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Abstract

Decentralized energy trading has been designed as a scalable substitute for traditional
electricity markets. While blockchain technology facilitates efficient transparency and
automation for peer-to-peer energy trading, the majority of current proposals lack real-
time intelligence and adaptability concerning pricing strategies. This paper presents
an innovative machine learning-driven solar energy trading platform on the Ethereum
blockchain that uniquely integrates Bayesian-optimized XGBoost models with dynamic
pricing mechanisms inherently incorporated within smart contracts. The principal innova-
tion resides in the real-time amalgamation of meteorological data via Chainlink oracles with
machine learning-enhanced price optimization, thereby establishing an adaptive system
that autonomously responds to fluctuations in supply and demand. In contrast to existing
static pricing methodologies, our framework introduces a multi-faceted dynamic pricing
model that encompasses peak-hour adjustments, prediction confidence weighting, and
weather-influenced corrections. The system dynamically establishes energy prices pred-
icated on real-time supply—demand forecasts through the implementation of role-based
access control, cryptographic hash functions, and ongoing integration of meteorological
and machine learning data. Utilizing real-world meteorological data from La Trobe Univer-
sity’s UNISOLAR dataset, the Bayesian-optimized XGBoost model attains a remarkable
prediction accuracy of 97.45% while facilitating low-latency price updates at 30 min in-
tervals. The proposed system delivers robust transaction validation, secure offer creation,
and scalable dynamic pricing through the seamless amalgamation of off-chain machine
learning inference with on-chain smart contract execution, thereby providing a validated
platform for trustless, real-time, and intelligent decentralized energy markets that effec-
tively address the disparity between theoretical blockchain energy trading and practical
implementation needs.
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1. Introduction

The rapid growth of decentralized renewable energy systems [1,2] is essentially trans-
forming the way electricity is produced and consumed. Solar energy, in particular, has
enabled consumers to become producers so called prosumers who can produce excess
energy and directly trade with other parties. However, traditional centralized energy
markets face major challenges in efficiently supporting such peer-to-peer transactions
due to challenges in predicting generation, implementing dynamic pricing schemes, and
ensuring transparent and secure exchanges. The combination of blockchain technology
and machine learning offers a strong solution by enabling decentralized, trustless, and
intelligent energy trading platforms that respond in real time to changes in supply, demand,
and weather conditions.

Blockchain technology facilitates immutable decentralized transactional logging,
whereas machine learning offers sophisticated predictive analysis for demand forecasting
and real-time price optimization. Furthermore, cross-cutting machine learning applica-
tions show how robust, low-latency ML pipelines can already be employed in sensitive,
real-time contexts, strengthening the feasibility of the proposed ML+blockchain integra-
tion [3]. Despite increasing research interest, numerous existing blockchain-based energy
trading platforms are plagued by essential limitations. They encompass reliance on artifi-
cial or limited data sets, poor integration among machine learning models and blockchain
smart contracts, rigid or static pricing mechanisms, and inadequate integration of real-time
weather information for dynamic forecasting. Additionally, scalability bottlenecks, high
latency, absence of regulatory clarity, and usability barriers prevent these from reaching
their full potential in widespread adoption. Resolving these issues is a must to achieve
truly intelligent, scalable, and secure decentralized energy markets.

Blockchain-based energy trading research has progressed through three principal
methodologies: security-centric frameworks, smart contract executions, and scalability
enhancements, as summarized in Table 1. Research focused on security has primarily aimed
at cryptographic safeguarding mechanisms, with certificateless signcryption approaches [4]
providing secure P2P energy trading using certificateless encryption and blockchain for
privacy and trust, while carbon and energy market implementations [5] utilizing hashed
scripts have established blockchain-based decentralized energy and carbon markets using
hashed scripts and multisignatures. Nonetheless, these security-centric methodologies are
deficient in predictive capabilities and real-time data integration, lacking machine learning
integration, dynamic pricing mechanisms, and real deployment scenarios, which constrains
their efficacy in dynamic renewable energy markets characterized by fluctuating generation
patterns influenced by meteorological conditions and demand shifts.

Smart contract executions have illustrated the viability of automated energy trading
via programmable blockchain frameworks. Smart contract-based P2P trading systems [6]
developed in Solidity for decentralized energy exchange have demonstrated automated
settlement processes, while bilateral trading implementations [7] using Hyperledger Fabric
have been tailored for residential energy consumers with two smart trading strategies. Ad-
ditional investigations include PoET-based energy trading frameworks [8] on Hyperledger
Sawtooth with REST APIs and performance analysis, credit-based trading systems [9] on
Hyperledger Fabric with penalties for default and secure transactions, and multi-level scor-
ing and non-greedy matching algorithms [10] for fair and efficient blockchain P2P trades.
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Game-theoretic methodologies have been examined through Stackelberg game-theoretic
markets [11] with smart contracts and dynamic price models, alongside Hyperledger
Fabric-based demand response markets [12] using game theory and decentralized pricing,
whereas hybrid frameworks [13] have sought to achieve auction and coalition trading
mechanisms using Ethereum with real-world data integration. Despite these advance-
ments, all current smart contract implementations suffer from static pricing limitations, a
lack of real-time ML forecasting, an absence of external data integration, no smart contract

evaluation capabilities, and limited backend integration and automation.

Table 1. Literature review of blockchain-based energy trading systems.

Ref Approach Key Features Limitations
Certificateless siencrvotion on Secure P2P energy trading using No ML integration, lacks
[4] . gneryp certificateless encryption and blockchain ~ dynamic pricing, no real
blockchain P yn P &
for privacy and trust. deployment
Carbon + enereyv market usin Blockchain-based decentralized energy =~ No predictive modeling, no
[5] hashed scri tsgy &  and carbon market using hashed scripts  smart contract evaluation, high
p and multisignatures. market complexity
Smart contract-enabled ener Smart contract-based P2P trading Static pricing, no real-time ML
[6] tradin 8y system developed in Solidity for forecasting, no external data
& decentralized energy exchange. integration
PoET consensus with PoET-based energy trading f.ramework No smart contract logic, lacks
[8] on Hyperledger Sawtooth with REST N .
Hyperledger Sawtooth . ML and forecasting integration
APIs and performance analysis.
Bilateral tradine via Two smart trading strategies for No ML-driven pricing, lacks
[7] &V residential users using Hyperledger forecasting, single-or
Hyperledger Fabric 5 5YP & & SIg &
Fabric and bilateral contracts. blockchain
Credit-based energy trading in Credit-based trad1.n g system on No prediction model, pricing
[9] . Hyperledger Fabric with penalties for . : .
Fabric : logic lacks real-time automation
default and secure transactions.
Multi-level matching via scoring Multl_.l evel SCOTNE and nqn—greedy . No real deployment, lacks
[10] aloorithm matching algorithm for fair and efficient ther-based dvnamic pricin
& blockchain P2P trades. weather-based dyhamic pricing
Demand-response ¢ames usin Hyperledger Fabric-based demand No ML usage, complex
[12] HLF p & & response market using game theory and = game-theoretic modeling
decentralized pricing. without deployment
’ . . Stackelberg game-theoretic market with No ML forecasting, lacks
[11] Siﬁiﬁ;ﬁ?ﬁiﬁiﬁitramng smart contracts and dynamic price backend integration and
models in a P2P setup. automation
Auction + coalition pricing in Hybrid auction and coalition trading No predictive pricing, lacks
[13] Ethereum P & mechanism using Ethereum and smart contract to ML feedback
real-world Australian data. loop
o . Unified P2P energy trading architecture High system complexity, no ML
[14] i{;flzfilccﬁggi;energy using IBFT on Hyperledger Besu prediction, lacks real-time price
integrating 3 energy markets. integration
Scalable Polkadot-based blockchain . .
[15] Polkadot-based scalable svstem usine MILP optimization for No dynamic ML pricing, lacks
Y & P

carbon-energy trading

energy-carbon markets.

on-chain transaction insights
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Table 1. Cont.

