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Abstract: The process of changing the neuronal activity of the brain to acquire rewards in
a broad sense is essential for utilizing brain-machine interfaces (BMIs), which is essentially operant
conditioning of neuronal activity. Currently, this is also known as neural biofeedback, and it is often
referred to as neurofeedback when human brain activity is targeted. In this review, we first illustrate
biofeedback and operant conditioning, which are methodological background elements in neural
operant conditioning. Then, we introduce research models of neural operant conditioning in animal
experiments and demonstrate that it is possible to change the firing frequency and synchronous firing
of local neuronal populations in a short time period. We also debate the possibility of the application
of neural operant conditioning and its contribution to BMIs.
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1. Introduction

The “brain-machine interface” (BMI) is unquestionably an innovative technology that is
undergoing extensive and rapid progress [1–12]. BMIs enable the neuroprosthetic control of external
devices by brain activity instead of body movements. Non-invasive BMIs may be appropriate for
clinical use, but the accurate control of external devices is currently limited because of imprecise
and unstable signals from the brain surface. Therefore, research for invasive BMIs is inevitably
required [8,11]. Although the development of invasive BMIs has made steady progress and holds
promise for future clinical use [4,13], the invasive BMIs that are currently available are limited in the
extent to which their accuracy and efficiency can be controlled. As has been described in previous
papers [8,9], it is possible to indicate some technical factors affecting the limited performance of current
BMIs. However, previous studies [5,14] have also emphasized that improvements in the technical
factors, alone, cannot solve all of the problems that hinder the development of an ideal BMI, i.e.,
a system controlling external neuroprosthetic devices without any special training. The ideal BMI
requires rich and precise information that depends on brain activity and function. Therefore, as some
researchers [15–17], including the present authors [18,19], have discussed, knowledge of what the
brain is and how it works—the ultimate goals of neuroscience research—is essential for BMI research.

Regarding the ultimate goals of neuroscience, BMI research is particularly related to research
on brain information coding [15,18]. Namely, if the neuronal activity that codes information in the
brain can be detected, then the activity could possibly be used to move machines with thoughts alone.
However, at the present time, the information coding in the brain is not completely understood [20],
and the ability to accurately detect such activity is not currently possible. Consequently, animals
and humans must learn how to change their neural activity to be able to skilfully operate machinery,
thereby enabling operation of machines with BMI.
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Additionally, operating machines with BMIs is performed to achieve some type of goal. If that
goal is achieved, or if the machine can be operated skillfully, then this functions as a reward and will
enhance the changed neural activity through reinforcement feedback (Figure 1). In other words, BMI
changes the brain activity itself to enable the acquisition of a reward by directly operating a machine
without using the physical body [19]. In fact, based on the research to date, the brain activity has
been changed by moving a robotic arm to gain access to food, or by receiving a reward of juice after
hitting a target with a screen cursor using a brain connected to BMI [21]. Accurate device control
by BMIs inevitably requires the neuronal activity to be volitionally modulated for device control,
and the brain can respond to the request for activity modulation. Such BMI-induced changes in
neuronal activity are not restricted to the regions from which the signals used for device control are
recorded. Koralek et al. [11,22] investigated the role of corticostriatal plasticity, usually involved in
learning physical skills, in abstract skill learning with a BMI using motor cortical neurons. During the
learning period of BMI control, altered activity in the striatal neurons was observed, and strong
correlations, reflected in oscillatory coupling, between neuronal activity in the motor cortex and the
striatum emerged. The authors concluded that temporally precise coherence develops specifically in
motor output-related neuronal populations during learning and that the oscillatory activity serves to
synchronize widespread brain networks to produce appropriate behaviors.

In this way, the core process of BMIs is “changing your own neuronal activity to gain a reward”,
and this process is, in fact, operant conditioning of neuronal activity (neural operant conditioning) [23].
Research on neural operant conditioning using animal experiments began in the 1960s by Fetz [24], the
pioneer in this field. This research is currently known as “neural biofeedback” [23] and is often called
“neurofeedback” [25] when targeting human brain activity.

