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Abstract: We present a novel approach to reinforcement learning (RL) specifically designed
for fail-operational systems in critical safety applications. Our technique incorporates
disentangled skill variables, significantly enhancing the resilience of conventional RL
frameworks against mechanical failures and unforeseen environmental changes. This
innovation arises from the imperative need for RL mechanisms to sustain uninterrupted
and dependable operations, even in the face of abrupt malfunctions. Our research high-
lights the system’s ability to swiftly adjust and reformulate its strategy in response to
sudden disruptions, maintaining operational integrity and ensuring the completion of tasks
without compromising safety. The system’s capacity for immediate, secure reactions is
vital, especially in scenarios where halting operations could escalate risks. We examine the
system’s adaptability in various mechanical failure scenarios, highlighting its effectiveness
in maintaining safety and functionality in unpredictable situations. Our research represents
a significant advancement in the safety and performance of RL systems, paving the way for
their deployment in safety-critical environments.

Keywords: reinforcement learning; skill-based learning; operational safety; fail-operational
system

1. Introduction

In artificial intelligence, reinforcement learning (RL) is a critical technique that allows
agents to learn and improve their actions through interaction with their environment [1].
This method is increasingly vital in various robotic areas and crucial for navigating complex
real-world challenges [2].

The primary challenge in RL applications is safety assurance. While RL is effective
in many cases, it often struggles to foresee or mitigate risks in novel or unpredictable
situations [3-5]. In particular, when faced with unanticipated test data, the neural network
may exhibit excessive confidence in its predictions [6,7]. In critical tasks like autonomous
driving, such overconfidence can lead to severe failures [8].

RL systems have integrated fail-safe mechanisms to address this when handling
exceptional circumstances. These systems are designed to switch to a safe state during
errors, preventing further damage or risk and ensuring no catastrophic failures under
any operating condition [9-11]. This is also mandated by international standards like ISO
26262 [12], requiring fail-safe features for protective responses to functional failures.

However, for dynamic driving tasks in autonomous vehicles or delivery robots, a
simple, fail-safe system for functional safety might not be comprehensive for overall driving
safety. A fail-safe mechanism typically prevents catastrophic failures by transitioning the

Technologies 2025, 13, 156

https:/ /doi.org/10.3390/ technologies13040156


https://doi.org/10.3390/technologies13040156
https://doi.org/10.3390/technologies13040156
https://doi.org/10.3390/technologies13040156
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0003-0205-7230
https://orcid.org/0000-0001-9935-1721
https://doi.org/10.3390/technologies13040156
https://www.mdpi.com/article/10.3390/technologies13040156?type=check_update&version=2

Technologies 2025, 13, 156

20f21

system into a safe state or using a fallback policy, often completely halting operations upon
detecting a fault. Sometimes, more sophisticated responses are needed for system failures.
For instance, highway safety measures like stopping or waiting for human intervention
can be hazardous. Conversely, fail-operational systems ensure continued operation with
minimal functionality loss, even during critical failures [11]. A comparative overview of
failure management systems is illustrated in Figure 1.

Architectures often rely on structured Fault Detection, Isolation, and Recovery (FDIR)
pipelines in conventional fail-operational systems, particularly in safety-critical domains
such as aerospace and autonomous driving. Notably, FDIRO [13] extends this paradigm
by incorporating an optimization step after recovery to ensure the reconfigured system
remains contextually effective. Adapted for autonomous vehicles, this strategy typically
employs low-latency failure detection and isolation, followed by system reconfiguration
to ensure safety constraints are met. The subsequent optimization phase adjusts com-
ponent placement (e.g., computation node assignments) based on runtime context to
enhance efficiency.

Additionally, hierarchical fallback architectures, such as those presented in [14], pro-
pose tiered control and inference strategies. Depending on system confidence and en-
vironmental uncertainty, these systems switch between high-performance and low-risk
models. Such approaches emphasize system-level redundancy and architectural fallback
mechanisms rather than the policy-level adaptability at the core of our approach.

Moreover, redundancy-based techniques, such as analytical redundancy, are com-
monly adopted in conventional fail-operational systems. For instance, Simonik et al. [15]
demonstrate steering angle estimation for automated driving using analytical redundancy
to maintain vehicle functionality in the event of sensor failure. These methods ensure
fault tolerance using estimation models to replicate failed sensor outputs and maintain
control continuity.

In contrast, our contribution introduces an innovative learning and reasoning model
that implements a dual-skills approach, distinguishing between “task skill” and ‘actor skill’.
The ‘task skill”’ component involves high-level planning, such as determining the vehicle’s
intended driving path or destination. In contrast, the ‘actor skill” governs low-level control
actions based on the vehicle’s current mechanical state and environment. This separation
enables flexible and modular control, where high-level objectives and low-level execution
are decoupled, allowing for better accommodating system changes or faults.

The prior work [16] introduced a skill discovery algorithm that learns morphology-
aware latent variables without direct compensation. This algorithm adapts to unseen
environmental changes, showing zero-shot inference capabilities for morphological al-
terations. Building on this, we developed a fail-operational system with real-time fault
detection and response planning. In case of significant errors due to sensor or system
failures, the system updates the actor skill to maintain continuous operation.