Ref Approach Key Features Limitations
Ethereum smart contracts for demand No XGBoost/ML model
Smart contracts for demand Lo . . . L
[16] respOnse response and dynamic pricing using integration, limited weather
p SDR and community validation. automation
Automated DR with game Fuzzy loglc—basec} auto.mated demand  No real .deployrpent or ML
[17] response scheduling with smart forecasting, static contract
theory and smart contracts .
contracts in local networks. control
. . ADMM-based decentralized energy No blockchain layer, lacks
Security-constrained X L . .
[18] . . trading considering AC power flow and  real-time automation and ML
decentralized trading - . -
Nash bargaining fairness. prediction
Prediction intervals for energy P2p tradmg. using prgdlctlgn intervals No blockchain layer, lacks
[19] tradin and CVaR risk modeling without full-stack automation pipeline
& blockchain deployment. PP
Sharded ABFT blockchain with Scalable sharded blockchain with BAC Focus'es on consen'sufs,' lacks
[20] . and Hashgraph consensus for fastand  real-time ML predictions and
cross-shard P2P trading . )
secure energy trading. weather automation
Managing massive renewable Da}a—drwen quad—leyel approach with Focused on hybrid microgrids;
. . adjustable conservativeness for . .
[21] energy source integration in no blockchain or dynamic

abnormal data handling and renewable

pricing integration

hybrid microgrids

integration

Scalability enhancements have been tackled through sophisticated consensus mech-
anisms and architectural innovations, with sharded Asynchronous Byzantine Fault Tol-
erance blockchain systems [20] using BAC and Hashgraph consensus for fast and secure
energy trading, unified P2P energy trading architectures [14] using IBFT on Hyperledger
Besu integrating multiple energy markets, and scalable Polkadot-based blockchain sys-
tems [15] using MILP optimization for energy-carbon markets. Research has also explored
Ethereum smart contracts [16] for demand response and dynamic pricing using SDR
and community validation, alongside fuzzy logic-based automated demand response
scheduling [17] with smart contracts in local networks. Security-constrained decentralized
trading approaches [18] have employed ADMM-based methodologies for decentralized
energy trading considering AC power flow and Nash bargaining fairness, while prediction
interval-based trading systems [19] have utilized CVaR risk modeling for P2P trading with-
out blockchain deployment. Additionally, hybrid microgrid integration approaches [21]
have addressed massive renewable energy source integration using data-driven quad-level
methodologies with adjustable conservativeness for abnormal data handling. However,
these scalability-centric solutions invariably compromise real-time data integration and
machine learning capabilities, lacking dynamic ML pricing, on-chain transaction insights,
XGBoost/ML model integration, weather automation, and real deployment with ML fore-
casting capabilities. The overarching limitation present in all existing methodologies is the
lack of integrated systems that synthesize blockchain security, smart contract automation,
machine learning predictions, and real-time environmental data processing into a cohesive
platform capable of making intelligent, autonomous energy trading decisions based on
weather forecasting and supply-demand optimization.

To address these challenges, this paper proposes an innovative blockchain-based se-
cure energy trading platform that amalgamates Bayesian-optimized XGBoost models with
Ethereum smart contracts for dynamic pricing and real-time solar forecasting. Our platform
is executed on high-resolution datasets from La Trobe University—[22] the UNISOLAR
and UNICON datasets—encompassing over two years of solar generation data at 15 min
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intervals from 42 photovoltaic sites, accompanied by synchronized meteorological data
including air temperature, dew point, wind status, and solar irradiance.

The key innovation lies in choosing XGBoost over top-of-the-line models like Trans-
formers and other deep learning methods following a stringent comparison. While Trans-
former models proved successful for renewable energy forecasting, XGBoost proved
best suited for blockchain-based energy trading because of four advantages: (1) Com-
putational Efficiency—XGBoost offers sub-50 ms inference times critical for real-time
blockchain updates, whereas Transformers take 200-500 ms with complexity in the at-
tention mechanism; (2) Missing Data Robustness—XGBoost employs native surrogate
splits to cope with incomplete meteorological data, whereas Transformers severely dete-
riorate because of missing sensor readings typical in real-world deployments; (3) Data
Efficiency—XGBoost offers 97.45% accuracy using 18 months of training data, whereas
Transformers typically require much larger datasets (often many year’s worth) to perform
at similar levels; (4) Interpretability—tree-based feature importance provides better inter-
pretability to achieve compliance with regulatory requirements relative to Transformer’s
less interpretable attention mechanisms. Our comparative study revealed that XGBoost
(97.45% R?) performed better than BiLSTM (95.3% R?) and offered a superior trade-off
to Meta-Ensemble approaches, which achieved marginally higher accuracy (99.2% R?)
but incurred a 10x higher computational cost, making them impractical for real-time
blockchain applications. The Bayesian-optimized XGBoost model is natively implemented
with Ethereum smart contracts on the Sepolia testnet and allows dynamic updating of
prices autonomously according to weather and demand forecasts. The architecture is made
up of ERC-20 tokenization of the units of energy, role-based access control, and robust
security features such as reentrancy protection and integrity of cryptographic transactions.

e  The work presents a decentralized peer-to-peer (P2P) solar energy trading system
on the Ethereum Sepolia testnet. It facilitates direct trading between consumers
and prosumers via Solidity-based smart contracts, with guarantees of transparent,
automatic, and verifiable execution without the need for a central authority.

¢ A data-driven XGBoost model optimized with Bayesian optimization is used to predict
solar energy production from inputs in the form of real-time meteorological data. The
model with an R? of 97.45% improves market responsiveness by using data-driven,
accurate energy forecasts to determine pricing available through a Flask APL

¢  The system tests and deploys static and dynamic pricing mechanisms. The dynamic
pricing scheme tracks the volatility of energy prices based on real-time demand and
supply changes, peak demand, and machine learning-driven predictions. Solidity
smart contracts control the pricing mechanism with Chainlink oracles providing the
verification of external data.

¢  The platform ensures robust security by the use of SHA-3-based cryptographic hashing,
role-based access control (RBAC), and anti-common smart contract vulnerability
protection. Reentrancy protection blocks recursive calls, and nonce-based transaction
validation inherently blocks replay attacks. Transactions are permanently stored on-
chain, and data integrity, traceability, and defense against unauthorized alteration
are guaranteed.

¢ Automated retrieval of weather information is managed by a Python version 3.11.
backend with solar forecast forecasts and each 30 min smart contract refresh. Syn-
chronously connected to the Ethereum blockchain with Flask and Web3.py, the system
facilitates real-time responsiveness, low-latency communication, and open energy
market operation.
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2. Proposed Decentralized Energy Trading Framework

This section provides a comprehensive methodology for the development of a
blockchain-based peer-to-peer grid for peer-to-peer solar energy trading that incorporates
machine learning-based energy forecasting, adaptive pricing mechanisms, and crypto-
graphic security standards. The proposed system addresses some of the most significant
challenges in peer-to-peer energy markets with a multi-layered approach that leverages
advanced predictive analytics, self-executing smart contracts, and real-time data fusion.

2.1. System Architecture and Design Framework

The proposed system architecture is based on a five-layer modular model design
connected to one another. They include a Data Acquisition Layer exclusively dedicated to
capturing real-time weather and energy data, a Machine Learning Layer for predictive and
forecast modeling, a Smart Contract Layer for decentralized processing of transactions, a
Blockchain Layer for secure record keeping, and an Application Layer responsible for user
interfaces and monitoring the system.

As illustrated in Figure 1, the system process begins with the deployment and cre-
ation of smart contracts in the Ethereum Sepolia test network using a machine learning
model. The machine learning model was initially trained with XGBoost and then improved
using Bayesian optimization methods. Subsequently, the backend—implemented with
FastAPI—is configured to collect real-time weather data and generate energy price predic-
tions using the trained model. The provided values are then sent to an intellectual delivery
agreement on the blockchain, and the complete system operates at a coherent interval of

30 min, ensuring a constant freshness of the data and a specific pricing mechanism.

Smart contract Ml model
development Training(XGboo

t&Bayesian
optimisation

Compile in ‘ ;
predict energy prices

remix.ide using ml

1 Save the trained BT Ere

model to smart
contract(update_contr

Dep Loy o (xgboost_model ctpy
sepolia(metama i

sk/alchemy Contract stores hash

of ml prediction

Transactions are Contract stores hash
visualized via of ml prediction

Sepolia etherscan,
cvery 30 min showing sender
» Fetch new weather data receiver,time and Blockehain update

> Automated updates for

» Generate new ml smart contract state

prediction value
» Updates smart contract
» Stores in SQLite /eI ¢ energy Fetch updated
token exchanges. contract data via
web3.py

Figure 1. Process workflow of proposed energy trading system.

