also publicly available through Physiobank [51].
These results are presented and elaborated on in Section 4.4 and are eventually followed by a short
discussion in Section 5, which concludes this paper.

2. Singular Spectrum Analysis

2.1. Fundamentals of Singular Spectrum Analysis

SSA is a technique of time series analysis and can be interpreted as belonging to the general class
of principal component analysis (PCA) methods. SSA has become a standard tool in meteorology and
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climatology but is mostly unknown outside of those disciplines. Golyandina et al. [42] attribute this to
the nature of SSA being more a technique of multivariate geometry than of statistics. According to their
representation, SSA should rather be seen as an exploratory, model-building tool than a confirmatory
procedure. In essence, SSA can be seen as the application of PCA to the “trajectory matrix” (obtained
directly from the original time series) with the subsequent attempt to reconstruct the original series.
Prior to proceeding to SSA for change detection, a short introduction to the basic SSA algorithm
appears in order.

2.1.1. Basic SSA Algorithm

Consider N observations XN = (x1, . . . , xN) of a univariate time series and an integer
M (1 < M << N) commonly referred to as the window length, lag-integer or embedding dimension. The basic
SSA algorithm is commonly described as being composed of the following four stages (see, e.g., [42,49,53]):

1. Embedding: XN = (x1, . . . , xN)→ X ∈ RM×K

A trajectory matrix X is constructed by mapping XN into a sequence of K = N −M + 1 lagged
column vectors Xj =

(
xj, . . . , xj+M−1

)T , j = 1, . . . , K of size M, yielding

XN = (x1, x2, . . . , xN)→ X =


xn+1 xn+2 . . . xn+K
xn+2 xn+3 . . . xn+K+1

...
...

. . .
...

xn+M xn+M+1 . . . xn+N

 . (1)

Notice the Hankel-structure of X =
(
xij
)M,K

i,j=1, i.e., X has equal elements on the anti-diagonals
i + j = const.

One can think of X as multivariate data with M characteristics and K observations and accordingly
Xj of X as vectors in the M-dimensional space RM.

2. Singular Value Decomposition of X

Taking the SVD of X decomposes the trajectory matrix into its orthogonal bases and yields
a collection of M eigenvalues and eigenvectors. Let λ1 ≥ · · · ≥ λM ≥ 0 and U1, . . . , UM
denote, respectively, the eigenvalues and eigenvectors of XXT and the rank of X be denoted as
d = max (i, such that λi > 0). The SVD of X can then be rewritten as the sum of d elementary matrices

X = X1 + · · ·+ Xd , (2)

with matrices Xi =
√

λiUiVT
i being of rank 1 and Vi = XTUi/

√
λi.

Note that Vi are the eigenvectors of XTX and
(√

λi, Ui, Vi
)

the eigentriples of the SVD
in Equation (2).

Also note that due to the symmetry of left and right singular vectors, the SVD of trajectory matrices
obtained with window length M and K = N − M + 1 are equivalent. Accordingly, one can
impose the limitation M ≤ N/2 on the window length since there is no additional benefit in
using a larger window (see, e.g., [53] at 47, [42] at 69).

3. Eigentriple Grouping

In order to separate the signals of interest from noise and artifacts, the third stage of basic SSA
aims to find particular disjoint subsets of the set of indices {1, . . . , d} such that the respective
systems of eigenvectors span the subspaces associated with the different signal components.

Consider the task of separating a signal of interest from unwanted noise. One then looks for a
certain subset of indices I = {i1, . . . , il}, l < d ≤ M that span an l-dimensional subspace in RM,
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denoted as LI ⊂ RM = span{UI} = span{Ui1 , . . . , Uil}. Analogously, the remaining eigentriples
with Ī = {i1, . . . , id} \ I span the noise subspace L Ī ⊂ RM = span{UĪ}.
The trajectory matrix component XI corresponding to the subset I of eigentriples associated with
the signal of interest is then

XI = Xi1 + · · ·+ Xil (3)

and the component X Ī corresponding to the subset Ī = {i1, . . . , id} \ I associated with the
remainder of the observed signal is

X Ī = ∑
i∈ Ī

Xi , (4)

such that

X = XI + X Ī = ∑
i∈I

Xi + ∑
i∈ Ī

Xi . (5)

In the case of separability (see, e.g., [53] at 17), the contribution of XI to the entire observed signal
X is represented by the respective share of eigenvalues ∑i∈I λi/ ∑d

i=1 λi.

4. Diagonal Averaging

For perfectly separable components, all matrices in the expansion of Equation (5) are Hankel
matrices. For real world problems, however, such perfect separability is rarely achievable
and results in matrices with unequal entries on the antidiagonals. The last step of the basic
SSA algorithm therefore performs a Hankelization of said matrices, i.e., a diagonal averaging
is performed on all the Xi of Equation (5) yielding matrices X̃i that have equal elements on
the antidiagonals

X̃ = X̃I + X̃ Ī = ∑
i∈I

X̃i + ∑
i∈ Ī

X̃i . (6)

One can then e.g., easily reconstruct the approximation of the signal of interest through the
eigentriples with indices I through the one-to-one correspondence between X̃I and the respective
time series X̃N = (x̃1, . . . , x̃N) which provides an approximation of the entire time series XN or
some components of it, depending on the particular choice of indices I.

The usefulness of basic SSA is illustrated in the example depicted in Figure 1 where the wandering
baseline of an ECG signal (blue solid line) is removed by subtracting the trend reconstructed through
SSA (with a window length of M = 100 and using the first two eigentriples X̃I = X̃i1 + X̃i2 −→ X̃N =

(x̃1, . . . , x̃N) (red solid line)) from the original signal, i.e.,

XNcleaned = XN − X̃N = (x1, . . . , xN)−
(
x̃i11

, . . . , x̃i1 N

)
−
(

x̃i21
, . . . , x̃i2 N

)
, (7)

yielding the cleaned ECG signal (green solid line).
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Figure 1. Application example of basic SSA: baseline wander removal. Showing excerpt 02:20–02:30
from record 14,149 m MIT-BIH ltdb [51].

For a more detailed discussion of SSA, we refer to two well-known monographs [42,54] in the
field as well as [49,53] and references therein.