The proposed method underscores the significance of skill-based learning in enhancing
RL system resilience and reliability. By creating systems that aptly respond to mechanical
failures and adapt to changing scenarios, we explore new safety and efficiency avenues in
RL for critical systems like autonomous driving, where failure costs are exceptionally high
and intolerable.
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| @ No Failure Management I

e The system does not have any mechanism to detect or manage failures.
¢ Itis unable to react to failures, and an unmanaged failure can
potentially escalate to operational errors or more severe accidents.

| (2 Fail-safe System I

* A fail-safe system is designed to automatically respond to failures by
transitioning to a safe or minimal operational state, to ensure that any
failure does not escalate into a more serious situation.

The system may strategically cease functioning, to prevent further
damage or hazards.

‘ (3 Fail-operational System }

e A fail-operational system is designed to maintain its operational
functionality in the event of a failure while guaranteeing safety.

e The system dynamically adapts to environmental changes or internal
faults to continue functioning.

Figure 1. Comparative overview of failure management systems.

2. Related Works
2.1. Safe Reinforcement Learning

Safe Reinforcement Learning (SRL) is a specialized branch of RL that goes beyond the
traditional goal of maximizing rewards, including adherence to specific safety constraints
within its learning objectives. It emphasizes integrating these constraints into the RL
framework, with attention to factors like expected return, risk metrics, and potentially
hazardous areas within the Markov Decision Process (MDP) framework [17,18].

A common strategy for addressing SRL challenges is to adjust the policy optimiza-
tion phase of classic RL algorithms. This adaptation aims to balance the pursuit of task-
related rewards with observing safety constraints. Techniques like trust region policy
optimization [19,20], Lagrangian relaxation [21-23], and the construction of Lyapunov
functions [24,25] have been investigated for this purpose.

SRL also involves limiting the policy’s exploration to safer zones within the MDP.
This is performed via Recovery RL [17,26,27] or Shielding Mechanisms [28,29], which act
as preventive measures against the agent’s venture into risky states, thereby maintaining
exploration within safe parameters.

Moreover, model-based RL contributes significantly to SRL by facilitating safe explo-
ration and control. It often incorporates Model Predictive Control (MPC) [30], allowing
real-time optimization of control tasks with embedded safety constraints, such as state
restrictions [31-33] or behavioral shields [29,34].

2.2. Fail-Operational Systems

Fail-operational systems are designed to maintain core functionalities even in partial
failures—a critical requirement in safety-critical domains such as autonomous driving and
aerospace. Traditional fail-operational architectures rely on structured Fault Detection,
Isolation, and Recovery (FDIR) pipelines. The extended FDIRO model incorporates an
optimization step into the standard FDIR procedure, dynamically reallocating system
resources (e.g., computation node assignments) based on contextual information to enhance
operational effectiveness after recovery [13].

Hierarchical fallback architectures present another common fail-operational strategy,
in which control is tiered according to performance and risk levels. As introduced by Polleti
et al. [14], such systems switch between high-performance and conservative models based
on system confidence or environmental uncertainty. These approaches offer robustness by
relying on predefined control transitions and behavioral backups.
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Additionally, analytical redundancy is widely employed to compensate for sensor-
level failures. For example, Simonik et al. [15] propose a method for estimating steering
angles using redundant models when direct sensor readings are unreliable or unavail-
able. This approach ensures system continuity by synthesizing missing inputs from other
available signals.

While effective, these conventional methods depend heavily on handcrafted redun-
dancy, explicit fallback logic, or architecture-level reconfiguration, which can limit adapt-
ability in highly dynamic or unexpected failure scenarios.

2.3. Skill-Based Reinforcement Learning

Skill learning in the context of RL includes a variety of techniques and approaches
aimed at improving the policy’s adaptability and functionality, allowing the agent to
adapt and fine-tune for unseen tasks more efficiently [35,36]. Historical algorithms such
as SKILLS [37] and PolicyBlocks [38] pioneered the concept of skill learning. These
learned skills are expressed in various forms, such as sub-policies, often referred to as
options [39—-41], and sub-goal functions [42,43]. More recent developments include em-
bedding skills in continuous space through stochastic latent variable models [44], which
concisely represent a wide range of skills [45-47].

Unsupervised skill discovery is an essential aspect of skill learning and is helpful in
environments where it is challenging to design explicit rewards or where reward signals
are sparse. This approach maximizes the mutual information between skills and states
to derive meaningful skills [48,49]. Various algorithms utilize mutual information as an
intrinsic reward, optimizing through reinforcement learning [50-52], while other methods
learn a transition model and use model predictive control over downstream tasks [53,54].

However, mutual information-based approaches have limitations, especially in cov-
ering a broader region in the state space [49]. Recognizing these limitations, several
alternative methodologies have been proposed. Lipschitz-constrained Skill Discovery [55]
stands out in that it focuses on mapping the skill space to the state space and maximizing
the Euclidean travel distance within the state space. Unsupervised goal-conditioned RL
learns goals, corresponding tomdiverse reaching policies [56,57], and Controllability-Aware
Skill Discovery [49] aims to make agents continuously move to hard-to-control states.