Architectural principles distinguish between fundamental aspects such as scalability,
security, compatibility, and resistance to flaws through the architecture of microservices
to contribute to free communication between components. This contributes to personal
scaling and maintenance of various modules. This contributes to system development and
reduces cascade dysfunction across the platform, including effective methods for error
management and retirement strategies at each building level. The system is equipped with
real-time monitoring and warning possibilities, supporting continuous operation and quick
resolution of defects, and with the high accessibility that can be obtained by integrating
excess components and load-balancing methods.
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2.2. Data Collection and Preprocessing Methodology

The system uses a robust data collection methodology using the OpenWeather API,
including advanced error management and data verification. Data is collected at 30 min
intervals, ensuring temporal consistency and effectively controls API speed limits and
actual requirements. Preprocessing includes comprehensive validation procedures, such as
anomaly and outlier detection using statistical methods, including Z-score analysis with
thresholds of |z| > 3, as well as range-based filtering. Missing observations are addressed
using time-series—specific imputation methods such as forward filling, backward filling,
and seasonal decomposition. Feature Engineering also generates functions of functions
such as cyclic coding of variables as a function of time to maintain compatibility along the
ladder of measurement using the Min-Max scale. The feature matrix construction follows a
systematic approach as defined in Equations (1) and (2), where the input matrix X € R” xd
incorporates temperature T, solar irradiance I;, wind speed W;, humidity H;, cloud cover
percentage Cy, historical energy generation P;_j.;_1 over k previous time steps, temperature
gradient ATy, and trigonometric functions sin(%) and cos (%) to encode the hour of
day & for capturing diurnal patterns.

X e R (1)

X = {Tt, Iy, W, Hy, Ct, Pt—k:t—ll ATy, sin(%),cos(%)} (2)

Historical energy generation data undergo extensive preprocessing with anomaly
detection via the Isolation Forest algorithm with a contamination factor of 0.1, seasonal
decomposition via STL (Seasonal and Trend decomposition using Loess), data quality eval-
uation via completeness, consistency, and accuracy metrics, and temporal synchronization
with weather statistics via timestamp synchronization protocols. The data preprocessing
pipeline also carries out data augmentation processes to balance class and enhance model
robustness, and ensure data integrity via checksums and validation against historical pat-
terns,enabling the detection and correction of potential corruption or transmission errors.

2.3. Advanced Machine Learning Framework

The module of machine learning uses a holistic approach to compare various algo-
rithms, such as Decision Trees, Random Forest, LightGBM, CatBoost, XGBoost, Bidirectional
LSTM, and a model that has a combination of BILSTM and LightGBM. The performance
measures are beyond mere accuracy measures to include computational cost, model ex-
plainability, resistance to noisy observations, generalization across changing conditions,
and temporal forecasting quality in power systems, where predictability stability under
changing environmental conditions is more important than obtaining the highest accuracy
scores. Algorithm selection is guided by the particular requirements of energy trading
systems, such as the capacity to treat missing meteorological data (common due to sensor
failures or communications loss), provide real-time predictions for blockchain use, resist
extreme weather conditions, adapt quickly to seasonal changes, comply with regulations,
and enable smart grid optimization.

XGBoost was ultimately selected as the base forecasting algorithm due to its superior
balance of accuracy, robustness, and efficiency [23]. The algorithm illustrates great ability
through its gradient boosting methodology, which repeatedly enhances prediction accu-
racy by learning from errors in prior models and mapping intricate nonlinear relations
between solar energy production and environmental factors. The tree-based framework
uses advanced algorithms in dealing with missing values using surrogate splits, uses
regularization techniques to prevent overfitting without compromising model flexibility,
and offers fine-grained hyperparameter tunability for optimizing across domains. XGBoost
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shows a specific advantage in dealing with solar energy data having irregular weather
patterns, using its pruning algorithms to remove statistically unimportant branches. The
parallel processing architecture greatly improves prediction computation, which is essential
for real-time price updates in blockchain energy markets. Bidirectional LSTM, on the
other hand, despite having a temporal modeling advantage, is prone to large prediction
errors, long training times, and computational complexity that make it inappropriate for
real-time applications with limited resources. However, recent studies have shown that
compression techniques (e.g., SVD) and acceleration on FPGAs can significantly reduce
latency and power consumption for LSTM architectures, making them applicable also in
real-time scenarios if properly optimized [24]. The BiLSTM-LightGBM Meta-Ensemble
model obtained marginal accuracy gains but added substantial computation overhead and
increased prediction latency and integration complexity, which had a specifically negative
impact on performance during hours of peak energy prices. Thus, XGBoost emerged as the
most effective choice for accurate, efficient, and responsive solar energy forecasting within
the proposed framework.

Figure 2 illustrates the comprehensive structure and training process of the XGBoost
regressor implemented in the energy prediction system. The left side demonstrates the
ensemble architecture of XGBoost, showing how multiple decision trees (Tree-1, Tree-2,
Tree-3) are combined through weighted summation to generate the final prediction result.
Each individual tree operates on different data subsets and produces residual corrections
that address errors from previous trees, enabling the ensemble to capture complex non-
linear patterns and interactions in energy generation data. The right side depicts the
complete training pipeline, initiated with CSV data inputs containing historical energy
generation data, solar irradiation measurements, and meteorological variables, followed
by comprehensive preprocessing steps including timestamp standardization, multi-source
data integration, and statistical imputation of missing values. The workflow continues with
feature engineering to extract temporal patterns and create lagged variables, followed by
hyperparameter optimization using Bayesian methods specifically configured for XGBoost
parameters. The trained model generates comprehensive evaluation metrics including
MAE, MSE, RMSE, and R?, complemented by diagnostic visualizations comparing actual
versus predicted values and residual error analysis, ensuring thorough validation of model
performance and reliability for energy forecasting applications.

Instance

CSV Data inputs Data Preprocessing feature Selection

»Extract time features
»create lag features

»timestamp conversion
> merging
» missing value imputation

Tree-3

Result_3 Trained XGBoost Model

»MAE,MSE,RMSE,R?
» visualizations of actual vs ﬁ » Bayesian Optimization for
predicted,residual error XGBoost
distribution,etc.,

Structure of Xgboost regressor

Final Result

Training process of Xgboost regressor

Figure 2. Structure and training process of XGBoost regressor.

The optimization objective of the training process is formalized in Equation (3), where
6" represents the optimal hyperparameter configuration that minimizes the expected loss
function E[L(0)] over the defined parameter space ®. The parameter vector § encompasses
all tunable XGBoost hyperparameters including learning rate (1), maximum tree depth
(d), minimum child weight (w), subsample ratio (o), and regularization coefficients (A, «),
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while © defines the feasible search boundaries for these parameters based on computa-
tional constraints and domain knowledge. The expected loss function E[£(6)] quantifies
the average prediction error across all possible data realizations, ensuring robust model
performance under varying environmental conditions and data distributions.

0" = arg IeréigIE[E(G)] 3)

The cross-validation loss function for performance estimation is defined in Equation (4),
where K = 5 represents the number of temporal cross-validation folds, Ny denotes the
sample count in validation fold k, Dy represents the chronologically ordered validation
dataset for fold k, Y; is the actual energy generation value (in kWh) for sample i, and Y;(6) is
the model prediction using hyperparameter configuration 6. This formulation computes the
mean squared error across all temporal folds, providing an unbiased performance estimate
while preventing data leakage through time-series aware validation splits that respect the
chronological ordering of energy data, thereby preventing data leakage and ensuring that
the model evaluation remains realistic with respect to future forecasting scenarios.