2.2. SSA Based Change Detection: Prior Art

The sequential application of SSA described in the following is based on work by Moskvina and
Zhigljavsky and will be referred to as MZ in the remainder of this paper (see [40–42]). The need for an
adaptation of basic SSA is due to the circumstance that it operates in batch mode and is therefore not
suited for online change-point detection.

Assume a truly sequential problem in which observations x1, x2, . . . arrive one at a time.
Having collected a sufficiently large number N of observations, MZ constructs the trajectory matrix
X(n)

B (the subindex B refers to ‘base’ for reasons that will become obvious in a moment) for time index
n with M ≤ N/2, K = N −M + 1 and performs the SVD and grouping steps as in basic SSA yielding
an l-dimensional subspace L(n)I ⊂ RM spanned by the respective eigenvectors which captures the
main structure of the signal.

The basic idea of MZ relies on the fact that the distance between the vectors X(n)
j , j = 1, . . . , K and

L(n)I , controlled by the specific choice of I, can be reduced to rather small values. If monitoring of the
series {xt}N

t=1 continues for t > N without a change in the underlying data generating mechanism,

the vectors Xj, j > K are expected to remain relatively close to L(n)I while, on the other hand, if such a
change were to occur at time N + τ, the distance between Xj, j ≥ K + τ and LI would increase as it

would move such vectors Xj out of the subspace L(n)I (see [41] at 2). Therefore, said distance can be
used as a test statistic for change-point detection. Note that only the first three steps of basic SSA need
to be performed since reconstruction of the original series is not required.

MZ constructs two matrices, the above mentioned base matrix X(n)
B , i.e., the trajectory matrix

using data samples xn+1, . . . , xn+N , and a test matrix X(n)
T using observations xn+p+1, . . . , xn+q+M−1.

The former is subjected to SVD and used to obtain the subspace L(n)I while the latter serves to calculate

the sum of squared Euclidean distances between its column vectors and L(n)I . This process can be
thought of as having two (possibly intersecting) windows (of M-dimensional data), of length K and
Q = q− p respectively, slide over the data.
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Let N, M, l, p, q be fixed integers s.t. l < M < N/2 and 0 ≤ p < q. Then, for each n = 0, 1, . . . MZ
proceeds as follows:

1. Apply SSA on the interval [n + 1, n + N] (after centering xn+1, . . . , xn+N) to get L(n)I

(a) Construct the trajectory/base matrix X(n)
B

X(n)
B =


xn+1 xn+2 . . . xn+K
xn+2 xn+3 . . . xn+K+1

...
...

. . .
...

xn+M xn+M+1 . . . xn+N

 , (8)

where K = N −M + 1.

(b) Singular Value Decomposition of X(n)
B .

(c) Selection of I = {i1, . . . , il}, l < d ≤ M with d = max (i, such that λi > 0) .

2. Construct test matrix X(n)
T on the interval [n + p + 1, n + q + M− 1] (after centering

xn+p+1, . . . , xn+q+M−1)

X(n)
T =


xn+p+1 xn+p+2 . . . xn+q

xn+p+2 xn+p+3 . . . xn+q+1
...

...
. . .

...
xn+p+M xn+p+M+1 . . . xn+q+M−1

 . (9)

3. Compute the detection statistic Dn,I,p,q

Dn,I,p,q =
q

∑
j=p+1

[(
X(n)

j

)T
X(n)

j −
(

X(n)
j

)T
U(n)

I

(
U(n)

I

)T
X(n)

j

]
, (10)

where X(n)
j =

[
xn+j, . . . , xn+j+M−1

]T and U(n)
I =

[
U(n)

i1
, . . . , U(n)

il

]
is the M × l matrix of

eigenvectors spanning L(n)I , i.e., Dn,I,p,q is the sum of squared Euclidean distances between

the columns of X(n)
T and L(n)I . MZ normalizes the sum of distances Dn,I,p,q to the number of

elements in X(n)
T , i.e.,

D̃n,I,p,q =
Dn,I,p,q

MQ
, (11)

and further normalizes the test statistic as

Sn,I,p,q =
D̃n,I,p,q

vn
(12)

such that it does not depend on the unknown variance of the noise (see [40] at 28) with vn being
an estimator of D̃n,I,p,q, e.g., vn = D̃m,I,0,K with m ≤ n such that the hypothesis of no change can
be accepted.

4. Monitoring of Sn,I,p,q using CUSUM-type Control Charts

MZ then constructs the following CUSUM-type control chart:
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W1 = S1,I,p,q, Wn+1 = max
(
0, Wn + Sn+1,I,p,q − Sn,I,p,q − κ

)
, n ≥ 1 , (13)

with κ suggested as κ = 1/
(
3
√

MQ
)

(see [40] at 29) and threshold hMZ = 1 + 1.9
√

M (see [40]
at 35). A change-point at n is then declared if

Wn ≥ hMV (14)

holds.

3. The Proposed Method (l-SSA-CPD)

While MZ provides a powerful methodology that could be applied directly to raw ECG
(or PPG) data, it exhibits some drawbacks (for the particular application at hand) that motivated
the development of the novel approach to be presented below which we shall refer to as
lightweight-SSA-ChangePointDetection (l-SSA-CPD).

3.1. Motivation and Informal Description of the Improvements

As discussed in the preceding Section, MZ makes use of two (possibly intersecting) windows that
are slid over the observed time series, one comprising the data that is embedded to form the trajectory
matrix, which is then decomposed by means of SVD to identify an appropriate low(er)-dimensional
subspace, and another one containing new (or, in case of overlap, a combination of old and new)
observations whose distance to said low-dimensional subspace is then used as a test statistic. This entails
the quite burdensome step of performing a SVD every time a new data sample becomes available.

We shall first highlight the main improvements of our method prior to its formal description.

• Low Computational Complexity

Small variations over time are intrinsic to cardiac signals and may, besides noise and motion
artifacts, e.g., be due to Heart Rate Variability. Contrary to anomalies caused by abnormal cardiac
excitation phenomena, these changes in the time between consecutive R-peaks are subtle and
often not readily discernible. Most importantly, they do not induce changes as severe as to change
the signal’s main characteristics which are captured through the decomposition and grouping
stages of SSA. This is illustrated in Figure 2 which shows a raw (unfiltered) ECG signal with two
distinctly shaped PVCs (highlighted in purple) in the third quarter of the excerpt.

