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Abstract: Since its first experimental demonstration, ghost imaging has attracted a great deal of
attention due to interests in its fundamental nature and its potential applications. In terms of
applications, the most interesting and useful feature, perhaps, is the turbulence insensitivity of
thermal light ghost imaging, i.e., atmospheric turbulence would not have any influence on the ghost
images of sunlight. Inspired by ghost imaging, a new type of camera is ready for turbulence-free
imaging applications. This turbulence-free camera would be especially useful for long distance
imaging, such as satellite imaging. How could fluctuations of thermal light produce an image?
Why is it turbulence-free? This article addresses these questions.
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1. Introduction

The first ghost imaging experiment was demonstrated in 1995 using entangled photon pairs [1,2].
The image was observed from the joint photo-detection events of two independent and spatially
separated photon counting detectors, which is the result of a two-photon constructive–destructive
superposition among a large number of biphoton amplitudes, a nonclassical entity corresponding to
different yet indistinguishable alternative ways of producing a joint photo-detection event between
two distant photo-detectors. Based on the two-photon interference picture, ten years later, in 2005,
lensless ghost imaging experiments were designed and demonstrated with pseudo-thermal light [3–6].
The image was, again, observed in the correlation measurement of two independent and spatially
separated photon counting detectors, but from their photon number fluctuations, which is the result of
a superposition between two different yet indistinguishable alternative amplitudes for a random pair
of photons, or subfields, to produce a joint photo-detection event. A number of classical simulations of
ghost imaging, either based on the measurement of correlated laser beams or based on the measurement
of correlated light speckles, have been introduced successfully since then [7–9]. It is necessary to
emphasize that not all of these ghost imaging mechanisms produce turbulence-free images. The only
turbulence-free ghost image is produced from a peculiar interference: the observed image is the
result of a random pair of photons or subfields interfering with the pair itself. We may name it
“two-photon interference”or “two-subfield interference”. The physics is simple: when the superposed
two amplitudes “overlap”, i.e., experience the same optical path and thus the same turbulence,
the turbulence-induced phase variations cancel each other in the cross interference term of the
interference. In this type of ghost imaging, the ghost image is observed from the measurement
of this cross interference term, i.e., the photon number fluctuation correlation or intensity fluctuation
correlation. Therefore, the observed image would not be “blurred” by the turbulence-induced phase
variations. Inspired by the turbulence-free ghost imaging experiment [10], based on the two-photon,
or two-subfield, interference picture, a new type of turbulence-free camera is practically ready for
applications. The turbulence-free camera would be especially useful for long distance imaging, such as
satellite imaging.
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2. Classical Imaging

Assume a target object is either self-luminous or externally illuminated, and imagine each
point on the object surface is an independent point sub-source of radiation with amplitude
proportional to the aperture-function of the object plane A(~ρo), where ~ρo is the transverse coordinate
of the point sub-source. Each point sub-source emits spherical waves in all possible directions.
Intuitively, we expect there is very little chance that a spherical wave emitted from a point sub-source
will collapse to a point or a speckle again after its free propagation of a certain distance. It has been
understood since early times that the chance is zero unless an imaging system is applied. A perfect
imaging system makes sub-radiation that is either emitted, reflected or scattered from a point of the
object plane observable only at a unique point on the image plane, thus producing a point-to-point
relationship between the object plane and the image plane, i.e., an image of the object.

The concept of optical imaging is well developed in classical optics [11,12]. Figure 1 schematically
illustrates a standard imaging setup. In this setup, an object is illuminated by a thermal radiation
source, while an imaging lens focuses the scattered and reflected light from the object onto an image
plane defined by the Gaussian thin lens equation

1
si
+

1
so

=
1
f

(1)

where so is the distance between the object and the imaging lens, si the distance between the imaging
lens and the image plane, and f the focal length of the imaging lens. In an ideal situation, the imaging
lens produces a point-to-point relationship between the object plane and the image plane: any radiation
starting from a point on the object plane will collapse to a unique point on the image plane. It is not
difficult to see from Figure 1 that the point-to-point relationship is the result of constructive–destructive
interference. The radiation fields coming from a point on the object plane will experience equal distance
propagation to superpose constructively at one unique point on the image plane, and experience
unequal distance propagation to superpose destructively at all other points on the image plane.
The use of the imaging lens makes this constructive–destructive interference possible.
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Figure 1. Optical imaging: a lens produces an image of an object in the plane defined by the Gaussian
thin-lens equation 1/si + 1/so = 1/ f . Image formation is based on a point-to-point relationship
between the object plane and the image plane. All radiation emitted from a point on the object plane
will “collapse” to a unique point on the image plane.

Recall that Einstein introduced a granularity to radiation, abandoning the continuum
interpretation of Maxwell [13]. This led to a statistical view of light: point sources of radiation emits
photons, or subfields, randomly in all possible directions. The radiation measured at coordinate
(r, t) is the result of a superposition among a large number of random subfields, ∑∞

m=1 Em(r, t),
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each emitted from a point source. The measured intensity, which is proportional to the number
of photons, corresponds to the theoretical expectation of 〈I(r, t)〉 ∝ 〈n(r, t)〉,

〈I(r, t)〉 = 〈E∗(r, t)E(r, t)〉 = 〈∑m E∗m(r, t)∑n En(r, t)〉

= 〈∑m
∣∣Em(r, t)

∣∣2〉+ 〈∑m 6=n E∗m(r, t)En(r, t)〉

= ∑m
∣∣Em(r, t)

∣∣2 + 0

(2)

It is clear that the mean intensity (or mean number of photons) is the result of the mth subfield
interfering with the mth subfield itself; ∆I(r, t), the intensity fluctuation (or photon number fluctuation)
is the result of the mth subfield interfering with the nth subfield, m 6= n. Due to the random phases
associated with the subfields, ∆I(r, t) takes random values from time to time or from measurement
to measurement. It is also easy to find that 〈∆I(r, t)〉 = 0 by taking into account all possible random
phases of the subfields. It is understandable that ∆I(r, t) = ∑m 6=n E∗m(r, t)En(r, t) does not have any
significant contribution to the measurement of 〈I(r, t)〉, unless the measurement was too far from
an ensemble average. Therefore, ∑m 6=n E∗m(r, t)En(r, t) is usually considered random “noise” in the
measurement of 〈I(r, t)〉.