1 Y. 2
ﬁkiezpkm Yi(6)) 4)

cey =Ly

6) =% k:zl

Bayesian optimization employs the Expected Improvement (EI) acquisition function

to intelligently guide hyperparameter search, as formulated in Equation (5). The function

f(67) represents the cross-validation loss at a candidate hyperparameter configuration 6,

£ (Bpest) denotes the best (lowest) loss value observed in previous optimization iterations,

and the expectation E[-] is computed over the Gaussian Process posterior distribution mod-

eling the objective function. The EI acquisition function strategically balances exploration

of uncertain hyperparameter regions with exploitation of promising configurations, maxi-

mizing the expected improvement over the current best performance while maintaining
computational efficiency through informed sampling.

EI(0) = E[max(0, f(67) — f(Bpest))] )

The hyperparameter search space covers essential XGBoost parameters with domain-
specific range to guarantee effective model performance in energy forecasting. The learning
rate 7 € [0.01,0.3] determines the gradient descent step size, such that smaller values
(7 ~ 0.01) ensure conservative learning with more boosting iterations but improved conver-
gence stability, while larger values (17 ~ 0.3) speed up training but may lead to overshooting
optimal solutions and oscillations. The size of the deepest tree d € {3,4,5,6,7,8,9,10}
controls the complexity of individual decision trees, shallow trees (d < 4) minimize overfit-
ting but possibly lead to underfitting in complex energy patterns, and deep trees (d > 8)
model complex feature interactions but exacerbate the risk of overfitting and computational
expense. The minimum child weight w € [1,10] determines the minimum total instance
weight needed in leaf nodes, serving as a regularization technique where high values
avoid the formation of statistically trivial leaves but can simplify the model too much. The
ratio of subsample p € [0.5,1.0] determines the proportion of training data used for every
tree construction, with numbers less than 1.0 adding stochastic regularization to enhance
generalization and numbers close to 0.5 potentially causing underfitting from too little
training data per tree. The L2 regularization parameter A € [0, 10] imposes ridge regres-
sion penalties to weights of leaves for controlling complexity, and the L1 regularization
parameter a € [0, 10] performs feature selection using lasso penalties. The Bayesian opti-
mization procedure performs 200 evaluation trials for convergence towards near-optimal
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hyperparameter settings, each guided by the acquisition function to effectively traverse the
high-dimensional space of parameters.

The framework for model validation uses a time-series aware cross-validation ap-
proach with TimeSeriesSplit and an expanding window approach to avoid temporal
data leakage. The validation protocol includes several parts: chronological data splitting
with 80% of past data utilized for model training and 20% set aside for temporal testing
to preserve the natural sequence of energy generation intervals; 5-fold time-series cross-
validation in which each fold k employs all the data before time t; as the training data
and the next temporal section as the validation data, so that realistic forecasting situations
are simulated; detailed performance assessment through Mean Absolute Error (MAE) to
evaluate average magnitude of prediction error in kWh units, Mean Squared Error (MSE) to
penalize large prediction errors more than small ones, Root Mean Squared Error (RMSE) for
measuring error magnitude in original energy units, coefficient of determination (R?) for
evaluating the proportion of variance in energy generation explained by the model, Mean
Absolute Percentage Error (MAPE) to scale-independent error evaluation as percentages,
and directional accuracy to evaluate the percentage of correct trend predictions (rising/
falling energy production). Statistical significance testing uses the Diebold—Mariano test,
which tests the null hypothesis Hy that the two competing forecasting methods have the

same predictive accuracy by calculating the test statistic DM = \/ﬁ, where d is the

average difference between squared forecast errors, Var(d) is the error difference variance,
T is the number of forecasting periods, and the test statistic will follow the standard normal
distribution under Hy.

Model performance is measured in terms of several complementary metrics to present
a complete evaluation of prediction accuracy. The Mean Absolute Error (MAE) is given
in Equation (6), the Root Mean Square Error (RMSE) in Equation (7), the Mean Absolute
Percentage Error (MAPE) in Equation (8), and the coefficient of determination (R?) in
Equation (9).

The Mean Absolute Error (MAE) measures the average size of prediction errors in
magnitude without directional bias, as expressed in Equation (6). Here, 1 is the number of
test samples in the validation set, Y; is the true energy production value (in kWh) for the
i-th observation from solar panel data, and Y; is the associated XGBoost model prediction
for the same time interval. The absolute value operator | - | causes overestimation and
underestimation errors to be equally weighted in the metric, producing a resilient measure
less sensitive to outliers than squared error metrics and having intuitive interpretation in
the same physical units as the target variable.

1 .
MAE:;Z|YZ-—Y1-| (6)
i=1

The Root Mean Square Error (RMSE) measures the standard deviation of prediction
residuals, as defined in Equation (7). The notation is consistent, with n representing
the number of samples, Y; denoting actual energy values, and Y; representing model
predictions. The squared difference (Y; — Y;)? amplifies larger prediction errors more
heavily than smaller ones, making RMSE more sensitive to outliers and extreme prediction
failures compared to MAE. The square root operation /- returns the metric to the original
measurement scale (kWh), enabling direct comparison with actual energy generation
magnitudes and providing an interpretable measure of prediction uncertainty that is
particularly valuable for risk assessment in energy trading applications.
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The Mean Absolute Percentage Error (MAPE) expresses prediction accuracy as a
percentage of actual values, as shown in Equation (8). The notation follows previous
conventions with 1, Y;, and Y; representing the sample count, actual values, and model
predictions, respectively. The relative error ratio % computes the prediction error as
a fraction of the actual value, normalizing for differences in energy generation scales
across various solar installations. The absolute value operation | - | ensures symmetric
treatment of over-prediction and under-prediction errors. Multiplying by 100% converts
the dimensionless ratio to percentage form, providing a scale-independent evaluation that
enables fair comparison across solar systems of different capacities, from residential rooftop
installations to large utility-scale solar farms.

100% 4| Y; — Y;

MAPE = Y,

(8)

i=1
The coefficient of determination (R?) quantifies the proportion of energy generation
variance explained by the XGBoost model, as formulated in Equation (9). The numerator
" (Y; — Y;)? represents the Residual Sum of Squares (RSS), quantifying the total squared
deviations between actual energy measurements and model predictions, essentially measur-
ing the variance left unexplained by the model. The denominator Y, (Y; — Y)? represents
the Total Sum of Squares (TSS), where Y = %Z?:l Y; is the arithmetic mean of actual
energy generation values across all test samples, quantifying the total variance in the target
variable that would exist if using only the mean as a predictor. The R? coefficient ranges
from 0 to 1, where values approaching 1 indicate superior model performance with the
model explaining most of the variance in energy generation, while values near 0 suggest
poor performance equivalent to simply predicting the mean value for all observations. An
R? = 0.9745 (97.45%) indicates that the XGBoost model successfully explains over 97% of
the variance in solar energy generation, leaving less than 3% unexplained.

R2—1_ Zi=1

i (Y —

(Y — )2
STy 72 )

2.4. Smart Contract Design and Implementation

The smart contract implementation adheres to established security best practices and
design patterns to ensure robustness and prevent common vulnerabilities. It incorpo-
rates multiple security layers, including role-based permissions using OpenZeppelin’s
AccessControl, ReentrancyGuard for all state-changing functions, comprehensive parame-
ter validation via custom modifiers, the circuit breaker pattern for system-wide emergency
stops, and the proxy pattern to support contract upgradeability.

Figure 3 provides an overall account of the blockchain-based peer-to-peer energy
trading process and illustrates the relationship among different components of the system.
It indicates how the smart contract developed in Remix has been deployed onto Sepolia via
MetaMask and Alchemy and communicates with the machine learning model developed
using XGBoost and Optuna optimization on Jupyter notebooks. The API acts as a central
coordination layer that utilizes the ML model and the OpenWeather API key to retrieve
weather data for real-time energy estimates. Smart contracts store ML predictions as hash
for verification and upload blockchain with dynamic pricing and trading data. The system
supports SQLite databases for storing ML energy price predictions and model precision,
while Web3.py supports ease of connectivity with the blockchain for trading energy and
real-time operations.
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Figure 3. Overview of the blockchain based P2P energy trading process.