After introducing operant conditioning as a core element in biological learning, e.g., biofeedback
or behavioral therapy, the present review elaborates on the role of operant conditioning in the context
of BMI control based on volitional changes of neuronal activity, including firing rates and synchrony
of neuronal populations. We also briefly discuss the sustainability of conditioned changes in neuronal
activity for long-lasting reliability of BMIs and the possibilities and limitations of the applicability of
current BMIs for people who need it most. A more detailed introduction and discussion of the present
issue from viewpoints of neuroscience can be found in our previous papers [18,19].
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2. Biofeedback and Operant Conditioning

Operant conditioning is considered a core mechanism in psychotherapy, e.g., cognitive behavioral
therapy (CBT) [26], and in biofeedback [27]. Biofeedback, which has been widely used to relax the
mind and body and reduce anxiety, is the operant conditioning of inner physiological responses, such
as heart rate, blood pressure, body temperature, to change them in a desired direction. Birbaumer et al. [28]
introduced and discussed the historical background of this method and its present significance for
BMI research. According to them, it had previously been thought that classical conditioning and
operant conditioning were mutually exclusive, the former modulated autonomic functions responsible
for regulating internal conditions, such as digestive reactions, heart rate or glandular reactions, and
the latter acted on externally oriented behaviors involving the skeletal system, but a challenging
experiment by Miller [29] that operantly-conditioned visceral and glandular responses was in part
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responsible for the rapid development of the field of biofeedback and neurofeedback (p. 5 in [28]).
Though the failure of replicating operant conditioning in the curarized rat [30] (this issue is discussed
again in the Chapter 6) partly restrained the new field of operant conditioning and voluntary control
of physiological functions, the emergence of BMIs has revived this research tradition of operant
conditioning without knowledge or reference to the history of biofeedback research (p. 5 in [28]). (also
see [1] for a review). The exact knowledge of biofeedback and operant conditioning, therefore, is
indispensable and, again, required for current and future development of BMI research.

The basic method of biofeedback is to convert changes in the autonomic activities, such as heart
rate, blood pressure, and body temperature, to a visual or audible signal (feedback signal) that can
be perceived by the person and to present these signals to him/her (Figure 2). Next, the person is
instructed to only generate more of the feedback signals, with no attention to their autonomic body
responses. If the feedback signals are increased as per the instructions, the sense of achievement in
reaching that goal becomes the reward, and the feedback signals are again increased. At the same
time, the physiological responses generating the signals are changing, so by repeating the procedure
it becomes possible to intentionally change physiological activities in the desired direction, which
normally cannot be intentionally changed. For example, it becomes possible for a person to reduce
his/her own heart rate and blood pressure, or to increase his/her own body temperature [27]. It is
also possible to utilize biofeedback using brain waves as the physiological response; this technique is
also used in psychotherapy to relax the mind and body. For example, by targeting the alpha waves in
the brain it is possible for a person to increase the frequency of the occurrence of his/her alpha waves
and achieve a relaxed state. Recently, with the reduced size and cost of electroencephalographs and
computers that convert brain waves into feedback signals, the development of biofeedback capable of
changing specific brainwave components in desired directions (increasing or decreasing) is flourishing,
with neurofeedback, in particular, garnering much attention.
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Having an understanding of operant conditioning is absolutely essential to understanding
biofeedback and neurofeedback. Operant conditioning is a learning method that is ubiquitous in
psychology textbooks. It is an experimental procedure that changes the frequency of a response
by providing specific stimuli immediately after a spontaneous response by an animal (including
humans) [31]. The spontaneous response to be conditioned is an operant response or operant behavior,
and the stimuli, such as a reward, given immediately after the response is called a positive reinforcer (or
simply a reinforcer), and the operation of providing the reinforcer is called reinforcement. The basics
of operant conditioning is setting up and manipulating the operant response–reinforcer relationship
(contingency of reinforcement). For example, to make a rat respond by pressing a lever, a contingency
of reinforcement is formed between the operant response (pressing the lever) and the reinforcer (the
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food); the rat is trained to respond in this manner. The key procedure to progressing with more efficient
training is to give the reinforcer immediately after the operant response (immediacy of reinforcement).
Biofeedback and neurofeedback share this same principle with neural operant conditioning. When the
physiological responses and brain activities change in the desired direction, it is essential to notify
those changes using a feedback signal; in humans, presentation of the feedback signal acts as the
positive reinforcer, namely, the feedback signal is the reward.