To calculate the classical image, we model the thermal radiation source as a collection of a large
number of independent and randomly radiating point-like sub-sources randomly distributed on
a disk parallel to the object plane. A large number of subfields radiate from these sub-sources to all
possible directions with random phases. In a natural thermal source, such as the sun, each sub-source
corresponds to an atomic transition. A photon created from a transition corresponds to a subfield.
In a pseudo-thermal source, such as a ground glass scattered laser beam, millions of tiny scattering
diffusers on the rotating ground glass act as sub-sources. Each scattered radiation, containing a group
of identical photons, plays the role of subfields. Each diffuser scatters a subfield to all possible
directions, during which the subfields acquire random phases. To simplify the calculation, we assume
the radiation is monochromatic, so that the calculation will focus on its spatial behavior. The measured
intensity at transverse coordinate ~ρi of the image plane is calculated as follows:

〈I(~ρi)〉 = 〈∑m

[
E∗m
∫

d~ρo g∗m(~ρo)A∗(~ρo)g∗o (~ρi)
]

∑n

[
En
∫

d~ρo′ gn(~ρo′)A(~ρo′)go(~ρi)
]
〉

= 〈∑m

∣∣∣Em
∫

d~ρo gm(~ρo)A(~ρo)go(~ρi)
∣∣∣2〉

+〈∑m 6=n

[
E∗m
∫

d~ρo g∗m(~ρo)A∗(~ρo)g∗o (~ρi)
][

En
∫

d~ρo′ gn(~ρo′)A(~ρo′)go(~ρi)
]
〉

= ∑m

∣∣∣Em
∫

d~ρo gm(~ρo)A(~ρo)go(~ρi)
∣∣∣2 + 0

(3)

where Em is the mth subfield, ~ρo and ~ρi are the transverse coordinates in the object and image planes,
respectively, gm(~ρo) is the propagator, or Green’s function, which propagates the mth subfield from
the mth sub-source (coordinate ~ρm) to point ~ρo on the object plane, A(~ρo) is the aperture-function
of the object including a real and positive amplitude and a phase, and go(~ρi). is Green’s function,
which propagates the field from ~ρo to ~ρi, (Note, the subindex of Green’s function indicates the plane
and the coordinates in the plane. For example, the subindex of o in go(~ρi) indicates the object plane
and the coordinates ~ρo in the plane), and 〈I(~ρi)〉 is the mean value of the intensity. A classical
image is measured and calculated from 〈I(~ρi)〉. Since 〈∆I〉 = 0, the intensity fluctuation ∆I(~ρi),
which is randomly fluctuated in the neighborhood of 〈I(~ρi)〉, can reasonably be considered noise.
However, we will see in the next two sections that it is this “noise” ∆I(~ρi) that produces the ghost image.

A perfect classical imaging system produces a perfect point-to-point image-forming function,
and thus produces a perfect image. The observed image is a reproduction, either magnified or
demagnified, of the illuminated object, mathematically corresponding to a convolution between



Technologies 2016, 4, 39 4 of 15

the aperture function of the object |A(~ρo)|2 and a δ-function-like image-forming function which
characterizes the point-to-point relationship between the object plane and the image plane [12]:

〈I(~ρi)〉 = ∑
m

∣∣∣Em

∫
d~ρo gm(~ρo)A(~ρo)go(~ρi)

∣∣∣2 ∝
∫

obj
d~ρo |A(~ρo)|2 δ(~ρo +

~ρi
µ
) = |A(~ρi/µ)|2 (4)

where µ = si/so is the magnification factor.
In reality, limited by the finite size of the imaging system, we may never have a perfect

point-to-point correspondence. The incomplete constructive–destructive interference turns the
point-to-point correspondence into a point-to-”spot” relationship. The δ-function in the convolution of
Equation (4) will be replaced by a point-to-”spot” image-forming function, or a point-spread function,

〈I(~ρi)〉 =
∫

obj
d~ρo |A(~ρo)|2 somb2[π

λ

D
so

∣∣~ρo +
~ρi
µ

∣∣] (5)

where the sombrero-like point-spread function is defined as somb(x) ≡ 2J1(x)/x, with J1(x) the
first-order Bessel function, and D the diameter of the imaging lens. The finite size of the spot, which is
defined by the point-spread function, determines the spatial resolution of the imaging setup. It is clear
from Equation (5) that, for a chosen value of distance so, a larger imaging lens and shorter wavelength
will result in a narrower point-spread function, and thus a higher spatial resolution of the image.

3. “Noise” Produced Image

In fact, the “noise” term ∆I(~ρi) in Equation (2) may not be considered “noise” at all in
the measurement of intensity fluctuation correlation 〈∆I(~ρi1)∆I(~ρi2)〉, or the photon number
fluctuation correlation 〈∆n(~ρi1)∆n(~ρi2)〉. The correlated noises, if they exist, in 〈∆I(~ρi1)∆I(~ρi2)〉 or
〈∆n(~ρi1)∆n(~ρi2)〉 may produce an image from the joint photo-detection of two independent and
spatially separated photodetectors, D1 and D2. Figure 2 schematically illustrates a camera that is
able to observe the noise produced images from 〈∆n(~ρi1)∆n(~ρi2)〉 and/or 〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉.

[Note, in Figure 2, D1 is shown as a CCD array (Charge-Coupled Device) and D2 is shown as a bucket
detector. We will learn from later discussions that, in fact, D2 can be replaced by a CCD array, too.
In Figure 2, the turbulence-free image is observed from the photon number fluctuation correlation
measurement by means of the PNFC (Photon Number Fluctuation Correlation) circuit. This circuit is
especially designed for satellite imaging in which the complicated statistical calculations are performed
on the ground. The hardware located in the satellite records two sets of data only: the counting numbers
per time window of D1 and D2.] The most interesting feature of this camera is its turbulence-free
nature: although its classical image observed in either 〈I(~ρi1)〉 or 〈I(~ρi2)〉 are both completely “blurred”
due to the influence of the atmospheric turbulence, the image observed in 〈∆n(~ρi1)∆n(~ρi2)〉, and/or
〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉, is unaffected.