The dynamic pricing mechanism utilizes a multi-factor model with supply-demand
dynamics, temporal fluctuations, and predictive analytics. The calculation of the base price
normalizes supply-demand imbalance for avoiding excessive price volatility, as illustrated
in Equation (10). The reference base price P is the initial market price benchmark denoted
in Wei per kWh and forms the building block of the fundamental pricing. The sensitivity
parameter « for supply—demand sensitiveness determines the sensitivity of price adjust-
ments to market imbalance, which is generally kept between 0.1 and 0.5 to preserve price
stability and yet permit effective market signals. The demand term D; holds the total energy
demand from all the buyers at time ¢, whereas the supply term S; holds the combined
energy offer by all the sellers at the very same moment in time. The regularization factor
epsilon avoids mathematical singularities when supply tends to zero, maintaining numer-

ical stability in scenarios of extreme market conditions. The ratio %t jri’ is a measure of

relative supply-demand imbalance, with positive values denoting excess demand and
negative values denoting oversupply, having a direct impact on price adjustments via the

multiplicative term (14« - %’;ﬁt )

Dt—St
Pbase:P 1 e ] 1
t 0< +a St—|—€> (10)

The peak-hour adjustment mechanism accounts for time-of-day effects using an ex-
ponential decay function centered around peak consumption periods, as described in
Equation (11). The peak hour multiplier coefficient 8 determines the maximum price
increase during peak periods, typically ranging from 0.2 to 0.8 to reflect realistic demand-
response pricing strategies. The binary peak hour indicator H; activates the adjustment
mechanism during high-demand periods (18:00-22:00), when residential and commercial
energy consumption typically peaks. The temporal decay factor -y controls how quickly
the peak pricing effect diminishes as time moves away from the center of the peak period,
with higher values creating sharper price transitions and lower values producing gradual
pricing curves. The current time ¢ represents hours elapsed since midnight, while f,eax
defines the center of the peak consumption period, typically set at 20:00 h based on grid
load profiles. The exponential function exp(—7 - [t — tpeak|) creates a symmetric pricing
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curve around the peak time, ensuring that prices gradually increase as the peak period
approaches and fall as it recedes.

Pfeak = Ptbase X (1 +pB-H;- exp(—'y~ |t — tpeak‘)) (11)

The last dynamic price integrates machine learning prediction confidence as a correc-
tive term, allowing data-driven price optimization according to predicted energy genera-
tion, as indicated by Equation (12). The prediction confidence adjustment factor J adjusts
the impact of ML predictions on final pricing, generally between 0.1 and 0.3 in order to
strike a balance between predictive intelligence and market stability. The ML-forecasted
solar energy production Y; is the predicted energy output from solar installations at time ¢,
computed from the XGBoost model operating on meteorological input like solar irradiance,
temperature, and cloud cover. The confidence score C; is a measure of the model’s confi-
dence in its prediction, varying from 0 (very uncertain) to 1 (very confident), calculated
from prediction intervals and historical accuracy measures. The maximum supply capacity
Stextmax sets the theoretical limit of energy production under the best case, as the normaliza-
tion factor for the correction term. The fractional term ?TSX‘ generates a confidence-weighted
prediction ratio that reduces prices in anticipation of abundant energy production when
high-confidence predictions anticipate plenty of energy generation, encouraging efficient
market clearing and resource allocation.

Smax

Ptﬁnal _ Ptpeak « <1 _s5. Y; - Ct) (12)

The energy allocation process assures equitable energy resource distribution among
available resources using utility maximization by balancing with fairness considerations,
as expressed in Equation (13). Optimal energy allocation E; ; for buyer b during time £ is
obtained by solving the constrained optimization problem by balancing utility maximiza-
tion at the individual level with fair system-wide considerations. The number of buyers
B is used to denote the number of active users who are interested in purchasing energy
during time t. The buyer bs utility function Uy (E;;) represents buyer bs satisfaction or
economic payoff from the use of energy quantity E; ;, often a concave function to represent
diminishing marginal utility. The equity weighting factor A modulates the balance between
overall system utility and fairness in energy allocation, with larger values favoring equity
over efficiency. The Gini coefficient Gini(Ey, ..., Ep;) captures inequality in the allocation
of energy among all buyers, from 0 (complete equality) to 1 (absolute inequality), calculated
from the cumulative distribution of energy allocations. The optimization goal aims at
maximizing the gap between overall utility and penalty of inequality, allowing energy
distribution to meet both economic efficiency and social equity principles.

B
Ej, = arg max Y Uy(Ep;) — A-Gini(Eqy, ..., Epy) (13)
bt p=1

This optimisation problem faces stringent physical and economic constraints that
provide realistic and sustainable energy delivery. The supply constraint in Equation (14)
guarantees that the aggregate allocated energy among all the buyers cannot surpass the
accessible supply S; and adheres to energy conservation concepts, and inhibits overselling
of scarce resources. The demand constraint in Equation (15) provides individual buyer
constraints such that no single buyer should be allocated energy beyond the declared
request Dy ; while ensuring non-negativity of the allocations. The energy allocation variable
Ep,; symbolises the physical energy amount delivered to buyer b at time ¢ and sits between
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zero and the maximum buyer request to offer physically realizable and economically
rational distribution patterns.

B

Y Epi < S (14)
b=1
0<Ey; <Dy Vbe{l,... B} (15)

2.5. Blockchain Infrastructure and Cryptographic Security

The system has been implemented on the Ethereum Sepolia testnet, selected due
to its compatibility with the functionalities of the Ethereum mainnet while providing a
cost-effective and low-risk environment for the purposes of development and testing. The
network is supported by Ethereum’s Proof-of-Stake consensus mechanism, which enhances
energy efficiency and fosters environmental sustainability. The choice of this particular
network was informed by multiple criteria. Among these is its transaction capacity, which
stands at approximately 15 transactions per second, deemed adequate for the frequency
and volume of energy trading activities. Furthermore, Sepolia’s Gas Commission is charac-
terized by predictability and economic feasibility, allowing for accurate economic modeling
of transaction expenses. Additionally, the Ethereum Ecosystem offers a well-established
suite of tools for community development, documentation, and support, which facili-
tates optimized integration and deployment. Moreover, the platform exhibits a strong
history of security, with resistance mechanisms that mitigate various common types of
network attacks.

Figure 4 illustrates the comprehensive workflow of processing blockchain transactions
for the energy trading system. The process begins with Step 1: Transaction Creation,
whereby key elements of the transactions are gathered, such as Seller ID, Buyer ID, Energy
Amount, Final Price, and Timestamp. The transaction attributes are then put through
cryptographic hashing in Step 2: SHA-3 Hashing, such that a unique digital fingerprint
that serves as a tamper-proof identifier for each energy trading transaction is created. The
orientation of numerous transaction hashes using Merkle Root structures, along with the
Previous Block Hash to maintain blockchain continuity and security links, and encapsulated
with Block Metadata that includes timestamp, nonce, and other crucial block information,
is presented in Step 3: Block Creation and Verification. This organized approach ensures the
linkage among all the blocks, resulting in an immutable blockchain enabling transparent,
verifiable, and secure energy token transactions.

Step 1 : Transaction Creation

Energy . . :
[ Seller Id } ( Buyer Id } L Amount ] [Fmall’rlce] [Tlmestamp]

7'y T T [y
:

[ Step 2 : SHA-3 Hashing %;# Transaction Hash

Creates a unique digital fingerprint (Unique.tamper proof identifier)

!