In our proposed method, we introduce the new concept of separated skill discovery
and specialize each skill space in a specific domain. This specialization is designed to make
skills more targeted and effective in specific areas. It is expected to broaden the scope that
each skill can effectively cover and improve its adaptability and applicability.

2.4. Disentangled Skill Discovery

In prior research [16], we unveiled an innovative skill discovery algorithm that delin-
eates skill domains to acquire knowledge of morphology-sensitive latent variables without
direct adjustments. This algorithm is adept at adjusting to unanticipated morphological
changes in the environment, showcasing the ability to perform zero-shot inference for
morphological adaptations by seamlessly responding to these variations.

The algorithm’s foundation lies in two key elements: the ‘task skill” and the ‘actor skill’.
The “task skill” pertains to overarching objectives such as charting the vehicle’s desired
route or destination. It steers the vehicle toward achieving its objectives. Conversely,
the ‘actor skill” governs precise driving maneuvers based on the vehicle’s instantaneous
state and its interaction with the environment. The system divides the agent’s operational
expertise into two separate latent variables, each shaped through two specialized variational
autoencoders (VAEs) [44].
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Drawing from unsupervised skill discovery methodologies [52-54], notably the max-
imization of mutual information, the task VAE is designed to create as varied geometric
paths as possible. Meanwhile, the action VAE learns the necessary actions for task execu-
tion by analyzing state and action pairings, encapsulating this information into an actor
latent variable.

The system includes the ‘sampler’ and the ‘explorer’, both crucial to learning. The
sampler, influenced by information-centric strategies [53,54], generates novel trajectories by
maximizing the mutual information between the geometric state space and the latent space.
The Explorer’s role is to enact the sampler’s directives. The training environment employs
multiple agents, each with unique physical attributes and Explorer policies custom-fitted to
them. This arrangement ensures task learners discern and assimilate the unique behavioral
patterns specific to each agent model.

While this algorithm has proven effective in adapting to morphological changes and
exhibited zero-shot inference prowess for such modifications, we recognized a critical
shortfall: the urgency of detecting and reacting to malfunctions in real time is paramount
for ensuring safety. To address this, this study has led to the creation of an exhaustive
fail-operational system. This system is meticulously designed to react immediately to
abrupt environmental shifts, preserving the continuity of essential functions even amidst
component malfunctions.

3. Methodology
3.1. Skill-Based Fail-Operational System

This study proposes a fail-operational system that can cooperate with RL, focusing
on safety and adaptability. We can detect errors and adjust their behavior in real time to

maintain stable operation. Figure 2 is a proposed conceptual diagram representing the
workflow of the proposed system.
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Figure 2. Conceptual diagram of the inference strategy of the proposed system.

We propose a fail-operational system that responds appropriately to mechanical
problems when they occur and maintains stable driving. This innovative learning and
reasoning model implements a dual-skills approach, distinguishing between the “task skill’
and ‘actor skill’.

The “task skill” component is responsible for essential goals such as determining the
vehicle’s intended driving path or destination. It gives the vehicle the direction it needs to
move toward its goal. On the other hand, the “actor skill’ is an element that directs specific
driving actions according to the vehicle’s current state and surrounding environment. The
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actor skill embeds the physical control needed to follow the trajectory generated by the
task skill under the current mechanical condition of the system.

During operation, the system monitors the deviations or anomalies from expected
performance. If the deviation remains within predefined safety thresholds, the “actor skill’
is maintained, ensuring the vehicle continues driving as expected. However, if a sensor
malfunction or drive system defect causes a discrepancy, the system actively responds to
the failure. Unlike traditional fallback or redundancy mechanisms, the system updates
its “actor skill” to re-calibrate its driving method to maintain stability without relying on
predefined redundant components.

3.2. Dual Skill Latents

This approach involves formulating two distinct disentangled latent variables en-
capsulating different aspects of the agent’s operational knowledge. These variables are
essential to the partitioned latent space, which is constructed through the deployment of
two dedicated variant autoencoders [44] (task VAE and action VAE).

Following the principles of unsupervised skill discovery [52,54,58], particularly the
necessity of maximizing mutual information, the task VAE is able to generate diverse geo-
metric paths that comprehensively represent all feasible trajectories required for operational
flexibility. The action VAE uses all state-and-action pairs to learn the explorer’s actions to
perform the task and stores this information as an Actor latent.

The following sections explain how each learning component is learned. Additionally,
hyperparameters and constant values are explained in detail in Appendix A.

3.2.1. Task Skill Learner and Sampler

The task VAE generates an array of coordinates representing the agent’s movements.
Both the input and output of the task VAE consist of an array of geometric locations, and
each array spans frame length T. The operation system strategically chooses the skill latent
z¢ to provide the agent’s immediate path, enabling decision-making to achieve the task.

The task encoder qg, (z¢|s1.7) is designed to identify valid motion trajectories and
encode this knowledge within the skill potential z;. At the same time, the task decoder
po, (81:7|z¢) emulates the trajectories discovered in the exploration process. The loss function
for the task VAE, denoted as Ly, is derived from the Evidence Lower Bound (ELBO) [59],
with the prior 7(z;) normalized as a standard Gaussian distribution N(0,1). Addition-
ally, to mitigate potential bias and overfitting during training, we apply KL-divergence
regularization within the VAE framework.