For the task at hand, performing the SVD of a newly generated trajectory matrix each time a
new data point becomes available is not strictly necessary. We are able to drastically reduce the
computational burden by generating only one initial trajectory matrix X(0)

B and relying on the

obtained reference subspace L(0)I throughout the monitoring. This is shown in Figure 2 with the
section of the signal highlighted through gray and blue backgrounds representing the intervals
used to generate X(n)

B and X(n)
T , respectively. Note how in MZ (left part of Figure 2) both X(n)

B and

X(n)
T are being slid over the observations while in our algorithm (right part of Figure 2) only X(n)

T

is a sliding window since X(n)
B |∀n = X(0)

B .
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Figure 2. Comparison of MZ (left) and l-SSA-CPD (right). The computational burden of l-SSA-CPD
is greatly reduced compared to MZ by relying on the reference subspace obtained from an initial,
non-sliding trajectory matrix (illustrated by the gray background area). Furthermore, note that
l-SSA-CPD’s reference subspace remains locked on the main signal’s characteristics while in MZ,
since the reference subspace is updated at each observation (illustrated by the gray area sliding as well),
it will lock on the two anomalies (highlighted in pink) for some time as the two moving windows are
pass over them.

Clearly, relying on a fixed reference subspace L(0)I throughout the entire monitoring process goes
along with an inherent limitation of the potential application scenarios l-SSA-CPD would be
suited for as it implies the fixed nominal subspace to be a valid representation of the anomaly
free signal over long periods of time. While such an assumption may at first appear extreme and
untenable, this is not the case when monitoring subjects at rest over relatively short periods of
time (e.g., in the order of 2–10 min) as would be the case in a typical prescreening scenario for
ambulatory care settings. Said implied assumption however becomes untenable in other relevant
scenarios such as continuous long-term monitoring as well as the monitoring of patients not at
rest; for in those cases the general cardiovascular responses to homeostatic disturbances triggered
by various physical and mental stressors would suffice to move new observations out of the
designated nominal subspace.

There exist, however, various rather straightforward mitigation strategies to this problem.
For instance, we may view the method presented here as a special case of a more general
l-SSA-CPD that allows for the regular recalculation of the reference subspace according to
an update frequency which depends on the particular scenario. Possibilities to lower the
computational burden on the mobile device are equally manifold and include, among others,
establishing a wireless data connection to a server or PC and outsourcing demanding tasks such as
SVD or substituting SVD with a computationally less expensive alternative such as SVD updating
algorithms. Eventually, such considerations inevitably boil down to a scenario specific trade-off
between required performance and available resources.

• Simplicity

By sliding only a single instead of two windows over the time series the entire procedure is
simplified and benefits from a reduction in tuning parameters.

In fact, while the total number Q of columns in XT is of course relevant, p and q are not since,
due to X(n)

B |∀n = X(0)
B an overlap of XB and XT can only occur in the first N− p samples for p < N.
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While our algorithm allows for such an initial overlap of XB and XT , the following discussion
is purposely limited to p = N < q, which is in line with recommendations by Moskvina and
Zhigljavsky who point out that p = N, q = N + 1 and accordingly Q = 1 is a very reasonable
choice if minimizing the detection delay is of importance, since Q > 1 entails a smoother behavior
of the test statistic and thus a loss of agility (see, e.g., [40] at 30).

The question as to whether or not XB and XT should overlap and if so by how much is therefore
removed. Furthermore, since p = N, q = N + 1 can generally be recommended (see Section 4),
we can omit both tuning parameters p and q.

• Augmentation of Test Statistic by considering the angle between L(0)I and X(n)
j

Some authors [55–57] successfully proposed a modified version of MZ, wherein the test statistic
is based on angles rather than on Euclidean distances. While both approaches are viable on their
own merits, we chose to merge them as they augment each other yielding a test statistic that,
according to our results on raw ECG and PPG records, performs favorably compared to the test
statistic constructed using either one on its own.

In other words, we augment and improve upon the test statistic of MZ by making use of the
information from the angles between L(0)I and X(n)

j as well.

• Improved thresholding through Sequential Ranks CUSUM

MZ provides further potential for improvement by employing a CUSUM-type control chart
(see Equations (13) and (14)) whose control limit (or threshold) h is obtained through suitable
normal approximation and asymptotic considerations (see [40] at 31; see also [41] at 8).
The nuisance of having to properly normalize the test statistic (see Equation (12)) is a direct
consequence of this design choice.

We instead propose the use of McDonald’s Sequential Ranks CUSUM (SRC) [58] which we deem
to be more appropriate and in line with the model-free nature of SSA.

• Restarting of SRC control chart after it signaled

Lastly, to allow for the detection of multiple and potentially nearby change-points we restart the
SRC every time after it signaled an anomaly by exceeding the preset threshold hSRC.

This is indicated since otherwise, depending on the extent of the anomaly (in terms of number of
samples) and how it relates to the embedding dimension M as well as the number Q of columns
in the Hankel matrix XT , it may take some time before the anomaly propagates through and clears
XT (i.e., our sliding window) thereby resulting in a return of the test statistic to its ‘baseline level’.
This is illustrated in Figure 3 where, as depicted in (a), three windows (differing in size) with
Q = {1, 20, 40} are slid over an ECG containing a single PVC (highlighted in purple and marked
with an arrow). As can be seen in (b), while Q = 1 is a feasible choice even without restarting the
control chart after exceeding the threshold hSRC, since the respective SRC returns to values below
hSRC after a relatively long but perhaps still acceptable amount of time, the same cannot be said
for Q = {20, 40}. Part (c) of Figure 3 illustrates the clear benefits of restarting the control charts,
in that regardless of the choice of Q the PVC is detected and monitoring for further changes can
swiftly resume. As was to be expected, Q = 1 is favorable in terms of detection delay.
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Figure 3. Whilst monitoring the ECG signal (a), restarting the SRC each time the threshold was hit (c) is
indicated to avoid potentially lengthy delays before the anomaly propagates through and clears XT (b).

3.2. Formal Description of l-SSA-CPD

To allow for better comparison, we use the notation introduced in Section 2.2 as far as possible.
Let N, M, l, p, q be fixed integers s.t. l < M < N/2 and 0 ≤ p < q. Then our method proceeds

as follows:

1. Initialization at n = 0

SSA is applied on the interval [n + 1, n + N] to get LI = L
(n=0)
I , which akin to MZ involves:

(a) Construction of the trajectory/base matrix XB = X(0)
B = X(n=0)

B , see Equation (8).