Stimuli that reduce the frequency of responses by being given immediately after the operant
response are known as punishment rather than reinforcer. If an electric shock is given as punishment
after a lever is pressed, the rat will, of course, no longer press the lever. However, if punishment is used,
both humans and animals will avoid the training altogether, so it is preferable to not use punishment
unless necessary for a specific aim. Indeed, if the aim is to reduce the operant response, it is common to
use procedures that will absolutely not enhance the responses when generated. This process is called
extinction. Consequently, the basics of operant conditioning are to use an appropriate combination
of reinforcement and extinction to voluntarily increase or decrease certain responses. In order to
ensure more effective progression of operant conditioning, it is also important to understand the
schedule of giving the reinforcer (schedules of reinforcement), the successive approximation method,
and shaping [31].

3. Operant Conditioning of Neural Activity

To understand the efficacy and future possibilities of neurofeedback, it is vital to know the extent
to which the brain’s neurological activity is changed with operant conditioning. Animal experiments
are essential for this kind of neurological research and, in fact, neural operant conditioning research
using animals is steadily becoming more prolific and developments are being related to BMI research.
Neural operant conditioning experiments using animals started approximately 50 years ago, whereby
the activity of single neurons was targeted in experiments conducted by Fetz [24], as introduced
earlier. He recorded the activity of a single neuron in the motor cortex of a monkey for nearly
an hour. During that time the firing rate of the neuron increased when the monkey was given a reward
(reinforcement) while the neuron was firing, and returned to the original firing rate when the rewards
were withheld (extinction). Fetz simultaneously recorded the activity of two neurons in close proximity,
and found that if the reward was given to the monkey when only one of the neurons was firing, the
firing rate of only that neuron would immediately increase, while the activity of the nearby neuron
remained unchanged. In addition, if the reward was given to the monkey as the firing rate was
decreasing, the firing rate would immediately decrease (in this instance, the reduction in the firing rate
was “increased” by reinforcement). In this way, it became apparent that the animal itself can change
its own brain activity to obtain a reward, much like physical behavior, even at the level of individual
neurons, which are the constituent elements of the brain. Currently, research of neural operant
conditioning is growing throughout the world. Arduin et al. [32] recorded multiple neurons from
motor cortical areas in rats for controlling a linear actuator with a water bottle. To receive the reward
of water, the rats had to move the bottle until it reached a zone for drinking by raising and maintaining
the firing rate of each neuron above a high threshold. The firing rates of conditioned neurons increased
instantaneously after a trial onset and the bottle entered the drinking zone within a very short time.
Furthermore, the conditioned neurons fired more frequently, instantaneously, and strongly than the
neighboring neurons that were simultaneously recorded around the conditioned neurons (Figure 3).
The authors concluded that only the operantly-conditioned neurons possessing significantly increased
firing rates took the lead as “master neurons”, which exhibited the most prominent volitionally-driven
modulations in a small neural network. Engelhard et al. [33] successfully conditioned volitional
enhancement of oscillatory activity in the monkey motor cortex by targeting the motor cortex local
field potential (LFP) (Figure 4) (LFP is a summation of electrical signals of excitatory and inhibitory
synaptic potentials from a large number of neurons neighboring the recording site. The characteristics
of LFP waveforms depend on the proportional contribution of the multiple potentials and various
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properties of the brain tissue). This study also confirmed that the enhancement of oscillatory activity
was not associated with any observed movements or increases in muscle activity.
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Figure 4. Single-trial examples of LFP aligned to reward delivery. The zero (0) of each horizontal and
vertical axis of the panels represents the time of reward delivery and LFP voltage, respectively. (A) Data
for monkey M (session #20). The upper panel shows a raw LFP trace in the pseudoconditioning block.
The 500-ms period before the reward is highlighted in red. The lower panel is an expanded view of
the 500-ms period before reward; (B) the same as in (A), but for a trial in the conditioning block; and
(C) the same as in (A), but for a trial in the conditioning block, monkey Q (session #17). (From [33]
with permission).