Ly = _EZtN%t (log Pe; (51:T|Zt)) + ,BDKL (qtl’t (Zt‘slzT) ||1’(Zt)) (1)

The role of the sampler is to operate according to principles inspired by information-
based approaches [51-53]. The sampler py,_(s1.7|z¢) is tasked with generating new trajecto-
ries by optimizing the mutual information I(S; Z;) between the geometrical state space S
and latent space Z;. The loss function for sampler parameter 0 is designed as follows:

Ls = Ezi~qy, s1.0~po, [108 Po, ($1:7/2¢) — log po, ($1:7)] 2)

3.2.2. Actor Skill Learner

To encapsulate the actor’s state changes within the skill latent space Z,, we employ an
action variational autoencoder (VAE), consisting of an action encoder g, (zalS0.7—1,0:7-1)
and an action decoder py, (81.7|S0.7—1,2t, Za)-

The encoder processes the trajectories of actions and states generated through the
execution of the explorer, extracting these experiences into the skill latent z,. Conversely,
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the action decoder requires access to both z; and z, to reconstruct the actor’s driving
maneuver. In particular, the construction of the decoder differs from the standard VAE as it
incorporates both z; and z; as inputs. The objective function is thus defined as follows:

Lo = —Ezongp, zi~g, (108 Po, (a1:750.7-1,2t, Za) ) + BDkL (99, (zals0.m—1,a0.7-1)[17(2a))  (3)

3.3. Skill Inferencing
3.3.1. Task Skill

The task VAE generates an array of coordinates representing the agent’s movements.
Both the input and output of a task VAE consist of an array of geometric locations, and
each array spans frame length T. The operation system strategically chooses the skill latent
z¢ to provide the agent’s immediate path, enabling decision-making to achieve the task.

The z; space contains a diverse range of potential paths originating from the agent’s
current location, encompassing all possible trajectories that the agent may undertake in
the future. At every moment, the system continuously infers the optimal z; corresponding
to the path that most closely aligns with a given target path or point. The mathematical
definition of optimal z; is as follows. G is the provided or calculated target path, and d(-, -)
is the distance between the path and the point.

T
argmin Y d(G,8/%), where §Y5 ~ po,(-|zt) 4)

Zt i=1
To determine the most suitable z;, the system samples z; in the latent space and
evaluates its alignment with the desired target path. We utilized a precomputed table of
pairs of specific instances of z; and their corresponding paths. The table serves as a lookup
mechanism that can quickly identify the optimal z;. The feasibility of this approach is
grounded in the fact that the task skill is independent of the actor’s attributes, which we
may wish to alter during operation. This independence ensures that the table remains valid

regardless of changes in the actor’s state or configuration.

3.3.2. Actor Skill

The actor skill is designed to improve autonomous agents’ operational capabilities
and safety. It reacts to environmental interactions in the context of an agent’s mechanical
properties and their impact on performance.

The system continuously monitors the actual path of the agent and compares it with
the intended path. Mathematically, the performance error ¢ is defined as follows:

T
e= ) d(3[,s5) where 8% ~ po,(-|z1) )

1

d(-,-) is the Euclidean distance between two points. Note that § is the output of the
task decoder, and s is the observation value after the system performs the action by the
action decoder.

In the absence of mechanical errors, an agent’s existing actor skill latent z, should
be preserved. It represents the agent’s optimal response method in the current state and
is initialized through a latent sampling process. The initial value of z, is precomputed
as follows:

T
za = Eq, { Zﬂﬁ"ﬁ%“)} = Ez(e) 6)
i=1
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Whether to maintain or update the actor skill is determined by predefined safety
thresholds ¢ey,. If the observed error ¢ in the executed skill is within the threshold, the
current actor skill is still considered acceptable and maintained.

However, if the deviation exceeds a safety threshold, the system initiates an update
process for actor skills. To infer the actor skill z,, we use a technical approach that relies
on dynamic adjustment of z, in response to observed performance errors . This process
utilizes the scaling factor a. The first time, a is initialized to the initial value a;,;; based
on experience.

Firstly, z, is updated by adding the product of the performance error ¢ and «. The
parameter « is then modified based on the Exponential Moving Average of Az, /Ae. The
adjustment fine-tunes & to ensure that it accurately reflects the relationship between actor
skill changes and performance error changes. Mathematically, this is represented as follows:

Zg+—2zp+a-d ?)
Az,
« ezx(l—r)JrETﬁ 8)

where 7 is the smoothing factor. And since 4 is an actual observation value and has a lot
of noise, B is a hyperparameter to achieve stability by reducing the reactivity of z,. To
improve the robustness of this process, especially when there is a risk of local minima
during the search, we introduce a strategy to set several pivotal points as search criteria
based on previously learned actor settings. The search range is extended to other pivots
after searching around the initial z, if the performance error does not fall below a threshold.
The search process is mathematically structured as follows.