(b) Singular Value Decomposition of XB .

(c) Selection of I = {i1, . . . , il}, l < d ≤ M with d = max (i, such that λi > 0) .

Then, for each n = 0, 1, . . . we proceed as follows:

2. Construct test matrix X(n)
T =

[
X(n)

j|j=p+1,...,q

]
on the interval [n + p + 1, n + q + M− 1],

see Equation (9).
3. Compute the detection statistics D†1,...,3

n,I,p,q

D†1
n,I,p,q =

1
Q

q

∑
j=p+1

[(
X(n)

j

)T
X(n)

j −
(

X(n)
j

)T
UI (UI)

T X(n)
j

]
, (15)

D†2
n,I,p,q = 1− cos

[
∠
(

X(n)
T ,LI

)]
, (16)

D†3
n,I,p,q = D†1

n,I,p,q ◦ D†2
n,I,p,q , (17)

with
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∠
(

X(n)
T ,LI

)
= ∠

(
X(n)

T , UI

)
=

1
Q

q

∑
j=p+1

1
l

 il

∑
k=i1

arccos

 〈X(n)
j , Uk〉∥∥∥X(n)

j

∥∥∥ ‖Uk‖

 (18)

taking values in
[
0, π

2
]
, accordingly D†2

n,I,p,q ∈ [0, 1], UI =
[
Ui1 , . . . , Uil

]
being the M× l matrix of

eigenvectors spanning LI , and ◦ denoting the Hadamard (element-wise) product.

4. Monitoring of D†1,...,3
n,I,p,q using the Sequential Ranks CUSUM Control Chart

Let us denote the sequential rank of D†1,...,3
n,I,p,q as

Rn = 1 +
n−1

∑
r=1

max
(

0, D†1,...,3
n,I,p,q − D†1,...,3

r,I,p,q

)
. (19)

The Sequential Ranks CUSUM is then

Cn = max
(

0, Cn−1 +
Rn

n + 1
− kSRC

)
, n ≥ 1 (20)

with C0 = 0 and kSRC being a reference constant.

The SRC then signals and a change-point at n is declared if

Cn ≥ hSRC (21)

holds, i.e., if Cn exceeds a predetermined control limit hSRC.

It can be shown [58] that, given that no change in the monitored signal occurred, the quantities
Rn

n+1 are independent and discrete uniform on

{ 1
n + 1

,
2

n + 1
, · · · ,

n
n + 1

} ,

which represents a crucial advantage of the SRC in that it implies that for any kSRC we can obtain
the control limit hSRC without the need for any historical training data or further assumptions
through simulations as outlined in Algorithm 1.

Algorithm 1: Calculate hSRC for fixed kSRC

(a) Set a constant NSRC

(b) for i = 1 to B do

i. Construct the set of random variables {Yn}NSRC
n=1 as discrete uniform on

{ 1
n+1 , 2

n+1 , · · · , n
n+1}

ii. Construct CSRCn = max{0, CSRCn−1 + Yn − kSRC}
iii. Extract the maximum value of {CSRCn}

NSRC
n=1

end

(c) Set the control limit hSRC as the B · (1− ARL0
−1) ordered extracted maximum

value with ARL0 being the nominal in-control average run length (ARL)
(see Appendix A).
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4. Performance Evaluation

To evaluate and assess the performance and utility of our method we use records which are
publicly available through Physiobank [51], a vast and commonly used resource for ECG and other
biophysiological data. In particular, since we claim our method to be suitable for both ECG and PPG
data, we found the Physionet Challenge 2015 training database (PC15) [50] to be of particular interest
as it provides a collection of synchronized ECG and PPG recordings from which we chose a subset
similar to the one used in [52]. With PC15 records not being annotated, we purposely chose to limit
our evaluation to records containing PVCs (with different frequencies of occurrence) since they can
quite accurately be spotted by careful visual inspection.

Furthermore, we evaluate the performance of our simpler method against a competing one
proposed by Uus and Liatsis [48], which is related to our work in that it, too, is based on leveraging
the change detection capabilities of SSA. For the latter assessment, we use ten cardiologist-annotated
ECG records from the St. Petersburg Institute of Cardiological Technics 12-Lead Arrhythmia (INCART)
database, which is also publicly available through Physiobank [51]. The additional use of INCART
records shall shed light on the robustness of l-SSA-CPD, since as we shall see, contrary to PC15,
INCART contains both very noisy signals as well as occasional occurrences of arrhythmias other
than PVCs.

Before presenting some results, it seems appropriate to briefly restate the goal of our method,
which is to provide a lightweight, model-free tool capable of providing rough assessment and general
anomaly detection capabilities under tight resource constraints, e.g., to be used as a pre-screening tool.
It is therefore not to substitute for but rather to complement more sophisticated procedures in very
much the same way in which it is not a substitute for QRS detectors and should be valued on its own
particular merits (which have been discussed in Sections 1 and 2).

4.1. Performance Metrics

In reporting our results we rely on established metrics commonly used in the literature and report
sensitivity (Se), specificity (Sp), and accuracy (Acc) defined as

Se =
TP

TP + FN
, (22)

Sp =
TN

TN + FP
, (23)

Acc =
TP + TN

TP + FP + FN + TN
, (24)

with TP, FP, TN, FN being the number of true positives, false positives, true negatives,
and false negatives, respectively.

Accordingly, sensitivity quantifies the ability to correctly detect actual anomalies while vice versa
specificity quantifies the proportion of non-abnormal segments that are correctly identified as such.
Accuracy, on the other hand, assesses the overall performance in terms of both correctly identified
abnormal and non-abnormal segments.

Note that there is a nonzero detection delay introduced by the use of a control chart.
Typically, said delay tends to be longer for nonparametric control charts such as the SRC compared
to parametric charts (see, e.g., [58]). Use of the latter however would require imposing a parametric
model and therefore inevitably conflict with our goal of minimizing (distributional) assumptions as
much as possible.