4. Operant Conditioning of Firing Rate and Firing Synchrony in Neuronal Populations

We conducted a neuronal operant conditioning experiment using rats [34], focusing on the
hippocampus, which is deeply involved in learning and memory and the motor cortex, which has
functions directly related to behavior. As neuronal operant conditioning is a method of learning,
we hypothesized that there must be more significant changes in the neurons of the hippocampus.
As a result, we found that operant conditioning increases not only the firing rate but also firing
synchrony, namely, with the appearance of synchronized spikes of different neurons within the
hippocampal neuronal population over a short timeframe.

The device used for the behavioral objectives was simply an operant box, where the rat poked
its nose into a hole opened on the wall of the box (nose-poke response) and a food pellet came
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out as a reward. A number of “dodecatrodes” [32] had already been surgically implanted into the
rats’ hippocampus. Dodecatrodes are electrodes made up of a bundle of 12 tungsten wires, each of
which has a diameter of 12.5 microns, which are able to detect the activity of multiple neurons in the
vicinity of the electrode. This device enables recording of isolated individual neurons in near real time
by processing the data with fast independent component analysis (Fast ICA). The firing synchrony
between neurons can also be detected accurately and in real time, even if, for example, two spike
waveforms overlap [35].

Initially, we trained the rats to obtain the reward with the nose-poke response, namely, physical
behavior (reinforcement of behavior). For the rats this was a simple training procedure and they
were able to constantly obtain the reward in approximately 30 min (see Figure 5, Session 1). Next,
we hid the hole where the rats poked their noses through, and instead gave a reward when the
firing rate of the hippocampal neuronal population exceeded a certain level (reinforcement of firing
rate). In other words, we trained the rats using neural operant conditioning, where the rats obtained
rewards by activating their neuronal population. Immediately after starting this training, the rats
demonstrated a variety of behaviors (including running around), but after a while they stopped
unnecessary movements and the food pellets began to emerge constantly. The rats were, therefore, able
to actively fire their hippocampal neuronal population. Within approximately 30 min of starting the
experiment almost all of the rats were able to obtain more rewards through neuronal population activity
than through the nose poke behavior (see Figure 5, Session 2). Lastly, we set up the experiment such
that rewards would only be produced when there was synchronous firing of a neuronal population
(reinforcement of firing synchrony). A food pellet was delivered when the recorded group of multiple
neurons showed firing synchrony above a given criterion. The presence of firing synchrony to be
rewarded was detected within a 2–4 ms time window and determined on the basis of the firing of
all the pairs of neurons, which had been recorded simultaneously by the dodecatrode in each rat.
The criterion to identify the presence of firing synchrony was determined individually for each rat
(each dodecatrode) by selecting the width of the time window and setting the minimum quantity of
neuron pairs showing firing synchrony within the selected time window (e.g., more than two neuron
pairs showing firing synchrony within a 3-ms time window), ensuring that the number of spontaneous
operant behavioral and synchrony responses before conditioning would be nearby identical. When we
performed this conditioning, the rats were able to steadily obtain a constant supply of food pellets
within approximately 30 min, as expected (see Figure 5, Session 3). The rats were able to synchronously
fire multiple neurons within a single population. In addition, such conditioned enhancement of firing
synchrony remained in the following three days (see Figure 5, Sessions 4–6).