Initially, determine the set of pivot points P = {p1, p2,- -, pn} for z,. This can be
inferred from the task performance results of a pre-learned actor or set to divide the z,
space uniformly. If « becomes too large, it will no longer be possible to find a point with a
low error value even if z, is updated (see Figure 3). To determine this, we set a threshold
«¢h that the alpha value can have. If « becomes greater than ay, even though the error is
less than the g, z, jumps to one of the nearby pivots. The entire process of inferring skill is
described in Algorithm 1.

d d d

F/a» X‘/Zﬂ»

d

Za

KT
Doy =

\

Current 1 Current

a

Timeline

Figure 3. A diagram showing the process of updating actor skills. z, is updated based on observed
error and the parameter « is adjusted with the change in error during the update process. If « becomes
larger than a;h, z,; jumps to one of the nearby pivots.
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Algorithm 1 Skill inference algorithm

1: Load Parameters 0;, 6,

2: Initialize z¢, o, P = {p1,p2, - ,Pn}

3: Precompute py, (§'°¢|z;) for z; ~ [—2,2]dim=
4. while not finished do

5: Optain G from environment
6: Find z; from Equation (4)
7: Deploy action to the environment
8: Optain ¢ from environment and Equation (5)
9: if z, was updated in the previous step then
10: Update z, using Equation (8)
11: end if
12: if € > ¢y, then
13: if & < ayy, then
14: Update z, using Equation (7)
15: else
16: Update z, to nearest p; € P
17: end if
18: end if

19: end while

4. Experiments
4.1. Skill Discovery from Predefined Models

In the experiment, we evaluated the effectiveness of the proposed algorithm in adapt-
ing to unseen changes in mechanical states through experiments conducted within the
CARLA vehicle simulator [60]. For this experiment, we utilized a four-wheeled delivery
robot model. To enable the system to respond to a variety of mechanical conditions, we
designed a standard model m7, a model with an enlarged left wheel mj,, and a model
with an enlarged right wheel m3 (see Figure 4). These variations are intended to simulate
problems due to asymmetric wheel configurations.

Figure 4. (Left) The design of the four-wheeled robot used in the experiment. (Top Right) Graphical
representation of the shapes of three predefined robot models. (Bottom Right) Optimal input values
for each wheel of the corresponding model to make an ideal left turn.

For additional details and to access the source code and results of the experiments,
visit our repository https:/ /github.com/boratw /sd4m_carla (accessed on 8 March 2025).

4.2. Visualization of Skill Latent Space
4.2.1. Task Skill Latent

The main learning goal for the task latent variable z; was to enable the system to learn
all possible paths a vehicle can take autonomously. Figure 5 shows the visualization of
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embedded task skills. After training, z; becomes a repository of potential routes containing
the different navigation choices available to the vehicle based on its current location. It was
confirmed that all possible paths in the forward direction of the robot were well embedded.
In the experimental configuration, the trajectory length T was set to 500 ms.

Figure 5. Visualization of embedded task skills. The left side of the figure shows the relationship
between latent value and color, and the right side demonstrates the corresponding target paths
decoded from the latent.

4.2.2. Actor Skill Latent

In contrast, the learning objective for the actor latent variable z, focuses on the vehicle’s
shape. Specifically, the goal is to ensure that each distinct physical characteristic of the
vehicle is appropriately mapped to an optimal distance within the latent space. This
mapping ensures that changes in the vehicle’s physical characteristics, such as different
wheel sizes or asymmetric configurations, are accurately represented and distinguishable
within z,.

Figure 6 and Table 1 show the performance of the proposed algorithm and the SAC [61]
agent for each predefined shape. z, is the optimal z, value obtained through Equation (7),
and the velocity and error values are the average values shown in the lane keeping scenario,
which will be described later.

Table 1. Comparison of performance between the proposed algorithm and SAC agent for prede-

fined shapes.
Shape Algorithm Za Velocity (m/s) Error (cm)
" Ours 0.37 3.22 2.52
1 SAC N/A 2.41 0.47
" Ours —0.18 3.57 1.94
2 SAC N/A 2.28 1.32
m Ours 1.01 2.69 1.05
3 SAC N/A 2.46 0.84

We confirmed that the learner we trained learned the capability of operating at a
similar level to the SAC policy, which focused on learning only each shape. And z, values
were also mapped separately from each other, as expected.
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Figure 6. Relationship between the actor latent variable z, and task performance metrics across the
shape of the vehicle.

4.3. Evaluation of Robustness in Static Environment Changes

To evaluate the adaptability of the learned model in response to failure scenarios,
we designed experiments focusing on a four-legged robot under various compromised
conditions. The goal was to evaluate the system’s ability when specific mechanical failures
occur and compare its performance to existing reinforcement learning models.

We prepared four separate models of a four-wheeled robot (Figure 4), each representing
a unique failure state. In these models, each corresponding robot wheel was individually
disconnected from the linked motor, which means that the input value is not sent to the wheel.

For each model, we determined the optimal z, value, as described in Equation (7).
The identified z, that best compensated for the specific model ensured that the robot could
effectively perform its intended task despite the damaged wheels.