The camera in Figure 2 is a standard CCD (Charge-Coupled Device) camera, except (1) the
image is divided into two, path one and path two, by an optical beamsplitter, with two sets of
CCD arrays, D1 and D2, respectively, placed on the two image planes; and (2) D1 and D2 measure
the photon number fluctuations, ∆n(~ρi1) and ∆n(~ρi2). A novel PNFC circuit is designed for the
measurement of 〈∆n(~ρi1)∆n(~ρi2)〉, and/or 〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉 [14,15]. This circuit is especially

useful for satellite imaging in which the complicated statistical calculations can be performed on the
ground. The hardware located in the satellite records two sets of data only: the registration time of
each photo-detection event of D1 and D2.
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Figure 2. Imaging from “noise”: an image of the target object, which is under the influence
of atmospheric turbulence, is produced from the correlation measurement of 〈∆n(~ρi1)∆n(~ρi2)〉 or
〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉. This figure illustrates the later measurement: the “bucket” detector (BD) sums

over the fluctuations at all ~ρi2, using the integrated fluctuations for the joint measurement paired with
that of each element of the CCD (Charge-Coupled Device) array (~ρi2). The classical images in 〈ni1〉 and
〈ni2〉 are both “blurred” due to the influence of atmospheric turbulence. However, the observed image
in 〈∆n(~ρi1)∆n(~ρi2)〉, and/or 〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉, are turbulence-free. In this setup the turbulence

may appear either in the optical pass between the camera and the object or in the optical pass between
the object and the light source, or appear in both passes.

The PNFC protocol records the registration time of each photo-detection event of a CCD element,
or unit, of D1 and the corresponding element of D2, or the integrated bucket detector D2, by two
independent yet synchronized “Event Timers” along their time axes, which are divided into sequences
of short time windows. Then, the circuit and the associated software analyze the photon number
fluctuations in each time window. The software first calculates the average counting numbers per
short time window, n̄1, and n̄2. Two virtual logic circuits (“Pos-Neg identifiers”) classify the counting
numbers per window as “positive” and “negative” fluctuations based on n̄1 and n̄2,

∆n(+)
jα =

{
njα − n̄j, if njα > n̄j

0, otherwise

∆n(−)
jα =

{
njα − n̄j, if njα < n̄j

0, otherwise
(6)

where j = 1, 2, labeling D1 and D2, α = 1 to N labeling the αth short time window. N is the total
number of time windows in a measurement. After synchronizing the two time windows, we define
the following quantities for the statistical correlation calculation of 〈∆n1∆n2〉:

(∆n1∆n2)
(++)
α =

∣∣∆n(+)
1α × ∆n(+)

2α

∣∣ (∆n1∆n2)
(−−)
α =

∣∣∆n(−)
1α × ∆n(−)

2α

∣∣
(∆n1∆n2)

(+−)
α =

∣∣∆n(+)
1α × ∆n(−)

2α

∣∣ (∆n1∆n2)
(−+)
α =

∣∣∆n(−)
1α × ∆n(+)

2α

∣∣ (7)
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The corresponding statistical average of 〈∆n1∆n2〉 is thus

〈∆n1∆n2〉 = 1
N

[
∑α(∆n1∆n2)

(++)
α + ∑β(∆n1∆n2)

(−−)
β

−∑γ(∆n1∆n2)
(+−)
γ −∑δ(∆n1∆n2)

(−+)
δ

] (8)

The recorded data from the measurements include two sets of registration times of the
photo-detection events of D1 and D2, along their time axes defined by the two synchronized event
timers. The data may be analyzed simultaneously or at a later time. The software should be able to
(1) evaluate ∆n1α and ∆n2α for each short time window; (2) calculate (∆n1∆n2)

(++)
α , (∆n1∆n2)

(−−)
α ,

(∆n1∆n2)
(+−)
α , and (∆n1∆n2)

(−+)
α for each short time window; and (3) calculate the statistical average

of 〈∆n1∆n2〉 according to Equation (8). It should be emphasized that choosing an appropriate width
of time window is important for achieving an efficient and accurate evaluation. For fluctuation
measurements, although we know, in principle, the shorter the better, the width is limited by the
response time of the photo-detector and by the statistics of n̄1 and n̄2.

To calculate the photon number fluctuation correlation, we start from examining the second-order
coherence function G(2)(~ρi1,~ρi2) [16,17], which is jointly measured by D1 and D2 on the two
image planes:

G(2)(~ρi1,~ρi2)

=
〈

E∗(~ρi1)E(~ρi1)E∗(~ρi2)E(~ρi2)
〉

=
〈

∑m E∗m(~ρi1)∑p Ep(~ρi1)∑n E∗n(~ρi2)∑q Eq(~ρi2)
〉

= ∑m |Em(~ρi1)|2 ∑n |En(~ρi2)|2 + ∑m 6=n E∗m(~ρi1)En(~ρi1)E∗n(~ρi2)Em(~ρi2)

= 1
2 ∑m,n

∣∣Em(~ρi1)En(~ρi2) + En(~ρi1)Em(~ρi2)
∣∣2

= 〈n(~ρi1)〉〈n(~ρi2)〉+ 〈∆n(~ρi1)∆n(~ρi2)〉

(9)

where we have completed the ensemble average by taking into account all possible random phases
of a large number of subfields. The only surviving terms from the ensemble average are those terms
satisfying (1) p = m, q = n, and (2) q = m, p = n. There is no doubt that the first term 〈n(~ρi1)〉〈n(~ρi2)〉
corresponds to the product of two identical classical images measured by D1 and D2, respectively. The
second term is the cross interference term between Em(~ρi1)En(~ρi2) and En(~ρi1)Em(~ρi2). It is this cross
interference term that produces an image in the joint photon number fluctuation measurements of D1

and D2,

〈∆n(~ρi1)∆n(~ρi2)〉 = ∑
m

E∗m(~ρi1)Em(~ρi2) ∑
n 6=m

E∗n(~ρi2)En(~ρi1) '
∣∣∣∑

m
E∗m(~ρi1)Em(~ρi2)

∣∣∣2 (10)

where ∑m E∗m(~ρi1)Em(~ρi2) is usually defined as the first-order coherence function G(1)
12 . It is important,

however, to keep in mind that G(1)
12 (~ρi1,~ρi2), here, is measured jointly by two detectors, D1 and D2, at

spatially separated coordinates ~ρi1 and ~ρi2.
We now calculate G(1)