For an event occurring at time instance n we allow for a certain detection delay τd and consider a
signal from the control chart as true positive if it falls in the interval [n, n + τd]. All results presented
here were obtained using τd = N, i.e., we allow for a detection delay less or equal to the length of the
interval used to construct the initial trajectory matrix XB.
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Furthermore, note that when directly comparing (synchronized) ECG and PPG signals there is an
inherent delay (between the R-peak of the ECG and the respective pulse peak in the PPG) in the PPG
signal due to the propagation delay of the pulse pressure wave through the arterial system. This is
commonly referred to as Pulse Arrival Time (PAT) or Pulse Transit Time (PTT) (see, e.g., [9,59]) and
illustrated on a short data excerpt (containing a single PVC, highlighted by blue and red backgrounds
for ECG and PPG, respectively) in Figure 4. To account for the PTT delay, when dealing with PPG
signals we shift the interval [n, n + τd] by b2M/5c, taken to be a rough estimate of the actual PTT.

6.58 6.6 6.62 6.64 6.66 6.68 6.7

10
4

-3

-2

-1

0

1

2

3

4

5
Excerpt v132s (PC15)

ECG

PPG

Figure 4. Excerpt of a synchronized recording of ECG (blue dash-dotted) and PPG (red solid) containing
a single ectopic beat, highlighted with blue and red backgrounds respectively. Note the shift between
the R-peak of the ECG and the respective pulse peak of the PPG, known as Pulse Transit Time (PTT).

4.2. Setup and l-SSA-CPD Parameters

The PC15 database [50] provides a collection of ECG and PPG recordings from which we chose
a subset similar to the one used in [52]. With PC15 records not being annotated, we purposely
chose to limit our evaluation to records containing PVCs (with different frequencies of occurrence),
since they can quite accurately be spotted by careful visual inspection. Eventually we included 8 records
(composed of two ECG and one PPG signal per record) with varying frequency of PVC occurrence in
our analysis. The records are approximately 5 min long with the sampling frequency being 250 Hz,
yielding about 75,000 observations each.

Since an in-depth discussion of how to select important SSA tuning parameters, most notably
window length M and number of eigentriples used (i.e., selection of I), would be beyond the scope
of this paper (see, e.g., [40–42,49,53,54] and references therein), it shall suffice to briefly discuss our
settings and the rationale behind them.

Consider a periodic signal with period T, then for SSA to capture the main structure of the
signal it is important that M be at least equal to T. Taking into account the physiological limits
on HR and the sampling frequency of our signals, M = 300 appears to be a safe and reasonable
choice. Accordingly, since as discussed in Section 2.1.1 we impose M ≤ N/2, we set N = 2M = 600.
Furthermore, we set I to contain the leading l eigentriples such as to account for 92.5% of the data’s
variance. As for the SRC’s control limit, we use hSRC = 59.4246 which we obtained through Algorithm 1
for B = 106, NSRC = 3000, ARL0 = 3000, kSRC = 0.5.
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It shall further be emphasized that, unless otherwise stated, we apply l-SSA-CPD to the raw
unfiltered data without any preprocessing steps. This is one further peculiarity that sets this work
apart from not only the two competing methods it is benchmarked against in the following subsections
but any related work we are aware of. Clearly, suitable preprocessing steps might further enhance
performance. The objective here, however, is to ascertain whether or not useful information pertaining
to the presence or absence of anomalies) can be obtained by solely applying our l-SSA-CPD with very
general parameter settings. A direct performance comparison to MZ is omitted for two main reasons:

• MZ would be computationally prohibitively expensive.
Recall that the PC15 records are approximately 75× 103 samples long, requiring computing the
SVD of a 300× 301 trajectory matrix, assuming M = 300, N = 600, K = N − M + 1, Q = 1
about 74100 times as opposed to just once for l-SSA-CPD (see Figure 2).

• We aim to assess whether, based on its own merits, the performance of l-SSA-CPD suffices to
be considered for potential real life applications such as the use case presented in this paper.
To further this goal an in-depth comparative analysis to competing algorithms is not required and
deemed to be beyond the scope of this paper.

4.3. Performance Evaluation and Comparison on PC15 Data

Table 1 shows the experimental results obtained by applying l-SSA-CP configured as described
above to 8 PC15 ECG records with varying length Q = {1, 5, 10} of the test matrix X(n)

T .
As elaborated on in Section 3.1, a crucial condition for l-SSA-CPD to work properly by relying

solely on the fixed nominal subspace is that the first N samples, which are embedded to form the
trajectory matrix XB, be an adequate representation of the underlying signal. In other words, we require
this initial segment to be free of anomalies. If an anomaly occurs in the first N samples, those samples
are to be discarded. This was the case for record t662s, which contains a premature ventricular
contraction at about n = 332 < N and required us to discard the first 615 observations. Similar issues
were encountered with some of the PC15 PPG traces. More specifically, the first 4000 observations
were discarded due to heavy distortions for v253l’s as well as as for v368s’s PPG signal, as were the
first 450 samples of v255l due the presence of an ectopic in the PPG signal. Note that in the case of
v255l the ECG traces were not affected, since, consistent with delay due to PTT, the PVC was already
over when the recording began.

Examining the entries of Table 1 it is apparent that l-SSA-CPD performs well, especially keeping
in mind that in our setup it is applied with fairly general parameters to raw, unfiltered ECG traces. The
bottom of the table presents the average performance over the entire 8 records for the three different
test statistics {D†1

n,I,p,q, D†2
n,I,p,q, D†3

n,I,p,q} and test matrix widths Q = {1, 5, 10}.
Note how the performance of l-SSA-CPD with test statistic D†3

n,I,p,q is not negatively affected by the at

times deteriorated performance of D†2
n,I,p,q and the absence of any benefit from using larger values for Q.

These findings corroborate our recommendations made in Section 3.1 to use D†3
n,I,p,q and Q = 1, with the

latter being in agreement with results reported by other authors (see, e.g., [40,41]). Results obtained using
the second ECG trace of the 8 PC15 records were similar and are therefore omitted.

Experimental results obtained by applying l-SSA-CPD to the PPG trace of the same 8 PC15 records
are shown in Table 2, again with varying length Q = {1, 5, 10} of the test matrix X(n)

T .
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Table 1. Detection performance of l-SSA-CPD on PC15 ECG trace I.