The driving capabilities of the system juxtaposed with those of standard reinforcement
learning models were evaluated across four driving scenarios: Lane Keeping, Left Turn,
Right Turn, and Lane Change. The primary metric for evaluation is lateral distance, mea-
sured as the deviation between the robot’s actual position and the optimal path provided
to the system. Figure 7 shows a representative example of experiments focusing on a
model with a disconnected “Front Left” wheel. And Figure 8 and Table 2 present a detailed
comparison of the results for each scenario across the different models.
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Figure 7. Visualizations of the driving scenarios that compare the paths driven by the SAC model
(blue line) and our algorithm (red line), using a model with a broken ‘Front Left’ wheel. The black line
represents the ideal trajectory generated by the Task VAE. The right side of each visualization displays
the observed lateral distance values during the experiment.
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Figure 8. The lateral deviation from the reference trajectory for each model. The data were averaged
across different scenarios based on 25 experiments, and the shaded area in the graph indicates the
95% confidence interval for the value.

Table 2. Comparative analysis of performance between the proposed algorithm and the SAC with
the optimal z, for each kinematic modification of wheel size.

Disconn Aleorithm Lane Keeping Turn Left Turn Right Lane Change (Left)
Wheel : 8 Error (cm) Vel (m/s) Error (cm) Vel (m/s) Error (cm) Vel (m/s) Error (cm) Vel (m/s)
ee Name Zg Avg Max Avg Avg Max Avg Avg Max Avg Avg Max Avg
Front Ours 1.19 4.16 2.5 5.71 14.95 2.51 5.71 18.06 241 4.1 8.11 2.5
Left SAC N/A 9.85 2.34 9.32 19.41 2.33 2397 102.1 2.25 9.92 17.09 2.33
Front Ours —0.37 1.67 2.45 2.01 9.25 2.38 2.33 16.11 247 1.29 4.25 2.45
Right SAC N/A 1175 1218 347 1898  49.02 3.32 12.62 2444 3.36 1151  16.79 3.46
Rear Ours 1.13 3.69 2.49 5.52 17.39 2.49 55 19.35 2.39 3.53 7.33 2.48
Left SAC N/A 12.04 1254 2.39 9.96 13.42 2.37 27.07 1054 2.3 12.28 19.88 2.37
Rear Ours -0.73 7.88 2.44 6.54 11.72 2.25 7.41 13.42 2.48 6.6 8.17 2.44
Right SAC N/A 1269 1298 3.18 2854  88.79 3.03 1622 45.79 3.11 1253 21.35 3.19

Since no scenario in which the robot’s wheels were disconnected was presented
during the training phase, the system inferred the optimal z, value even though it was a
completely new failure situation. Additionally, utilizing the inferred z, values, the system
demonstrated resilience by performing at a similar level to a scenario where the robot’s
wheels were intact.

4.4. Evaluation of Fail-Operational System

Building on the previous experiment, which evaluated the adaptability of models
under static failure scenarios, we extended the investigation to include more dynamic
and unpredictable conditions. Specifically, we assessed the system’s responsiveness to
unexpected mechanical failures during operation.

First, we examined the vehicle’s reaction to a sudden change in wheel size. The left
and right wheels were altered simultaneously, requiring different inputs to maintain a
straight trajectory. Initially, the delivery robot was driven straight, with all wheels at 100%
of their original size. Subsequently, the size of one wheel was varied by a certain percentage.
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We measured the maximum deviation of both the Soft Actor—Critic (SAC) algorithm and
the proposed algorithm from the center of the lane, as well as the time required to return to
parallel driving. The results of this experiment are presented in Figure 9 and Tables 3 and 4.
As indicated in the tables, the proposed method demonstrates significantly lower lateral
deviation and faster recovery times under various failure scenarios.
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Figure 9. Comparative performance of the proposed algorithm and SAC in observing the deviation
from a lane’s center when the robot is driven straight.

Table 3. Analysis of the performance between algorithms in the left wheel size variation experiment.

Size of Left Wheel 50% 75% 100% 125% 150% 175% 200%
Dist (cm) SAC 274 9.613 3.338 4.7 9.795 10.78 13.44
Ours 13.14 12.05 5.477 6.768 7.336 8.905 9.664
Vel (m/s) SAC 1.51 2.166 2.511 2.748 2.524 2.517 2.546
¢ ° Ours 0.792 2.502 3.007 3.067 3.181 3.187 3.249
Zg Ours —-0.72  —0.095 0.37 0.525 0.9 1.027 1.136
Time to SAC X 1.25 - 0.9 0.7 1.55 1.85
recovery (s) Ours 1.05 0.9 - 0.65 0.6 0.95 1.4

Note: Bold entries indicate lower values, which represent better performance in terms of distance error or

deviation.

Table 4. Analysis of the performance between algorithms in the right wheel size variation experiment.

Size of Right Wheel 50% 75%  100%  125%  150%  175%  200%
Dist (cm) SAC  41.84 1544 2797  7.355 7.23 1082 12.96
1sticm Ours 8361 8667 4805 5223 6312 6524  6.674
Vel (m/s) SAC 1151 2119 2255 2362  2.608 2868  2.864
etim/s Ours 0632 2538 2962 3077 3181 3189  3.244
Za Ours 1803  1.078 037 008 —0119 —0363 —0.429
Time to SAC X 1.35 - 05 0.85 1 13
recovery (s) Ours 1.8 0.75 - 0.4 0.6 0.85 0.8

Note: Bold entries indicate lower values, which represent better performance in terms of distance error or

deviation.