12 (~ρi1,~ρi2),

G(1)
12 (~ρi1,~ρi2) = ∑m E∗m(~ρi1)Em(~ρi2)

= ∑m

[
E∗m
∫

d~ρo g∗m(~ρo)
∫

d~κ A∗(~ρo)g∗o (~κ,~ρi1)
][

Em
∫

d~ρo′ gm(~ρo′)
∫

d~κ′ A(~ρo′)go′(~κ
′,~ρi2)

]
= ∑m E∗m

∫
d~ρo
∫

d~ρo′ g∗m(~ρo)Em gm(~ρo′)
[ ∫

d~κ A∗(~ρo) ei~κ·~ρo somb
[

π
λ

D
so

∣∣~ρo +
~ρi1
µ

∣∣]]
×
[ ∫

d~κ′A(~ρo′)e−i~κ′ ·~ρo′ somb
[

π
λ

D
so

∣∣~ρo′ +
~ρi2
µ

∣∣]]
(11)
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where we have introduced Green’s function for propagating each k vector (transverse component
is labeled as ~κ) of the field from the object plane to the image plane, go(~κ,~ρi1), and completed the
integrals on the lens in go(~κ,~ρi1) and go′(~κ

′,~ρi2) [12].
Next, we complete the summation in terms of the subfields, or the sub-sources, by means of an

integral over the entire source plane. This integral results in the well known Hanbury–Brown and
Twiss (HBT) correlation [18–20]: somb2[(π∆θ)/λ](|~ρo −~ρo′ |), where ∆θ is the angular diameter of the
light source relative to the object plane. To simplify further calculations, we assume a large value of ∆θ

and thus approximate the somb-function to a δ-function like function, i.e., ~ρo ' ~ρo′ . G(1)
12 (~ρi1,~ρi2) is

therefore approximated in the following form,

G(1)
12 (~ρi1,~ρi2) ∝

∫
d~ρo |A(~ρo)|2 somb

[π

λ

D
so

∣∣~ρo +
~ρi1
µ

∣∣]somb
[π

λ

D
so

∣∣~ρo +
~ρi2
µ

∣∣] (12)

We have two ways to observe an image: (1) from the measurement of 〈∆n(~ρi1)∆n(~ρi2)〉; and (2)
from the measurement of 〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉.

(1) Taking~ρi1 = ~ρi2 in the joint measurement, i.e., calculating the joint photo-detection events only
between a pair of the CCD elements corresponding to ~ρi1 = ~ρi2. In this approach, the measurement is
equivalent to an “auto-correlation”. However, the “auto-correlation” is not based on the measurement
of intensity or photon number, but their fluctuations, and the measurements are at two spatially
separated image planes, 〈

∆n(~ρi1)∆n(~ρi2)
〉

∝
∣∣G(1)

12 (~ρi1,~ρi2)
∣∣2

∝
∣∣∣ ∫ d~ρo |A(~ρo)|2 somb2[π

λ
D
so

∣∣~ρo +
~ρi1
µ

∣∣]∣∣∣2
=
∣∣∣ ∫ d~ρo |A(~ρo)|2somb2[π

λ
D
so

∣∣~ρo +
~ρi2
µ

∣∣]∣∣∣2
(13)

For a perfect imaging system, i.e., if the somb-function can be approximated to a δ-function-like
image-forming function, two perfect turbulence-free images, |A(~ρi1/µ)|2 and |A(~ρi2/µ)|2, are
observable from the joint photon number fluctuation measurement in terms of ~ρi1 and ~ρi2. We may
name |A(~ρi1/µ)|2 and |A(~ρi2/µ)|2 “conditional” images by means of the joint fluctuation measurement
with the other detector at ~ρi1 = ~ρi2.

(2) Summing over the fluctuations measured by all elements of a CCD, such as that of D2, and
using the integrated fluctuations for the joint measurement paired with that of each element of another
CCD, such as that of D1, results in the measurement of 〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉:〈

∆n(~ρi1)
∫

d~ρi2∆n(~ρi2)
〉

∝
∣∣ ∫ d~ρi2 G(1)

12 (~ρi1,~ρi2)
∣∣2

=
∣∣∣ ∫ d~ρo |A(~ρo)|2 somb

[
π
λ

D
so

∣∣~ρo +
~ρi1
µ

∣∣]∣∣∣2 (14)

For a perfect imaging system, i.e., if the somb-function can be approximated as δ-function, a
perfect turbulence-free image, |A(~ρi1/µ)|2, is observable from the joint photon number fluctuation
measurement in terms of ~ρi1. |A(~ρi1/µ)|2 is “conditional” due to the joint fluctuation measurement of
D1 with the bucket detector D2.

Based on Equation (9), we may conclude that the noise produced image is the result of a
superposition between amplitudes Em(~ρi1)En(~ρi2) and En(~ρi1)Em(~ρi2), corresponding to two different
yet indistinguishable ways for a random pair of photons or subfields (the mth and the nth) to produce
a joint photo-detection event: (1) the mth subfield triggers D1 at ~ρi1 and the nth subfield triggers D2

at ~ρi2; (2) the nth subfield triggers D1 at ~ρi1 and the mth subfield triggers D2 at ~ρi2. It should not be
difficult to see that a perfect constructive interference occurs at~ρi1 = ~ρi2. When~ρi1 = ~ρi2, all the m 6= n
amplitude pairs, corresponding to (1) and (2), overlap completely and are “in phase”.
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Based on the two-photon or two-subfield interference picture, we found that the images
observed from 〈∆n(~ρi1)∆n(~ρi2)〉 and/or from 〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉 are turbulence-free, even

in the case in which the classic images in 〈n(~ρi1)〉 and 〈n(~ρi2)〉 are completely blurred due to
the influence of atmospheric turbulence. Why is the image observed from 〈∆n(~ρi1)∆n(~ρi2)〉 or
from 〈∆n(~ρi1)

∫
d~ρi2∆n(~ρi2)〉 turbulence-free? The answer is simple: when the superposed two

amplitudes “overlap”, i.e., experience the same optical path and thus the same turbulence, the
turbulence-induced phase variations cancel each other in the cross interference term of the two-photon
interference. Therefore, the image observed from 〈∆n(~ρi1)∆n(~ρi2)〉 would not be “blurred” by the
turbulence-induced phase variations.