The results of investigating the activity of neuronal populations after isolating the activity of
individual neurons during this neural operant conditioning period is shown in Figure 6. The firing rate
of the overall population, which was comprised of those five neurons, and the firing synchrony within
the population were both enhanced during the neural operant conditioning. These results show that
the neurons temporarily increase their firing in much the same way as during operant behavior, and
it does not increase the firing of all the neurons in the reinforced population. Furthermore, a similar
analysis was conducted in the activity of a neuronal population recorded from another dodecatrode
separated by 0.5 mm from the dodecatrode that recorded the neuronal population being operantly
conditioned. That neuronal population was only recorded together with the neuronal population
presented in Figure 5 and had not been conditioned, and there was not a single neuron in which
the activity had changed during neuronal operant conditioning. Therefore, the firing rate increased
only in neurons within the conditioned population (or in the vicinity of that population), and these
changes in activity did not spread over a wide area of the brain. Therefore we ascertained that it is
possible to enhance the activity of local neuronal populations in isolation. We also investigated the
firing synchrony between all pairs created among the five neurons within the conditioned population
(Figure 7). These results showed that there were pairs that fired synchronously and pairs that did not
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fire synchronously throughout the entire conditioning period. However, when the firing synchrony
was reinforced, the number of pairs that fired synchronously increased.
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during each 30-min conditioning session. Neuronal firing rate and synchrony were obtained from
a group of neighboring neurons in the hippocampal CA1 of the rat and operantly conditioned. HPC,
hippocampus. (From [34] with permission).
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and firing synchrony above preset criteria (Session 3) were immediately followed by reward delivery.
A bin is 10 ms and an asterisk indicates a significant increment of firing (confidence limit, p < 0.005).
HPC, hippocampus. (From [34] with permission).
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Figure 7. Correlograms of all neuron pairs within the five neighboring neurons in the hippocampal
CA1 in sessions 1–3. The center (0) of each correlogram represents the time when two neurons fired
simultaneously, i.e., achieved firing synchrony. A bin is 2 ms and an asterisk indicates a significant
increment in firing synchrony (confidence limit, p < 0.005). (From [34] with permission).

5. Significance of Firing Synchrony in Neuronal Populations

The operant conditioning of firing synchrony of multiple neurons, shown in the study described
above, is closely related to enhancing brain functions, most of which are realized by ensemble activities
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of populations of neurons that are functionally connected with each other. Such a functional population
of neurons has been proposed to be “cell assembly” [36], postulated to act as a functional unit that
represents information in the working brain [37,38].

However, operant conditioning of cell assembly activity is not an easy task because the ranges
in the patterns of cell assembly activation, i.e., sizes of cell assemblies, are thought to be diverse [39].
A cell assembly could be comprised of a small number of localized neurons or a large number of
broadly distributed neurons [39]. Neurons in the neocortices and the limbic structures are expected
to show various forms of firing synchrony, which represent dynamic and diverse representation by
cell assemblies. Therefore, the diversity in the sizes of cell assemblies should be considered when
neuronal operant conditioning is applied to enhance synchronized neuronal activity. Our previous
study described above [34] demonstrated the operantly-enhanced firing synchrony of the small and
localized groups of neighboring neurons, which has been shown to be valid for some information
processes in higher cortical regions [40]. On the other hand, the study by Engelhard et al. [33] succeeded
in operantly enhancing the activity of broader cell assemblies as reflected by oscillatory low-gamma
waves of LFP, which are produced by synchronized postsynaptic potentials of many neurons in broader
ranges. Oscillatory activity in the motor cortex has been observed in many experiments and has led to
various hypotheses about its possible functions, such as motor preparation and attention to aspects of
movement [41,42].