Next, we conducted a similar experiment to the one described in Section 4.3, where
the delivery robot navigated through predefined scenarios. This time, one wheel suddenly
disconnected during each scenario. The experimental setup included four identical sce-
narios: Lane Keeping, Left Turn, Right Turn, and Lane Change. Initially, all four wheels
of the robot functioned normally. During each scenario, one wheel became disconnected
unexpectedly. As in previous experiments, the primary metric for evaluation was the lateral
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distance between the robot’s actual trajectory and the optimal path. Wheel disconnections
were triggered at 40 steps into each scenario.

Figure 10 shows a representative example of experiments focusing on a model with
a disconnected “Front Left” wheel. This figure shows the trajectory of each algorithm on
the map, the lateral errors, and the inferred z, value. And Figure 11 and Table 5 present a
detailed comparison of the results for each scenario across the different models.

 distance (m)
 distance (m)
| distance (m)
 distance (m)

Lateral Error

w
steps

04 06
05

Actor Skill
Latent

@ 70 )

) W B )
steps steps steps steps

Figure 10. The result of the experiment conducted on the ‘Front Left’ wheel disconnection scenario.
(Top) Aerial snapshots depict the agent’s trajectory before and after the wheel disconnection. The
red arrow indicates the point at which the disconnection occurs. (Middle) lateral distance for the
proposed algorithm versus the SAC model. The green vertical line indicates the step at which the
wheel disconnection occurs. (Bottom) The inferred z, from our approach.

Through this experiment, we observed the system’s ability to initiate and converge
inferences of the agent’s skill, z;, when a malfunction occurs. In the “Front Left” case,
the z, value is observed to converge around 0.8, indicating a robust and effective re-
sponse of the system to mechanical failures. This convergence demonstrates the system'’s
ability to adaptively readjust its strategy in response to sudden changes and maintain
optimal performance.

Table 5. Comparison of performance between the proposed algorithm and SAC agent.

Disconn Aleorithm Lane Keeping Turn Left Turn Right Lane Change (Left)
Wheel : & Error (cm) Vel (m/s) Error (cm) Vel (m/s) Error (cm) Vel (m/s) Error (cm) Vel (m/s)
Name Zg Avg Max Avg Avg Max Avg Avg Max Avg Avg Max Avg
Front Ours 1.19 3.81 13.51 2.74 493 1341 2.83 9.05 3854 2.56 451 1174 2.7
Left SAC - 1029  16.65 2.5 8.6 16.8 2.5 23.4 112 2.41 10.68  20.51 2.5
Front Ours  —037 419 14.1 3.38 1432 54.18 3.13 567  17.88 3.25 531 17.89 3.36
Right SAC - 11.01 1558 2.46 17.82  55.95 2.37 1149 2394 247 1096 189 2.46
Rear Ours 1.13 4 11.31 2.74 482  10.84 2.85 9.27  39.85 2.56 458  12.03 2.71
Left SAC - 11.76  18.33 2.49 8.64  16.39 2.49 2511 117.6 2.39 1236 23.46 2.48
Rear Ours —-073 829 2713 3.11 241 9157 2.75 11.63  34.82 3.05 8.65 3129 3.14
Right SAC - 1595 2447 2.39 57.09 2387 2.1 1771 4444 2.45 154 30.73 24
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Figure 11. The lateral distance for each model across different scenarios. Shading indicates the
95% confidence interval for the value. A green vertical line indicates the step at which the wheel
disconnection occurs.

5. Discussion

The first experiment was designed around a four-legged robot model subjected to
various failure states. The test aims to understand the system’s response to specific mechan-
ical failures and benchmark its performance against conventional reinforcement learning
models. With this setup, we showed that by using the optimal actor skill variable z, for
each failure state, the robot could continue its task effectively despite unexpected sudden
damage to the wheel motor.

In the second experiment, the robot started with all wheels operational, but one wheel
would disconnect while running various driving scenarios. This unpredictability tested
the system’s ability to adjust and readjust its strategy rapidly. The system demonstrated a
robust ability to quickly infer and adapt the skill variable z, in response to these sudden
faults in the actuating system. The proposed system could continue performing its task
without compromising safety.

A critical insight from the experiments is the system’s ability to complete tasks safely
during unexpected mechanical failures. This finding highlights the importance of fault-
operating systems when human intervention is impractical, but immediate response is
essential. For example, in the second experiment, a sudden malfunction at an intersection
may lead to significant traffic disruptions and dangers. In such cases, the capacity to
continue safe operations takes precedence over maintaining high performance levels.

Although the proposed system demonstrates robustness to mechanical failures, it does
not directly address cases involving advanced sensor degradation or severe observation
noise. The current framework assumes a minimally sufficient level of perceptual input
and focuses on motor-level adaptability. Incorporating observation uncertainty modeling,
sensor fusion with redundancy, and robust representation learning could enable the system
to reason under imperfect observations. These extensions would further enhance the
system’s applicability in real-world safety-critical domains.
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6. Conclusions

In this study, we developed a separable skill-learning architecture and a comprehensive
system for real-time fault situation inference and response planning. This study aimed to
address the limitations of existing RL methods in predicting and preventing risks in unseen
or unpredictable situations in real-world applications.