To clarify this unusual interference picture, we start from analyzing a two-photon interference
experiment. Figure 3 schematically illustrates a standard Young’s double-slit interferometer, except
the measurement is 〈∆I(x1)∆I(x2)〉 by means of the use of two point-like scannable photodetectors
D1 and D2, as well as the PNFC measurement circuit. We managed an experimental condition that
satisfies d � lc, where d is the separation between the double-slit A and B and lc is the coherence
length of the thermal field. Consequently, no first-order interferences are observable from 〈I(x1)〉 and
〈I(x2)〉. The question is: do we observe interference from 〈∆I(x1)∆I(x2)〉? Many may respond with a
straightforward answer: no! According to a well-accepted theory, thermal light correlation only occurs
within its coherent area. Therefore, no correlation is observable behind the double-slit due to the
experiment condition of d� lc. The measured intensity fluctuation correlation 〈∆I(x1)∆I(x2)〉 should
always be zero! From where does the interference pattern come? The experimental result, however,
is quite different. We have observed an interference pattern from 〈∆I(x1)∆I(x2)〉 [21]. [Note, Recent
repeating measurements using PNFC circuit have demonstrated interference pattern with ∼100%
visibility. The hardware of the PNFC circuit recorded two sets of photo-detection events along the time
axis of two independent event timers. The correlation calculation was usually made by a PC a few
hours or a few days later.]

〈∆I(x1)∆I(x2)〉 = 1 + sinc
πw
λz

(x1 − x2)cos
πd
λz

(x1 − x2) (15)

where w is the width of the single-slit, z is the distance between the double-slit plane and D1–D2 plane.

A

D
1

D
2

      PNFC

      Circuit

x

B

m

n

Figure 3. Two-photon Young’s double-slit interference experiment. The interferometer is a standard
Young’s double-slit interferometer, except the measurement is 〈∆I(x1)∆I(x2)〉 by means of the use of
two point-like scannable photodetectors D1 and D2, as well as the PNFC (Photon Number Fluctuation
Correlation) measurement circuit. The separation between the upper slit-A and the lower slit-B is
much greater than the coherence length of the thermal field, d � lc. Consequently, no first-order
interferences are observable from 〈I(x1)〉 and 〈I(x2)〉. The question is: do we observe interference
from 〈∆I(x1)∆I(x2)〉?

The observed interference is the result of a superposition between the following two different yet
indistinguishable amplitudes for a random pair of photons to trigger a joint photo-detection event:
(1) the mth photon, coming from the upper slit-A, is annihilated at D1 and the nth photon, coming



Technologies 2016, 4, 39 9 of 15

from the lower slit-B, is annihilated at D2; and (2) the mth photon, coming from the upper slit-A, is
annihilated at D2 and the nth photon, coming from the lower slit-B, is annihilated at D1.

The interference pattern observed in 〈∆I(x1)∆I(x2)〉 is turbulence-free in the neighborhood of
x1 ' x2. In fact, the physics is simple and straightforward: imagine that we move D1 and D2 closer
to x1 ' x2 and introduce turbulence into the interferometer. Even in the case of strong influence
of turbulence, the above-mentioned two amplitudes (1) and (2) overlap, i.e., the paths of the two
amplitudes are the same, and thus experience the same turbulence. The turbulence-induced phase
variations in the interference cross term would “cancel” each other and consequently have no influence
on the interference pattern,

G(2)(x1, x2 ' x1)

= 1
2 ∑m,n

∣∣Em eiδϕm1 gm(x1)En eiδϕn2 gn(x2 ' x1) + En eiδϕn1 gn(x1)Em eiδϕm2 gm(x2 ' x1)
∣∣2

' 1
2 ∑m,n

∣∣Em gm(x1)En gn(x2 ' x1) + En gn(x1)Em gm(x2 ' x1)
∣∣2,

(16)

where eiδϕm1 stands for the turbulence-induced phase variations when the mth photon or subfield
propagates from the upper slit to D1. At x1 = x2, e−iδϕm1 e−iδϕn2 eiδϕn1 eiδϕm2 = 1, the cross interference
term reaches its turbulence-free constructive maximum.

Next, we replace the double-slit with an object such as a distant building, as shown in Figure 2.
Each random pair of thermal sub-radiations, either reflected or scattered from two randomly chosen
points of the object, can be treated as subfields coming from a double-slit with a certain slit-separation.
All pairs of subfields would have their constructive interferences at ~ρ1 ' ~ρ2, and thus produce the
maximum correlation of 〈∆I(~ρ1)∆I(~ρ2 ' ~ρ1)〉. There would be no interference pattern observable due
to the averaging effect when adding together all individual interference patterns of different spatial
periods. However, the maximum value of 〈∆I(~ρ1)∆I(~ρ2)〉 is observable at ~ρ1 = ~ρ2. The calculation is
complex yet straightforward. We need to modify Green’s functions with the appropriate experimental
setup. For the turbulence-free camera of Figure 2, all of Green’s functions have been developed [12].
No matter how complicated the sum of m 6= n and Green’s functions are, the superposed two-photon
amplitudes with ~κ and ~κ′ would always experience the same paths and thus the same turbulence.
Therefore, the turbulence effect of any phase variations would cancel each other in the measurement
of 〈∆I(~ρ1)∆I(~ρ2 ' ~ρ1)〉. In fact, a turbulence-free camera is ready for practical applications. [Note,
commercial products based on such turbulence-free cameras are currently under development.]

It should be emphasized that the above calculation is based on monochromatic thermal
radiation. For multi-wavelengths, such as sunlight, narrow spectral bandwidth filters, either in
their optical path or in their electronic circuit, are necessary. The noise correlation is physically
measured by D1 in ∑m 6=n E∗m(~ρi1)En(~ρi1) and by D2 in ∑m 6=n E∗n(~ρi2)Em(~ρi2). Considering Em(~ρij)

and En(~ρij), j = 1, 2, randomly created and distributed wavepackets along the jth time axis,
a monochromatic wavepacket has an infinite temporal width and always results in nonzero products
of the two. However, a wavepacket with multi-wavelengths has a finite temporal dimension.
The “correlation” requires a nonzero product of the two wavepackets within the chosen time window,
i.e., the two wavepackets must “overlap” within the time window. The spectral filters make this
“overlap” possible.