Discussion is still ongoing regarding the actual functional role of oscillatory and synchronous
activities of groups of neurons. But with neuronal operant conditioning, as Fetz [43] suggested, those
activities become the independent variable in the experiments, and their effects on behavior are more
compelling evidence of their functions. Indeed, Keizer et al. [44] have shown that volitionally-increased
gamma oscillation in occipital and frontal sites in humans improved performance on cognitive tests of
sensory binding and memory. These results support the notion that various information processes are
generated by oscillatory activity in the cortices.

6. Problems in Neural Operant Conditioning for BMI Development

One serious problem of neural operant conditioning, which uses a small number of neurons for
developing high-precision BMIs, is their limited stability as a source of signals to control a neuroprosthesis.
In addition to such a technical problem, it should be made clear how long conditioned changes of
neuronal activity can be retained. This problem is related to one of the major and difficult issues in
psychology, i.e., the sustainability of learning, but it should be investigated as it is relevant for long-term
reliability of BMIs. Although our previous study [34] reported that the conditional enhancement of
firing synchrony was retained for more than three days (Figure 5), no experiment of neuronal operant
conditioning has examined the limited stability of conditioned changes of neuronal activity. In this
regard, transfer of operantly-conditioned firings between different neuronal groups is profitable to
compensate the limited stability of source signals and conditioned activity changes. Additional studies
in neuroscience (i.e., such as those described in [45]) are required to test the possibility of the transfer
of conditioned firings in the brain.

In order to improve the reliability of BMIs, recent noteworthy studies have suggested that electric
brain stimulation, namely, transcranial direct current stimulation (tDCS), can enhance Hebbian learning
of an abstract skill, such as controlling a neuroprosthetic device. In this regard, Soekadar et al. [46]
reported that learning to control over sensorimotor rhythms (SMR, 8–15 Hz) was superior in the
group that received 20 min of anodal tDCS over the primary motor cortex (M1). The newly acquired
skill in the anodal tDCS group remained superior even one month later. Their results indicate that the
application of tDCS can modulate the processes of learning to control brain oscillatory activity for a long
time period, and such paradigms will contribute to improving the reliability and stability of BMIs.

Another problem originated from the fact mentioned in the Chapter 2, that is, the failure of
replicating operant conditioning in the curarized rat [30]. As Birbaumer et al. [28] stated, recent
studies of invasive BMIs in animals and humans steer mainly toward the restoration of their motor
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functions to partially overcome handicaps, and less toward dealing with problems due to complete
locked-in state (CLIS). The mechanistic and theoretical reasons for failure or difficulty in BMIs in
CLIS should be investigated. For instance, Birbaumer et al. [47] hypothesized that “loss of the
contingency between a voluntary response and its feedback” or “loss of subsequent reward” in
individuals who are completely paralyzed would prevent learning even if afferent input and cognitive
processing (attention, memory, and imagery) remained intact. Similarly, the reasons for the failure
of neural operant conditioning (neurofeedback) in the curarized rat should be experimentally and
theoretically investigated.

7. Conclusions

The neural operant conditioning experiments introduced above demonstrate that the activity of
neuronal populations dramatically changes within a short time period to obtain rewards. Depending on
the reward method, the neuron’s firing rate and the firing synchrony between neurons can be changed,
and those changes are generated only in the conditioned local neuronal population. We ascertained
that it is possible to make various changes to the activity of individual neurons and small populations
of neurons that make up the brain, through operant conditioning of neuronal activity. Such results
from neuroscience research, as well as discussions of mechanistic and theoretical backgrounds of
neural operant conditioning, will lead to the development of clinically-significant and highly-reliable
BMIs using the plastic characteristics of the brain and, at the same time, will contribute to developing
methods of rehabilitation that restore or transform the brain.
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