Record Q 1 5 10

Statistic D†1
n,I,p,q D†2

n,I,p,q D†3
n,I,p,q D†1

n,I,p,q D†2
n,I,p,q D†3

n,I,p,q D†1
n,I,p,q D†2

n,I,p,q D†3
n,I,p,q

v132s
Se 0.9677 0.9677 0.9677 0.9677 0.8710 0.9677 0.9677 0.6774 0.9677
Sp 0.9992 0.9991 0.9991 0.9992 0.9988 0.9992 0.9992 0.9997 0.9992
Acc 0.9992 0.9991 0.9991 0.9992 0.9988 0.9991 0.9992 0.9996 0.9992

v253l
Se 1.0000 1.0000 1.0000 1.0000 0.7922 1.0000 1.0000 0.3247 1.0000
Sp 0.9987 0.9988 0.9987 0.9987 0.9985 0.9987 0.9987 0.9999 0.9987
Acc 0.9987 0.9988 0.9987 0.9987 0.9983 0.9987 0.9987 0.9993 0.9987

v255l
Se 0.9844 0.9844 0.9844 0.9844 0.3906 0.9844 0.9844 0.6250 0.9844
Sp 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9999 0.9988
Acc 0.9988 0.9988 0.9988 0.9988 0.9984 0.9988 0.9988 0.9996 0.9988

v368s
Se 1.0000 1.0000 1.0000 1.0000 0.7143 1.0000 1.0000 0.7143 1.0000
Sp 0.9989 0.9985 0.9987 0.9989 0.9994 0.9990 0.9989 0.9995 0.9989
Acc 0.9989 0.9985 0.9987 0.9989 0.9994 0.9990 0.9989 0.9995 0.9989

v557l
Se 1.0000 1.0000 1.0000 1.0000 0.2500 1.0000 1.0000 0.0000 1.0000
Sp 0.9993 0.9991 0.9992 0.9993 0.9995 0.9993 0.9993 0.9997 0.9993
Acc 0.9993 0.9991 0.9992 0.9993 0.9995 0.9993 0.9993 0.9996 0.9993

t662s
Se 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
Sp 0.9988 0.9986 0.9987 0.9988 0.9984 0.9987 0.9988 0.9999 0.9988
Acc 0.9988 0.9986 0.9987 0.9988 0.9984 0.9987 0.9988 0.9998 0.9988

a746s
Se 1.0000 1.0000 1.0000 1.0000 0.8333 1.0000 1.0000 0.6667 1.0000
Sp 0.9986 0.9987 0.9986 0.9986 0.9990 0.9986 0.9986 0.9997 0.9986
Acc 0.9986 0.9987 0.9986 0.9986 0.9990 0.9986 0.9986 0.9997 0.9986

v831l
Se 0.9583 0.9583 0.9583 0.9583 0.8750 0.9583 0.9167 0.0417 0.9167
Sp 0.9992 0.9991 0.9992 0.9992 0.9991 0.9992 0.9992 0.9998 0.9992
Acc 0.9992 0.9991 0.9991 0.9992 0.9991 0.9992 0.9992 0.9995 0.9992

Σ̄ECG

Se 0.9888 0.9888 0.9888 0.9888 0.7158 0.9888 0.9836 0.3812 0.9836
Sp 0.9989 0.9988 0.9989 0.9989 0.9989 0.9989 0.9989 0.9997 0.9989
Acc 0.9989 0.9988 0.9989 0.9989 0.9987 0.9989 0.9989 0.9996 0.9989

Comparing the entries of Table 2 with those Table 1 we notice an overall drop in performance.
Nevertheless, l-SSA-CPD still manages to provide reasonable results. Furthermore, the recommendation
of using D†3

n,I,p,q and Q = 1 is shown to hold for the PPG traces as well. Focusing in particular on v368s
in Table 2 allows us to highlight an instance of failure and to briefly address its causes. Specifically, after
the removal of the first 4000 heavily distorted observations, the record contains 6 PVCs in total, none of
which was correctly detected (since the detection delays exceeded the allowed maximum delay and
were accordingly counted as false alarms) using D†1

n,I,p,q while the angle-based as well as the augmented

statistics D†2
n,I,p,q and D†3

n,I,p,q were both able to detect the first of the 6 PVC events. The detection delay
is mainly due the SRC control chart. Accordingly, it would certainly be straightforward to tweak the
settings by using an SRC that allows for a more agile response (i.e., lower ARL0) at the cost of an
increase of the false alarm rate (i.e., a decrease in specificity).

A few additional remarks on the three detection statistics {D†1
n,I,p,q, D†2

n,I,p,q, D†3
n,I,p,q},

however, appear warranted and the fact that in the above example of v368s our augmented
statistic D†3

n,I,p,q performs akin to D†2
n,I,p,q rather than D†1

n,I,p,q provides cause for elaborating on

the subject. As stated previously, both D†1
n,I,p,q and D†2

n,I,p,q are suitable detection statistics and
reliably and readily reflect deviations of new observations from the designated reference subspace.
Recalling Equations (15) and (17) note that D†2

n,I,p,q takes values in [0, 1] while D†1
n,I,p,q, which our

proposed method does, contrary to MZ, not require to be normalized, takes potentially very large
values. Accordingly, we propose to use D†2

n,I,p,q as a weighting of D†1
n,I,p,q by combining them taking

the Hadamard or element-wise product, which yields D†3
n,I,p,q (see Equation (17)). The benefit of the
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proposed augmentation is most readily discernible in Table 2, where we can observe that D†3
n,I,p,q

mimics D†1
n,I,p,q in cases where the latter performs well but D†2

n,I,p,q performs very poorly. On the other

hand, if the circumstances were reversed (i.e., poorly performing D†1
n,I,p,q and better/well performing

D†2
n,I,p,q), D†3

n,I,p,q then mimics the better performing angle-based detection statistic. Thus, overall, the
proposed augmentation is favorable in that only a minor performance drop (if at all) is experienced
when both D†1

n,I,p,q and D†2
n,I,p,q perform well, whereas a lot is gained when they do not.

Furthermore, it should be pointed out that, as has already been observed by other authors
(see, e.g., [52]), there are some inconsistencies in the PC15 records in that the some of the supposedly
synchronized PPG traces exhibit an unusual delay not consistent with the assumption that the PPG
pulse peak should have an offset equal to the PTT with respect to the respective R peak in the ECG.
Pflugradt et al. attribute this occasional unusual offset to glitches in the original measurement setup
(see [52] at 11) and we assume it to have negatively impacted the performance characteristics presented
in Table 2 since we allow only for a very limited detection delay τd.