Step 3 : Block creation and verification

P
Previous Block Hash Multiple Transaction Block Metadata
(Creates the chain and Hashes (Timestamp,nonce.and

security link.) (MerkleRoot) other block data)

All blocks linked = Immutable blockchain

Figure 4. Blockchain transaction creation and verification process.
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The cryptographic security framework [25] utilizes the SHA-3 hash function to guaran-
tee robust data integrity and authentication of transactions throughout the energy trading
platform, as clearly explained in blockchain network security applications. This hash
function processes transaction data by handling the entire concatenation of all pertinent
transaction fields to yield a distinct cryptographic digest, as outlined in Equation (16). The
transaction input T encapsulates the entire transaction structure that includes all critical
information necessary for energy trading operations. The variable 7 signifies the total
count of individual fields that make up each transaction, generally comprising seller identi-
fication, buyer identification, timestamp, final transaction price, energy quantity, and an
anti-replay nonce. Each field element field; denotes a specific data component within the
transaction, with 7 ranging from 1 to n, which includes the seller ID as a unique identifier for
the energy provider, the buyer ID serving as the unique identifier for the energy consumer,
a timestamp documenting the exact time of transaction creation, the final transaction price
pfinal indicating the agreed-upon cost of energy, the energy amount Ej, ; representing the
quantity of energy being transacted, and the cryptographic nonce that serves to thwart
replay attacks. The byte-level concatenation operator ¢ merges all transaction fields in
a defined order to form a cohesive input stream for the hash function, thereby ensur-
ing consistent hash generation across various transaction instances. The SHA3 function
processes this concatenated input to produce a fixed-length cryptographic hash that acts
as a unique digital fingerprint for each energy trading transaction, thus offering tamper
evidence and facilitating effective transaction verification while safeguarding sensitive
transaction details.

n
H(T) = SHA3 (@ fieldi> (16)
i=1

The system integrates Merkle tree frameworks for scalable verification of transac-
tions while maintaining cryptographic integrity and reducing computational loads among
blockchain users. The Merkle root computation exploits the hierarchical hashing approach
to methodically organize many transactions in a single verification anchor as described
by Equation (17). The unique transaction tags Ty, T, T3, Ty, . . . represent the entire set
of energy exchange transactions encompassed in a single blockchain block, and each T;
represents a unique buyer-seller energy exchange along with the corresponding transaction
details. The hash function H(-) uses the same SHA-3 cryptographic function used for
hashing single transactions to hash pairs of transactions and their intermediate results. The
byte-wise concatenation operator || aggregates transaction hashes at each step in the Merkle
tree such that the order and content of the transactions play central roles in the computa-
tion of the end root hash. The recursive structure begins by pairing the nearest-neighbor
transactions (T; || Tz) and (T3 || Ty) and computes the respective hash values H(T; || T)
and H(T3; || Ty). The recursive process continues by concatenating these intermediate
values and again applying the hash function to obtain the Merkle root. This hierarchical
approach reduces the complexity of verification by a factor of O(n) to O(logn) for inclusion
proofs, and the number of transactions aggregated in the block represents the variable
n. The resulting Merkle root provides a succinct cryptographic summary of all transac-
tions encompassed in the block and allows for the efficient verification of the inclusion of
individual transactions without the need for accessing the entire set of transactions and
therefore supports lightweight client code and reduced bandwidth requirements for energy
trading entities.

MerkleRoot = H(H(T; || To) || H(T3 || Ty) || --+) (17)
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2.6. System Integration and API Design

Integration of multiple system elements occurs by RESTful APIs designed using the
OpenAPI 3.0 specification. API design follows fundamental stateless software architecture
concepts such that request messages contain all context information required and do not
rely on the state on the server resulting from previous interactions. The stateless architecture
enables system scalability, robustness, and support for horizontal scale-out on multiple
server instances. Server computation burden and system responsiveness are optimized by
response caching policies through caching the most requested data in the high-capacity
memory stores. The API supports layered architecture patterns that enforce rigid separation
of concerns among data ingestion, model inferencing, and blockchain interactions, and
support maintainable evolution of the system by modules. The uniform interface concept
standardizes the identification and manipulation of resources such that understanding
APIs and API development processes become easier.

Crucial API routes are introduced to support the basic functions of the platform.
They include POST /api/v1/predict, which initiates machine learning-based energy gen-
eration predictions; GET /api/v1/prices/current, retrieving the latest energy prices;
POST /api/vl/transactions, entering a new energy trading transaction on the smart con-
tract; GET /api/v1/weather, providing the latest meteorological information aggregated
through various third-party APIs; and GET /api/v1/analytics, providing system-level
performance statistics as well as usage analytics. Each route incorporates thorough er-
ror handling measures, token-based security for robust access control, and rate-limiting
functionalities to prohibit abuse while ensuring equal resource allocation among users of
the system. The end-to-end architecture for data processing follows a sequential pipeline
model that integrates multiple processing phases to transform raw environmental data into
executable trading insights.

The pipeline architecture ensures a systematic flow of data through distinguishable
computation phases with defined functions and abilities for handling errors, as outlined
in Equation (18). The Ingest phase constitutes the data collection processes that gather
meteorological information from third-party weather APlIs, historical energy production
data from solar panel systems, and real-time grid needs data from the utility companies. The
Process phase performs extensive data validation to maintain data quality and consistency,
runs cleaning processes to remove outliers and handle missing values, and conducts feature
engineering to create forecasting variables optimized for machine learning models. The
Predict phase deploys the learned XGBoost model to generate predictions for solar energy,
computes the confidence intervals for predictions using statistical methods, and checks
model predictions using defined operating constraints. The Update phase incorporates
the ML predictions into the state modifications of the smart contract, initiates dynamic
price changes depending on the predicted supply scenarios, and syncs blockchain data
with off-chain databases for auditing. The Notify phase distributes system notifications
to registered users through various channels of communication, saves all transactions for
meeting regulatory standards, and triggers the alert mechanism when the system identifies
anomalies or critical situations.

Pipeline = Ingest — Process — Predict — Update — Notify (18)

2.7. Security Framework and Threat Mitigation

The system architecture enforces robust security controls with defense-in-depth mech-
anisms that secure against attack on multiple architectural layers. On the application level,
the system enforces strict input validation and sanitization processes to shield against
injection attacks, such as SQL injection protection by way of parameterized queries and
cross-site scripting (XSS) prevention to defend user sessions as well as browser contexts.
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The authN and authZ system uses industry-standard token-based security features blended
with role-based access control mechanisms to provide assurance that only the legitimate
user has access to sensitive features.

Security of smart contracts is boosted by formal verification techniques, such as
symbolic execution analysis to determine and remove potential vulnerabilities prior to de-
ployment. Denial-of-service attack prevention while remaining cost-efficient in transaction
execution is afforded by gas optimization techniques. Integer overflow and underflow
attacks are protected against by SafeMath library implementations or more recent Solidity
compiler versions that possess built-in overflow protection. The system uses reentrancy
guards to avert recursive call attacks that would exploit contract state in an inappropri-
ate manner.

System-level security maintains data confidentiality and integrity using TLS 1.3 en-
cryption protocols for all API communications. Rate limiting and throttling policies manage
API access patterns to avoid abuse and ensure equitable resource allocation among valid
users. Distributed denial-of-service (DDoS) protection and network segmentation via
firewall configurations add other perimeter security layers to the system infrastructure.

Blockchain-level integrity is guaranteed by cryptographic hash chains and sound
consensus mechanisms native to the Ethereum network. Private key management adheres
to industry standards, such as hardware wallet integration for secure storage of keys and
multi-signature rules for high-value transactions to ensure single-point-of-failure mitigation.
The system utilizes real-time threat detection features via machine learning algorithms to
detect and react to security anomalies in real-time.

The anti-fraud mechanism utilizes a logistic regression model to determine the likeli-
hood of malicious behavior based on behavioral and transactional patterns, as given by
Equation (19). The per-user feature values embodied in the vector elements f; capture
distinct behavioral markers ranging from frequency pattern-based transaction indicators
detecting abnormally high or low rates of activity, user behavior analytics identifying
aberrations in preset interaction patterns, anomaly detection scores based on statistical
examination of historical data, geographical position discrepancies which can signal ac-
count compromise, and device fingerprinting metrics that monitor hardware and software
attributes of accessing devices. The trained weight parameters w; signify the learned coeffi-
cients quantifying the contribution of every feature to fraud likelihood through supervised
learning from past fraud transactions and genuine transactions. The model bias term b
yields a baseline correction that factors in overall fraud frequency within the energy trading
environment, allowing for appropriate calibration of likelihood estimates under varying
operational scenarios. The sigmoid activation function ¢ (-) maps the weighted feature
linear combination to a bounded probability value between 0 and 1, with values close to
1 representing high fraud probability and those close to 0 reflecting legitimate behavior.
This probabilistic score facilitates adaptive threshold-based decision-making for automated
fraud detection without prejudice to manual review processes for marginal cases.

n
Fraud_Score = ¢ (2 w; - fi + b) (19)

i=1

2.8. Performance Optimization and Scalability

The system architecture evolves such that it attains high scalability and performance
by virtue of the implementation of a hybrid database model that optimizes techniques for
storing and retrieving data in alignment with the particular requirements of a use case.
PostgreSQL serves as the master relational database for structured information such as user
profiles, transaction records, and system settings which are in need of ACID compliance



Technologies 2025, 13, 459

18 of 35

and complex relational queries. InfluxDB serves as a time-series database optimized
for meteorological readings and energy production values and enables proper storage,
downsampling, and retention techniques for high-frequency temporal data. Redis serves
as the in-memory datastore enabling very quick caching of user sessions, often evaluated
computations, and transitory structures that necessitate microsecond-scale responsiveness.
Database optimization techniques consist of index tuning, query-plan-driven optimization,
horizontal partitioning of large tables, and connection pools, such that read replicas are
employed to distribute the read workloads and enhance throughput. Multiple layers
of caching are added through the stack: application-level in-memory caches for objects
and computation outcomes, database query result caches aimed at costly SQL queries,
CDN edge caching for the static and semi-static API answers, and local caching of smart
contract/RPC returns to lower blockchain query latency.