4. The Theory for Turbulence-Free Lensless Ghost Imaging

The lensless ghost imaging experiment was demonstrated by Valencia et al. in 2005 [3]. In the
same year, Wang et al. [4] and Zhu et al. [5] demonstrated similar experiments. Figure 4 illustrates an
improved experiment performed by Meyers et al. [22]. The pseudo-thermal radiation source [23] has a
fairly large size in its transverse dimension. A beamsplitter divides the radiation into two beams of
50%–50%. One of the beams illuminates a toy soldier as shown in Figure 4. The scattered and reflected
photons from the solider (object) are collected and counted by a “bucket” photon counting detector
D2. In the other beam, a high resolution CCD array, D1, operated in the photon counting regime,
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is placed facing towards the radiation source for joint photo-detection with the “bucket” detector
D2. The photon number fluctuation correlation between D2 and each element of the CCD array (D1)
is measured and calculated by a photon-counting-coincidence circuit, which is similar to the PNFC
circuit described in the previous section. The counting rate of D2 and each element of the CCD array
(D1) were both constants during the measurement (the constant value is mainly determined by the
source intensity). Surprisingly, a ghost image of the toy soldier was captured in the photon number
fluctuation correlation 〈∆n(~ρ1)

∫
d~ρ2∆n(~ρ2)〉 between the CCD array (D1) and D2 when taking z1 = z2,

where the integral of ~ρ2 simulates the behavior of the “bucket” detector. The images “blurred” when
the CCD was moved away from z1 = z2, either to the direction of z1 > z2 or z1 < z2. [Note, on one
hand, D1 (CCD array) has the ability to resolve an image, however, it cannot “see” the object; on the
other hand, D2 (bucket detector) “saw” the object, however, it does not have ability to resolve any
image. Perhaps, this is the reason to name it “Ghost Imaging”.]

CCD

2D

z1

Collection

    Lens

   Joint

Detection

  Circuit

  Thermal 

   Source

(near-field) 

z2

f

1D

Figure 4. Lensless ghost imaging of chaotic-thermal light demonstrated by Meyers et al. in 2008. D2 is
a “bucket” photon counting detector that is used to collect and count all random scattered and reflected
photons from the object. The photon number fluctuation correlation between the “bucket detector”
(D2) and the CCD array (D1) is measured and calculated by a photon-counting-coincidence circuit,
similar to the PNFC circuit described in the last section. The counting rate of D2 and each element of
the CCD array of D1 were both monitored to be constants during the measurement (the consistent
value is mainly determined by the source intensity). Surprisingly, a ghost image of the object was
captured in the photon number fluctuation correlation 〈∆n(~ρ1)

∫
d~ρ2∆n(~ρ2)〉 between the CCD and

D2, when taking z1 = z2. The images “blurred” when the CCD is moved away from z1 = z2, either
to the direction of z1 > z2 or z1 < z2. There is no doubt that thermal radiation propagates to any
transverse plane in a random and chaotic manner. In the lensless setup, there is no lens applied to force
the thermal radiation to “collapse” to a point or speckle either. What is the cause of the point-to-point
image-forming correlation?

Similar to classical imaging, mathematically, the observed ghost image from the photon number
fluctuation correlation measurement corresponds to a convolution between the aperture function
of the object and an image-forming function that can be approximated as δ-function in an ideal
experimental condition

〈
∆n(~ρ1)

∫
d~ρ2∆n(~ρ2)

〉
=
∫

d~ρ2|A(~ρ2)|2 somb2[π∆θ

λ
|~ρ1 −~ρ2|

]
' |A(~ρ1)|2 (17)

where ∆θ is the angular diameter of the thermal light source. For a large value of ∆θ, the somb-function
can be approximated as a point-to-point image-forming function. The convolution thus produces
a perfect image of the object in 〈∆n(~ρ1)

∫
d~ρ2∆n(~ρ2)〉.
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There is no doubt that chaotic-thermal radiation propagates to any transverse plane in a random
and chaotic manner. A large transverse sized chaotic-thermal source consists of a large number of
independent point sub-sources randomly distributed on the source plane. Each point sub-source
randomly radiates independent spherical waves freely propagating in all possible directions and may
be observed at any transverse plane. Due to the chaotic nature of the source, there are no observable
interference effects between these subfields. These independent sub-intensities simply add together,
yielding a constant total intensity across the entire transverse plane. In particular, the lensless setup
has no lens applied to force the spherical waves to collapse to a point or a “speckle”, and has no chance
to have two identical copies of any “speckle” of the source onto the object and image planes. What is
the cause of the point-to-point image-forming correlation?

4.1. An Interference Model Based on a Large Number of Random Radiation Subfields

Returning to our earlier discussion, Equation (9), we start from

G(2)(~ρ1, z1;~ρ2, z2)

=
〈

∑m,k E∗m,k(~ρ1, z1)∑p,k′′ Ep,k′′(~ρ1, z1)∑n,k′ E∗n,k′(~ρ2, z2)∑q,k′′′ Eq,k′′′(~ρ2, z2)
〉

= ∑m,n ∑k,k′
∣∣∣ 1√

2

[
Em,k(~ρ1, z1)En,k′(~ρ2, z2) + En,k′(~ρ1, z1)Em,k(~ρ2, z2)

]∣∣∣2
= 〈n(~ρ1, z1)〉〈n(~ρ2, z2)〉+ 〈∆n(~ρ1, z1)∆n(~ρ2, z2)〉

(18)

where the ensemble average is completed by taking into account all possible values of the phases
associated with a large number of subfields and k-vectors. Note that when we claim that the surviving
terms m = q, n = p, we have assumed that the radiation fields of E(~ρ1, z1) and E(~ρ2, z2) are able to
interfere through the measurement of independent and spatially separated photodetectors D1 and D2.
This postulate is beyond the classical theory of light. In fact, the interference shown in Equation (18) is
a nonlocal interference: a pair of subfields interferes with the pair itself. The pair has two different yet
indistinguishable alternative ways, or probabilities, to produce a joint photo-detection event: (1) the
mth subfield produces a photo-electron at D1, and the nth subfield produces a photo-electron at D2;
(2) the nth subfield produces a photo-electron at D1, and the mth subfield produces a photo-electron
at D2. The superposition of the above two different yet indistinguishable “probability amplitudes”
produces a point-to-point correlation in the photon number fluctuations measurements of D1 and
D2. The point-to-point correlation plays the role of image-forming function and thus produces the
ghost image. In the following, we attempt a Fresnel near-field calculation to obtain the point-to-point
image-forming function and the ghost image. We start from Equation (18) and focus on the transverse
spatial correlation