Table 2. Detection performance of l-SSA-CPD on PC15 PPG trace.

Record Q 1 5 10

Statistic D†1
n,I,p,q D†2

n,I,p,q D†3
n,I,p,q D†1

n,I,p,q D†2
n,I,p,q D†3

n,I,p,q D†1
n,I,p,q D†2

n,I,p,q D†3
n,I,p,q

v132s
Se 0.7419 0.8387 0.8387 0.7419 0.0000 0.7419 0.7419 0.0000 0.7419
Sp 0.9994 0.9995 0.9995 0.9994 0.9999 0.9994 0.9994 0.9999 0.9994
Acc 0.9993 0.9994 0.9994 0.9993 0.9995 0.9993 0.9993 0.9995 0.9993

v253l
Se 1.0000 1.0000 1.0000 1.0000 0.3108 1.0000 1.0000 0.7432 1.0000
Sp 0.9992 0.9991 0.9991 0.9992 0.9999 0.9992 0.9991 0.9999 0.9991
Acc 0.9992 0.9991 0.9991 0.9992 0.9993 0.9992 0.9991 0.9997 0.9991

v255l
Se 0.9688 0.9688 0.9688 0.9688 0.4219 0.9688 0.9688 0.4062 0.9688
Sp 0.9993 0.9993 0.9993 0.9992 0.9999 0.9992 0.9992 0.9999 0.9992
Acc 0.9992 0.9993 0.9993 0.9992 0.9995 0.9992 0.9992 0.9994 0.9992

v368s
Se 0.0000 0.1667 0.1667 0.1667 0.1667 0.1667 0.0000 0.0000 0.0000
Sp 0.9978 0.9980 0.9979 0.9978 0.9997 0.9978 0.9977 0.9996 0.9977
Acc 0.9978 0.9980 0.9979 0.9978 0.9997 0.9978 0.9977 0.9995 0.9977

v557l
Se 1.0000 1.0000 1.0000 1.0000 0.2500 1.0000 1.0000 0.7500 1.0000
Sp 0.9990 0.9986 0.9988 0.9990 0.9999 0.9990 0.9990 0.9997 0.9990
Acc 0.9990 0.9986 0.9988 0.9990 0.9998 0.9990 0.9990 0.9997 0.9990

t662s
Se 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000
Sp 0.9986 0.9986 0.9987 0.9986 0.9999 0.9986 0.9986 0.9998 0.9986
Acc 0.9986 0.9986 0.9987 0.9986 0.9999 0.9986 0.9986 0.9997 0.9986

a746s
Se 1.0000 1.0000 1.0000 1.0000 0.1667 1.0000 1.0000 0.3333 1.0000
Sp 0.9980 0.9980 0.9980 0.9980 0.9998 0.9980 0.9980 0.9997 0.9980
Acc 0.9980 0.9980 0.9980 0.9980 0.9998 0.9980 0.9980 0.9997 0.9980

v831l
Se 0.9583 0.9583 0.9583 0.9583 0.1250 0.9583 0.9583 0.1667 0.9583
Sp 0.9984 0.9983 0.9983 0.9984 0.9997 0.9984 0.9984 0.9998 0.9984
Acc 0.9983 0.9983 0.9983 0.9983 0.9995 0.9983 0.9983 0.9995 0.9983

Σ̄PPG

Se 0.8336 0.8666 0.8666 0.8545 0.1801 0.8545 0.8336 0.2999 0.8336
Sp 0.9987 0.9987 0.9987 0.9987 0.9998 0.9987 0.9987 0.9998 0.9987
Acc 0.9987 0.9987 0.9987 0.9987 0.9996 0.9987 0.9987 0.9996 0.9987

Focusing on Table 3, which directly compares our results to those obtained by Pflugradt on
the almost identical subset of PC15 records, we observe that on average our l-SSA-CPD outperforms
Pflugradt et al.’s Fast Multimodal Ectopic Beat Detector (MEBD) on ECG records, achieving both higher
sensitivity and specificity. The case becomes less clear for the respective PPG records, where MEBD
exhibits higher sensitivity to the detriment of specificity, which is considerably better using l-SSA-CPD.
Again, it shall be emphasized that contrary to MEBD our approach does not require a morphological
dissection of the examined signal.
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Table 3. Performance comparison of l-SSA-CPD (using D†3
n,I,p,q, Q = 1) and Pflugradt et al.’s [52]

Multimodal Ectopic Beat Detector (MEBD) (see [52], Table 6 at 13) on PC15 data.

Method ECG PPG

Se Sp Se Sp

l-SSA-CPD 0.989 0.999 0.867 0.998
MEBD 0.953 0.989 0.876 0.955

4.4. Performance Evaluation and Comparison on the St. Petersburg INCART Arrhythmia Database ECG Data

As previously mentioned, INCART records provide only ECG traces and furthermore significantly
differ from their PC15 counterparts in that they are much longer (30 min as opposed to 5 min), at times
very noisy and contain occasional anomalies other than PVCs as well. Therefore, to allow for a fair
comparison, we evaluated the performance of l-SSA-CPD with and without an additional preprocessing
step consisting of a zero-phase FIR bandpass filter tuned to the interval of [0.04, 40] Hz.

As evidenced by two excerpts from different INCART records shown in Figure 5,the database
contains both very contaminated as well as moderately contaminated signals. This directly translates
to very good and very poor performance of l-SSA-CPD, as can be seen by looking up the respective
records in Table 4. In fact, while our proposed algorithm performs well on the fifth record (and records
of similar quality), with sensitivities of 0.82 and 0.99 for the unfiltered and the bandpass-filtered signal,
respectively and a specificity of 0.99 for both, its sensitivity drops to rather poor 0.25 and 0.34 for the
first record. Note that this was to be anticipated since it is consistent with the limitations of l-SSA-CPD
as discussed in Section 3.1. That being said, we would nonetheless like to emphasize the surprisingly
good performance of l-SSA-CPD on the ten examined INCART records with the exception of signals
{I01m,I02m,I04m,I07m} both with and without the additional filtering step. In fact, l-SSA-CPD without
BP-filtering still outperforms the manually fine-tuned algorithm of Uus and Liatsis for record I03m
and its automatically tuned version additionally for records {I08m,I10m}. Eventually, with the simple
addition of an FIR BP-filtering preprocessing step to l-SSA-CPD, while it still lags behind the algorithm
by Uus and Liatsis overall, it manages to outperform it’s manually fine-tuned version on half of the
records, which is remarkable.
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Figure 5. Excerpts of a very noisy I01m (top) and a rather clean I05m (bottom) INCART signal.
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Table 4. Performance comparison of l-SSA-CPD (using D†3
n,I,p,q, Q = 1) and the SSA-based approach by

Uus and Liatsis (see [48], Table I) on INCART data.