The effectiveness of the caching system is gauged through the cache hit ratio that
computes the proportion of requests served from the cache versus those that required
exploitation of the underlying data sources, as shown in Equation (20). Here, Cachepits
is the number of requests served directly from the cache, while Cachepyisges is the number
of requests that had to be served by primary data sources (e.g., PostgreSQL, InfluxDB,
outside API sources, or smart-contract RPCs). Therefore, the resulting denominator
Cachepits + Cachepgigses incorporates the overall number of data request accesses during
the examined measurement period. The ratio obtained has a decimal value between 0 and
1 such that values approaching 1 represent effective caching and better responsiveness
while values near 0 represent ineffective cache exploitation and the need for policy or
capacity adjustment.

Cachenits

CacheHitRatio =
Cachenits + Cachepfisses

(20)

2.9. Experimental Design and Evaluation Metrics

The experimental evaluation of the system follows methodological design, including
controlled testing, reliable validation, and large measurement collections. A dataset was
used to cover 24 months of historical data on weather and energy, with 18 months being for
training and the remaining six months being for temporary verification. To ensure reliability,
a high-performance computing environment with accelerated graphics processors is used
in five cross-sectional controls to support effective training and evaluation of machine
learning models.

Prediction accuracy is assessed using multiple error metrics, including root mean
square error (RMSE), mean absolute error (MAE), and mean absolute percentage error
(MAPE), defined respectively as shown in Equations (6)—(8).

In addition to model accuracy, system performance is measured using throughput
(transactions per unit time), latency defined as the 95th percentile of response time, and
availability calculated as shown in Equation (21):

Uptime

Availability = (Total Time

) x 100% (1)

Uptime refers to the total amount of time the system spends running and available
to users, while the Total_Time represents the entire period to be examined. This measure
provides a reflection on the stability and dependability of the system in running.

The economic efficiency is evaluated through cost savings and market efficiency
measures, as presented in Equations (22) and (23). The cost savings measure values
the economic gains of utilizing dynamic pricing policies instead of conventional static
pricing policies in the context of peer-to-peer energy trading systems. The parameter
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Pstatic represents the total monetary cost of the classical static pricing policies, whereby
the energy price acts as a constant despite supply and demand alterations, meteorological
considerations, or temporal variations during the trading period. The parameter Pqynamic
represents the total cost through the innovative intelligent dynamic pricing model that
adjusts the prices in real-time using the predictions by the XGBoost machine learning model,
the OpenWeather API data, and the prevailing market data recorded on the blockchain.
The term (Pytatic — denamic) calculates the absolute difference in cost across the two pricing
policies, and the division by the parameter Py,tic normalizes this difference to a ratio to
the base case static cost. The positive values represent the economic gains by the adaptive
price system and demonstrate the improved cost optimization through the intelligent
price adjustments.

Pstatic — P dynamic

Cost_Savings = ( ) x 100% (22)

P static

The measure of market efficiency considers the degree to which the dynamic pricing
mechanism reduces instability in the energy market relative to general market trends, using
variance reduction analysis. The parameter Price_Variance measures the statistical variance
in energy prices generated by the suggested blockchain-enabled dynamic pricing mech-
anism, reflecting the patterns of price movements in the regulated peer-to-peer trading
system during the evaluation period. By contrast, the parameter Market_Variance repre-
sents the variance observed in the larger regional or national energy market prices during
the evaluation period and serves as an outside standard for comparison while accounting
Price_Varlance  aas5yres the

Market_Variance
degree of relative price stability realized by the system such that lower ratio values indicate

for intrinsic market instability beyond system control. The ratio

greater market stability. The subtraction of unity transforms this ratio to represent an
efficiency score such that values close to 1.0 represent optimal market effectiveness through
maximum price instability reductions relative to outside market trends and demonstrate
the system’s ability to create more predictable and stable trading environments for the par-
ties operating in decentralized energy markets. In this case, Price_Variance represents the
price variance generated by the dynamic pricing system while Market_Variance represents
the price variance inherent in the larger energy market prices. Measures approaching 1
represent a higher degree of market effectiveness, such that the system optimally reduces
price instability relative to overall market trends.

To be statistically valid, the assessment incorporates two-tailed t-tests at a &« = 0.05
level of significance, computation of Cohen’s d to gauge effect size measures, and 95%
confidence intervals for all point estimates. Bonferroni adjustment is used to control Type I
errors in multiple hypothesis testing and ensuring rigorous inference.

(23)

Market_Efficiency =1 — ( Price_Variance )

Market_Variance

static pricing scheme and Pyynamic is the total cost under the proposed dynamic pricing
system. This metric quantifies the percentage reduction in costs achieved through intelligent
price optimization.

2.10. Ethical Considerations and Regulatory Compliance

The system is built while placing a significant focus on ethical considerations and
legal compliance. The security of user data privacy is ensured through the implementa-
tion of data processing frameworks in alignment with GDPR such as pseudonymization,
anonymization, and the safe storage of data. A consent management system enables users
to control their data collection intentions, while explicit data-use policies foster clarity
regarding the storage, sharing, and processing intentions of data.
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Compliance is achieved through the observance of regional energy market regulations,
meticulous maintenance of transaction records to support auditing processes, and adher-
ence to standards pertaining to financial services in relation to payment procedures. The
system incorporates consumer protection elements, including the enforcement of equitable
pricing, mechanisms for resolving disputes, and transparency in fee disclosure, thereby
guaranteeing the fair treatment of consumers and safeguarding their rights.

Promotion of environmental sustainability is achieved through the use of renewable
energy sources, carbon footprint tracking, and promotion of initiatives related to the
certification of green energy. Environmental compliance audit reporting tools are provided
to support the conduct of environmental compliance audits. The platform adheres to social
responsibility values through the enhancement of energy access equity, especially through
the involvement of marginalized peoples. Multiple awareness and education materials are
provided to enlighten users on the merits related to renewable energy. Collectively, the
platform helps in the achievement of the United Nations Sustainable Development Goals
through the use of blockchain and artificial intelligence technologies to equalize access to
clean and reliable energy.

3. Results and Discussion

This section deals with smart contract deployment, ML-based solar power forecasting,
APl integration for energy and weather data, Blockchain contract updates, SQL database
logging for predictions and weather data, Transaction logs and verification, static pricing
analysis and dynamic pricing analysis, transaction event logs, and security mechanisms.

3.1. Smart Contract Deployment and Transaction Analysis

The implementation of the smart contract on the Ethereum Sepolia Testnet establishes
the basis for the peer-to-peer solar energy trading system. The smart contract incorporates
several essential functionalities, such as active seller monitoring for energy providers,
dynamic pricing adjustments based on real-time demand and meteorological conditions,
machine learning-driven forecasting for solar energy generation predictions, and real-time
weather data acquisition from the OpenWeather APL

The contract was successfully deployed on the Sepolia testnet at the following address:

Currently, the system has one active seller (Listing 1). This active seller monitors
fluctuations in energy prices and updates the smart contract upon receiving new machine
learning predictions or weather updates.The SecureEnergyTradingPlatform smart contract
was successfully deployed on the Sepolia testnet, and its address is provided in (Listing 2).