〈∆n(~ρ1, z1)∆n(~ρ2, z2)〉 =
∣∣∣∑

m,k
E∗m,k(~ρ1, z1)Em,k(~ρ2, z2)

∣∣∣2 =
∣∣G(1)

12 (~ρ1, z1;~ρ2, z2)
∣∣2 (19)

In the near-field, we apply the Fresnel approximation to propagate each subfield from its
transverse coordinate ~ρs of the source plane to the coordinate (~ρj, zj), j = 1, 2 of the D1 and D2

planes [12],

g~ρs(~κ,~ρ1, z1) = −iω
2πc

ei ω
c z1
z1

E(~ρs)ei~κ·~ρs ei ω
2cz1
|~ρ1−~ρs |2

g~ρs(~κ,~ρ2, z2) = −iω
2πc

ei ω
c z2
z2

E(~ρs)ei~κ·~ρs ei ω
2cz2
|~ρ2−~ρs |2 A(~ρ2)

(20)

where A(~ρ2) is the aperture function of the object plane. Substituting Green’s functions into
Equation (19),

〈
∆n(~ρ1, z1)∆n(~ρ2.z2)

〉
∝
∣∣∣ 1
z1z2

∫
d~ρs |E(~ρs)|2 e−i ω

c z1 e−i ω
2cz1
|~ρ1−~ρs |2 ei ω

c z2 ei ω
2cz2
|~ρ2−~ρs |2 A(~ρ2)

∣∣∣2
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Assuming |E(~ρs)|2 ∼ C ∼ constant, and taking z1 = z2 = d, we obtain

〈
∆n(~ρ1)∆n(~ρ2)

〉
∝
∣∣∣A(~ρ2)

∫
d~ρs C e−i ω

2cd |~ρ1−~ρs |2 ei ω
2cd |~ρ2−~ρs |2

∣∣∣2
∝
∣∣∣A(~ρ2)e−i ω

2cd (|~ρ1|2−|~ρ2|2)
∫

d~ρs ei ω
cd (~ρ1−~ρ2)·~ρs

∣∣∣2
∝ |A(~ρ2)|2 somb2[π∆θ

λ |~ρ1 −~ρ2|
] (21)

where we have assumed a disk-shaped light source with finite angular diameter ∆θ.
Now, we account for the “bucket” nature of D2 by an integral of ~ρ2,

〈
∆n(~ρ1)

∫
d~ρ2∆n(~ρ2)

〉
=
∫

d~ρ2|A(~ρ2)|2 somb2[π∆θ

λ
|~ρ1 −~ρ2|

]
' |A(~ρ1)|2 (22)

where we have assumed a large value of ∆θ and approximated the somb-function to δ-function.
For a perfect imaging system, i.e., if the somb-function can be approximated to a δ-function-like
image-forming function, a perfect turbulence-free ghost image, |A(~ρ1)|2, is observable from the joint
photon number fluctuation measurements of D1 and D2 in terms of ~ρ1.

From the above calculation, we may conclude again that the “noise” produced ghost image is
the result of an interference involving a superposition between amplitudes Em(~κ,~ρ1)En(~κ′,~ρ2) and
En(~κ′,~ρ1)Em(~κ,~ρ2), corresponding to two different yet indistinguishable ways for a random pair
of subfields (the mth and the nth) to produce a joint photo-detection event: (1) the mth subfield
triggers D1 at ~ρ1 and the nth subfield triggers D2 at ~ρ2; and (2) the nth subfield triggers D1 at ~ρ1

and the mth subfield triggers D2 at ~ρ2. We see that a perfect constructive interference occurs at
~ρ1 = ~ρ2. In this situation, all the m 6= n and ~κ 6= ~κ′ amplitude pairs experienced the same optical
path and thus the same turbulence; any path and index variations are canceled out in the cross
interference term ∑m 6=n E∗m(~κ,~ρ1)Em(~κ,~ρ2)E∗n(~κ′,~ρ2)En(~κ′,~ρ1) and has no influence on the result of this
constructive interference. From the viewpoint of two-subfield interference, the turbulence-free nature of
ghost imaging is clear and understandable. In fact, a turbulence-free ghost imaging experiment was
demonstrated by Meyers et al. in 2012 [10].

4.2. Quantum Theory of Lensless Light Ghost Imaging

It seems that we do not need quantum mechanics for the calculation of ghost imaging. All of
the above calculations are based on the concept of classical radiation field, except the thermal field
E(r, t) is treated as a superposition of a large number of individual random subfields ∑m E(r, t), as
Einstein introduced in 1905 [13]. The two-subfield interference picture is helpful in understanding the
unusual phenomenon of ghost imaging, especially its turbulence-free nature. However, we have to
face the issue that the two-subfield interference happens at two separated space-time points. In the
theory of Maxwell, the radiation field cannot be superposed in such a manner. When the two detectors
are separated by large distance, Einstein would certainly ask: how long does it take for this kind
of interference to be completed? All experiments seem to show that the two-subfield superposition
happens instantaneously. However, we know the electromagnetic field has a speed limit of c! On one
hand, Einstein introduced a granularity to radiation, abandoning the continuum interpretation of
Maxwell. On the other hand, he worried about the nonlocal problem, such as the nonlocal interference
that we have discussed above, associated with his model. Bohr had a famous answer to Einstein’s
question: wavefunction “collapses” instantaneously! Perhaps, we need to replace Einstein’s concept of
subfield with Bohr’s concept of “wavefunction” for a philosophically “self-consistent” understanding
of ghost imaging. The “nonlocal” problem has forced us to replace the classical concept of subfield
with the quantum concept of photon. It is true, in quantum mechanics, that the superposition happens
between probability amplitudes, and there is no need to define any speed limit on the probability
amplitude propagation. Common sense dictates that a physical event can happen with simultaneous
probabilities at distance.
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In the following, we give a quantum mechanical treatment to obtain the ghost image from
the two-photon interference produced photon number fluctuation correlation. The physical model
of thermal radiation, either natural thermal light or pseudo-thermal light, is the same as that of
the classical, except we write the state of the thermal radiation in the quantum coherent state
representation [12,24]:

|Ψ〉 = ∏
m
|{αm}〉 = ∏

m,k
|αm(k)〉 (23)

where m labels the mth randomly radiated or scattered sub-radiation from the mth sub-source, and k
is a wavevector. |αm(k)〉 is an eigenstate of the annihilation operator with an eigenvalue αm(k),