We evaluated the proposed system in various scenarios involving mechanical faults.
The system demonstrated robustness in the experiments by rapidly adapting its behavioral
strategy in response to sudden mechanical faults during operation. We showed the system’s
ability to maintain task performance through improved lateral stability and faster recovery
under unexpected fault conditions. This highlights its effectiveness in scenarios demanding
an immediate and safe response, where the ability to continue operation safely is critical.

In conclusion, this study demonstrates a novel approach to enhancing the safety and
adaptability of RL systems. The ability to handle unexpected scenarios and maintain
operational integrity represents a significant advance toward deploying RL agents in
real-world environments where unpredictability and safety issues are prevalent. The
proposed method is suitable for real-world deployments, including medical robots and
autonomous vehicles, where unpredictability and safety issues are prevalent. This study
represents a significant step forward in the practical application of RL agents in safety-
critical environments.
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Appendix A. Technical Detail
Appendix A.1. Environment Setting

We trained and validated the proposed system within the CARLA [60] simulation
environment. To pursue a more detailed control approach suitable for our research pur-
poses, we designed a custom vehicle controller for the simulation. This controller bypasses
CARLA’s default vehicle control mechanisms, which typically rely on a steering wheel and
engine model. Instead, it directly controls the motor of each individual wheel.

During the training and evaluation process, the CARLA simulator provides the state
vector of each vehicle, and the system calculates and outputs the optimal action for each
state encountered.
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e  State Vector: The state vector consists of a total of 10 elements. All values are given as
coordinates relative to the geometric state at the starting point of the trajectory.

- Position (x, y): the relative coordinates of the vehicle’s current position (m)

- Speed (x, y): instantaneous speed along the x and y axes (m/s).

- Acceleration (x, y): acceleration components of the vehicle (m/s?).

- Vehicle orientation (unit vector X, y): this unit vector represents the orientation of
the vehicle in a two-dimensional plane.

—  Vehicle pose (roll and pitch): these quantify the angular orientation of the vehicle
in terms of roll and pitch (degree).

¢ Action Vector: The action vector consists of four unique values ranging from —1 to
1, each value corresponding to a control input provided to each wheel of the vehicle.
Positive values indicate acceleration, and negative values represent deceleration.

Interactions between the environment and the system occur every 1,/20th of a second.
This interval constitutes a single time unit within the experimental setup.

Appendix A.2. Implementation Details

The main values and hyperparameters of the learning network are as follows. The ar-
chitectural framework and hyperparameters used in the learning network are derived with
reference to the established structure described in SD4M [16]. As a result, the mathematical
expressions of our network are broadly consistent with those described in SD4M [16].

Table A1l. Parameters of the task and action VAE.

Parameter Value
Encoder ! [256, 256]
Decoder ! [256, 256]
ct 2 0.001
Learning rate 0.0001
a2 0.02
w2 0.01
T3 0.25
B3 0.9

1 The number of neurons present in each layer of the MLP. 2 This constant is introduced in [16]. ® This constant is

described in Section 3.3.

Table A2. Parameters of the sampler.

Parameter Value
Decoder ! [256, 256]
ct 2 0.001
Learning rate 0.0001
g 0.02
w2 0.01

! The number of neurons present in each layer of the MLP; ? this constant is introduced in [16].
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Table A3. Parameters of the explorer.

Parameter Value
Value Network ! [256, 256]
Policy Network ! [256, 256]

v 2 0.95

Initial Entropy 2 0.1

Target Entropy 2 e
Learning rate 0.0001

Policy Update rate 2 0.05

! The number of neurons present in each layer of the MLP; ? this constant is introduced in SAC [61].

Appendix B. Experiment Settings

For the experiment, we prepared a delivery robot model. This model has four wheels,
but unlike a regular vehicle, each can be controlled separately. To achieve this, we modified
the power transmission structure inside the collar to send inputs to each wheel individually.
All training and experimental code can be found at https://github.com/boratw /sd4m_
carla (accessed on 8 March 2025)

Appendix B.1. Training

The training was conducted by running 25 vehicles simultaneously in an empty lot,
collecting results, and learning from them. The training was performed without any
reward, utilizing three models: mj, my, and mj3. For training, we ran 1000 experiments,
each consisting of 2000 frames, to collect a total of 2 million frames. These frames were
divided into 50-frame increments and used as single batches of paths. The network was
trained for 350 epochs, each consisting of 64 paths per batch and 32 batches.

Appendix B.2. Scenario Experiments

This section details the scenario experiments described in Sections 4.3 and 4.4. Each
experiment was conducted at a single intersection in the CARLA built-in map Town05.
The results were derived from the mean and standard deviation after 25 repetitions. In
each experiment, a delivery robot followed 80 waypoints through an intersection, with a
scheduled disconnection at the 40th waypoint.

Initially, z, was set to 0.37, a default value obtained from a previous experiment. The
alpha parameter was set to 1.5, and the pivots were —0.18, 0.37, and 1.01. However, the
pivots were not used as they did not fall into a local minimum during the experiment. The
error value was calculated as the vertical distance between an imaginary line connecting
the waypoints and the vehicle’s position. In contrast, the velocity was calculated as the
average value until the end of the episode.
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