Record
l-SSA-CPD l-SSA-CPD Uus and Liatsis Uus and Liatsis
(unfiltered) (BP-filtered) (man. par. adj.) (aut. par. adj.)

Se Sp Se Sp Se Sp Se Sp

I01m 0.25 0.99 0.34 0.99 0.99 0.95 0.94 0.84
I02m 0.43 0.99 0.24 0.99 0.97 0.93 0.92 0.86
I03m 0.98 0.99 1.00 0.99 0.96 0.95 0.90 0.85
I04m 0.23 0.99 0.58 0.99 0.97 0.92 0.91 0.89
I05m 0.82 0.99 0.99 0.99 0.98 0.94 0.92 0.88
I06m 0.86 0.99 0.97 0.99 0.97 0.96 0.92 0.85
I07m 0.57 0.99 0.74 0.99 0.98 0.93 0.90 0.83
I08m 0.92 0.99 0.99 0.99 0.97 0.91 0.92 0.91
I09m 0.83 0.99 0.89 0.99 0.98 0.91 0.89 0.89
I10m 0.93 0.99 0.98 0.99 0.98 0.93 0.93 0.88

Unfortunately, we are unable to provide detailed commentary on the method proposed by Uus and
Liatsis since their paper lacks in clarity and does not provide details pertaining to crucial parts of their
algorithm such as how the automatic adjustment of parameters is performed. It is however safe to state
that their method is far more complex than ours, for it comprises various stages (such as preprocessing,
peak detection, piecewise quadratic polynomial modeling of the R-R series, re-adjustment of parameters,
and the creation of a pattern dictionary) that are not required in our method.

5. Discussion and Outlook

In this paper, we have proposed a novel lightweight and model-free approach for the online
detection of cardiac anomalies such as ectopic beats in ECG or PPG signals based on the change
detection capabilities of Singular Spectrum Analysis (SSA) and nonparametric rank-based cumulative
sum (CUSUM) control charts. The procedure is able to quickly detect anomalies without requiring the
identification of fiducial points such as R-peaks and is computationally significantly less demanding
than previously proposed SSA-based approaches. This is accomplished by modifying the conventional
SSA-based change detection algorithm such that the computationally expensive task of computing the
SVD is only performed at the very beginning instead of each time a new data point becomes available.
Furthermore, our procedure uses more elaborate test statistics that take into account the information
derived from the angle between data vectors representing new observations and the subspace
representing the signals characteristics as well as the euclidean distances. Lastly, our procedure
differs from previous approaches also in that rank-based control limits and the reinitialization of
control charts after an anomaly has been detected are used.

Using a set of ECG and PPG records we demonstrated that the direct application of our l-SSA-CPD
without any further pre- or post-processing yields not only viable but surprisingly accurate results
with an average sensitivity and specificity of 0.9888 and 0.9989 for ECG and 0.8666 and 0.9987
for PPG records, respectively, which compares well and tends to outperform a recently proposed
competing approach.

Furthermore, we evaluated the performance of our simpler method against that of a more complex
SSA-based approach and were again able to highlight strengths as well as some weaknesses of our
proposed method.

With regards to the selection and fine-tuning of SSA-parameters, the performance evaluation on
records containing mostly cardiac anomalies other than PVCs and a comparative performance analysis,
questions for future works are left open.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
ARL Average Run Length
AV Atrioventricular Node
CUSUM Cumulative Sum Control Chart
ECG Electrocardiography
HR Heart Rate
INCART St. Petersburg Institute of Cardiological Technics 12-Lead Arrhythmia Database
l-SSA-CPD lightweight Singular Spectrum Analysis Change Point Detection
MEBD Multimodal Ectopic Beat Detector
PAC Premature Atrial Contraction
PAT Pulse Arrival Time
PC15 Physionet Challenge 2015 Training Database
PCA Principal Component Analysis
PPG Photoplethysmography
PR Pulse Rate
PTT Pulse Transit Time
PVC Premature Ventricular Contraction
SA Sinoatrial Node
SRC Sequential Ranks CUSUM Control Chart
SSA Singular Spectrum Analysis
SVD Singular Value Decomposition
TERMA Two Event-Related Moving Averages

Appendix A. CUSUM Control Charts

Consider an observed sequence {xn, n ≥ 1} of independent random variables such that
{x1, . . . , xτ−1} ∼ F and {xτ , xτ+1, . . . } ∼ G, i.e., a distributional shift F → G occurs at time instance τ.

Under the assumption that F and G were normally distributed with known parameters,
Page’s CUSUM [60] represents the gold-standard change detection technique and can be computed
sequentially as

C0 = 0, Cn = max{0, Cn−1 + xn − kC}, n ≥ 1 . (A1)

The CUSUM signals, thereby declaring a distributional shift to have occurred, if

Cn > hC , (A2)

with pre-specified control limit/threshold and reference constant hC and kC, respectively. hC and kC

are chosen such that a nominal average run length (ARL) of ARL0 is attained when the control chart
operates in-control, i.e., without distributional shifts occurring (see, e.g., [61]).

Formally, the in-control ARL is defined as the expected time until a change is signaled under F, i.e.,
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ARL = EF inf{n > 0 : Cn > hC}. (A3)

which can be interpreted as akin to setting a nominal type-I error level in hypothesis testing with
the closeness of the actual in-control ARL to ARL0 then being an indicator of the CUSUM chart’s
robustness [62]. It is well known that, under some regularity conditions, choosing kC = δ/2, with δ

being the shift in the transition F → G, is optimal [63].
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