âm(k)|αm(k)〉 = αm(k)|αm(k)〉 (24)

Thus, we have,
âm(k)|Ψ〉 = αm(k)|Ψ〉 (25)

The above model is reasonable for a natural thermal light source, such as the sun, or
pseudo-thermal light source, such as a ground glass scattered laser beam in which a laser beam
is scattered by millions of tiny diffusers. The coherent laser beam is scattered into millions of groups of
identical photons propagating to all possible directions denoted by k. The scattered subfields acquire
random phases in the scattering process. |αm(k)〉 describes the state of a subfield that is scattered by
the mth diffuser with a vector k.

The field operator at detector Dj, j = 1, 2, can be written in the following form in terms of
the subfields:

Ê(+)(rj, tj) = ∑
m

∫
dk âm(k) gm(k; rj, tj) (26)

where gm(k; rj, tj) is Green’s function, which propagates the k mode of the mth subfield from the mth
sub-source to space-time coordinate (rj, tj).

Following Glauber’s theory, the second-order coherence function G(2)(r1, t1; r2, t2) is calculated
as follows [16]:

G(2)(r1, t1; r2, t2)

=
〈〈

Ψ
∣∣E(−)(r1, t1)E(−)(r2, t2)E(+)(r2, t2)E(+)(r1, t1)

∣∣Ψ〉〉
Es

=
〈〈

Ψ
∣∣∑m E(−)

m (r1, t1)∑n E(−)
n (r2, t2)∑q E(+)

q (r2, t2)∑p E(+)
p (r1, t1)

∣∣Ψ〉〉
Es

= ∑m ψ∗m(r1, t1)ψm(r1, t1)∑n ψ∗n(r2, t2)ψn(r2, t2) + ∑m 6=n ψ∗m(r1, t1)ψn(r1, t1)ψ
∗
n(r2, t2)ψm(r2, t2)

= ∑m,n

∣∣∣ 1√
2
[ψm(r1, t1)ψn(r2, t2) + ψm(r2, t2)ψn(r1, t1)]

∣∣∣2
=
〈
n1(r1, t1)

〉〈
n2(r2, t2)

〉
+
〈
∆n1(r1, t1)∆n2(r2, t2)

〉
(27)

Here, ψm(rj, tj), j = 1, 2, is the effective wavefunction of the mth photon, or the mth group
identical photons (so called “coherent photons”) at space-time coordinate (rj, tj),

ψm(rj, tj) =
∫

dk αm(k) gm(k; rj, tj) (28)

The photon number fluctuation correlation is thus:〈
∆n1∆n2

〉
= ∑

m
ψ∗m(r1, t1)ψm(r2, t2)∑

n
ψ∗n(r2, t2)ψn(r1, t1) =

∣∣G(1)
12 (r1, t1; r2, t2)

∣∣2 (29)
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To simplify the calculation, we assume a monochromatic field and define the two observation
planes parallel to the source plane. The calculation is thus concentrated on the transverse spatial
behavior of the radiation,

〈∆n(~ρ1, z1)∆n(~ρ2.z2)〉 =
∣∣∣∑

m
ψ∗m(~ρ1, z1)ψm(~ρ2, z2)

∣∣∣2 =
∣∣G(1)

12 (~ρ1, z1;~ρ2, z2)
∣∣2 (30)

Comparing with the photon number fluctuation 〈∆n(~ρ1, z1)∆n(~ρ2.z2)〉 calculated in the previous
section, we can see that the effective wavefunction of the mth photon, or the mth group identical
photons (so called “coherent photons”), ψm(~ρj, zj) plays the same role as that of the subfield Em(~ρj, zj).
The rest of the calculation is the same as that shown in the last section. We thus have a ghost image in
the photon number fluctuation correlation:

〈
∆n(~ρ1)

∫
d~ρ2∆n(~ρ2)

〉
=
∫

d~ρ2|A(~ρ2)|2 somb2[π∆θ

λ
|~ρ1 −~ρ2|

]
' |A(~ρ1)|2 (31)

where we have assumed a large value of ∆θ and approximated the somb-function to δ-function.
For a perfect imaging system, i.e., if the somb-function can be approximated to a δ-function-like
image-forming function, a perfect turbulence-free ghost image, |A(~ρ1)|2, is observable from the joint
photon number fluctuation measurement in terms of ~ρ1.

From the above calculation, we may conclude again that the noise produced ghost image is the
result of an interference involving a superposition between quantum amplitudes A1 = ψm(~ρ1)ψn(~ρ2)

and A2 = ψn(~ρ1)ψm(~ρ2), corresponding to two different yet indistinguishable ways for two photons,
or two groups of identical photons, or two wavepackets (the mth and the nth) to produce a joint
photo-detection event: (1) the mth wavepacket triggers D1 at ~ρ1 and the nth wavepacket triggers D2 at
~ρ2; and (2) the nth wavepacket triggers D1 at ~ρ1 and the mth wavepacket triggers D2 at ~ρ2.

A perfect constructive interference occurs at ~ρ1 = ~ρ2. In this situation, the two two-photon
amplitudes experienced the same optical path and thus the same turbulence. Basically, any path and
index variations are canceled out in the cross interference term ∑m 6=n ψ∗m(~ρ1)ψm(~ρ2)ψ

∗
n(~ρ2)ψn(~ρ1)

and have no influences on the result of this constructive interference. From the viewpoint of
two-photon interference, the turbulence-free nature of ghost imaging is also clear and understandable.
Again, the turbulence-free ghost imaging experiment has been demonstrated by Meyers et al. in
2012 [10].
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