Currently, the system has one active seller, deployed at the following address:

Listing 1. Address of the active seller in the system.

0x8cbc1ADD5081900a69BAE4200DF1a716£514d7£0

Listing 2. Address of the deployed SecureEnergyTradingPlatform contract on Sepolia.

0x349C7DDAc8091d6663bac0E14c90cf8E3C594463

Table 2 presents the transaction metrics for a typical contract update operation on
the Sepolia testnet. The transaction involved no transfer of ETH, as it was intended solely
to update on-chain contract states such as energy pricing, seller registration status, and
ML-driven predictions rather than facilitate fund transfers. Prices were represented in
Wei, the smallest denomination of Ether (1 ETH = 10'® Wei), to enable high-precision
computations. This approach minimizes rounding errors in microtransactions, thereby
enhancing the accuracy and stability of the dynamic pricing mechanism implemented
within the smart contract.
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Table 2. Ethereum transaction metrics on Sepolia Testnet.

Parameter Value

TX Hash 0xc2c3f2b19b3d6. .. 02a3a3
Block Number 7,912,476

Confirmations 16,522

Gas Used 33,984 (16.99%)

TX Fee 0.00017021 ETH

Gas Price 5.00874 Gwei

Wei Used 217920817994 Wei
Contract Address 0x349C7DDA. .. E3C594463
Method Called 0x74c115dd

3.2. Machine Learning-Based Solar Energy Prediction

According to the comparative analysis in Table 3, XGBoost with Bayesian optimization
was the optimal choice for predicting energy prices among the eight evaluated machine
learning models. The Bayesian-optimized XGBoost model exhibited superior robustness
(rated “Very High”) and achieved 97% accuracy, demonstrating exceptional performance for
energy trading applications. Decision trees, while highly interpretable and computationally
efficient, were prone to overfitting and achieved only 94% accuracy. Random Forest and
LightGBM showed good generalization capabilities with 96% accuracy but fell short of the
gradient boosting methods” precision. CatBoost performed admirably with 97% accuracy
and excellent categorical variable handling. The Transformer model, despite its advanced
attention mechanisms, achieved only 81.0% accuracy and demonstrated slower training
times with moderate interpretability, making it less suitable for real-time energy prediction
tasks. Bidirectional LSTM, despite using a deep learning approach, achieved only 95.3%
accuracy and underperformed due to limited temporal dependencies in solar data. The
Meta-Ensemble model (LSTM + LightGBM) reached the highest accuracy at 99.2% but
incurred prohibitively high computational overhead due to its combined sequential and
tabular architecture, making it impractical for real-time blockchain applications.

XGBoost emerged as the most suitable choice for blockchain-based energy trading due
to four critical advantages that align with the specific requirements of decentralized energy
markets. First, computational efficiency enables XGBoost to achieve sub-50 ms inference
times, which are essential for real-time blockchain price updates, whereas Transformers
require 200-500 ms due to attention mechanism complexity, and deep learning architec-
tures demand significantly more computational resources. Second, missing data robustness
allows XGBoost to handle incomplete meteorological data through native surrogate splits,
a common challenge in real-world deployments where sensor failures or communication
interruptions frequently occur, while Transformers and deep learning models experience
severe performance degradation with missing sensor readings. Third, data efficiency
enables XGBoost to achieve 97% accuracy using 18 months of training data, whereas
Transformers typically require multi-year datasets to reach comparable performance levels,
making XGBoost more practical for emerging renewable energy installations with limited
historical data. Fourth, interpretability through tree-based feature importance provides
transparent decision-making processes essential for regulatory compliance and market
trust, whereas Transformer attention mechanisms and deep learning models offer lim-
ited explainability for energy trading decisions. XGBoost’s hyperparameter optimization
through Bayesian techniques ultimately yielded the most reliable and consistent predictions
under varying environmental conditions, making it the ideal choice for the dynamic and
resource-constrained nature of blockchain-based energy price forecasting.
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Table 3. Detailed parameters of ML models for energy price prediction.

Parameter Value

Model Decision Tree

Accuracy (%) 94

Training Time Fast

Interpretability High

Robustness Moderate

Remarks Simple but may overfit; useful for rule-based insights
Model Random Forest

Accuracy (%) 96

Training Time Moderate

Interpretability Moderate

Robustness High

Remarks Ensemble of trees; reduces overfitting; good generalization
Model LightGBM (LGBM)

Accuracy (%) 96

Training Time Very Fast

Interpretability Moderate

Robustness High

Remarks Efficient with large data; handles categorical features well
Model CatBoost

Accuracy (%) 97

Training Time Moderate

Interpretability Moderate

Robustness High

Remarks Excellent accuracy; native support for categorical variables
Model Bidirectional LSTM

Accuracy (%) 95.3

Training Time Slow

Interpretability Low

Robustness Moderate

Remarks Deep learning approach; underperforms due to limited temporal dependencies
Model Meta-Ensemble (LSTM + LightGBM)

Accuracy (%) 99.2

Training Time Very Slow

Interpretability Low

Robustness Very High

Remarks Combines sequential and tabular learning; high computational overhead
Model Transformer

Accuracy (%) 81.0

Training Time Moderate

Interpretability Medium

Robustness High

Remarks Slower training and less interpretable

Model XGBoost (Bayesian Optimized)

Accuracy (%) 97

Training Time Slow

Interpretability Moderate

Robustness Very High

Remarks Highly accurate; best for performance-critical tasks; tunable

Using an XGBoost Regressor model, the system forecasts solar energy generation
based on historical trends and current weather data. The model is trained with key
parameters like wind speed, air temperature, cloud opacity, and solar irradiance. As
depicted in Figure 5, the actual versus predicted solar energy generation demonstrates the
model’s high predictive accuracy, with predicted values closely aligning with the actual
measurements. Figure 6 illustrates the feature importance analysis of the XGBoost model,
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revealing the relative contributions of different input features to the energy generation
predictions. The residual error distribution is presented in Figure 7, providing insights
into the model’s prediction errors and their statistical characteristics. Figure 8 shows the
temporal progression of solar energy generation, highlighting the model’s ability to capture
time-dependent variations in energy output.
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Figure 6. Feature importance analysis using XGBoost model.
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Figure 8. Solar energy generation vs. timestamp.

In the context of energy generation forecasting, the XGBoost Regressor optimized

using Bayesian Optimization demonstrated exceptional predictive capability, as reflected
in Table 4. With a low Mean Absolute Error (MAE) of 0.1854, Mean Squared Error (MSE) of
0.8999, and Root Mean Squared Error (RMSE) of 0.9486, the model consistently produced
predictions that were closely aligned with actual generation values. Most notably, it

achieved an R? score of 97.45%, indicating that the model effectively explains the vast

majority of variance in the target data. This high R? value serves as a strong indicator of

model accuracy, much like a high Area Under the Curve (AUC) in classification problems.

Together, these metrics confirm that the XGBoost Regressor is a highly reliable and accurate

tool for energy generation prediction.

Table 4. Performance metrics of XGBoost regressor with Bayesian optimization.

Maetric Value
Mean Absolute Error (MAE) 0.1854
Mean Squared Error (MSE) 0.8999
Root Mean Squared Error (RMSE) 0.9486
R? Score 97.45%
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3.3. Real-Time API Integration for Energy and Weather Data

The Flask API was developed to retrieve real-time weather conditions, process the
ML-based energy predictions, and update the Ethereum smart contract.

A test request was made using curl to validate the API response:

The API request used for testing is shown in Listing 3. The API successfully processed
the request and returned real-time weather and energy prediction data as shown in Figure 9.

Listing 3. Curl request to test the Flask API for real-time weather and ML-based energy predictions.

curl -X POST http://127.0.0.1:5000/predict \
-H "Content-Type: application/json" \
-d "{\"lat\":11.0168,\"1lon\":76.9558}"

As illustrated in Figure 9, the latitude 11.0168° and longitude 76.9558° correspond to
Coimbatore, India, a region with high solar energy potential. The response data reveal a
Global Horizontal Irradiance (GHI) of 1039.23 W /m?, indicating strong solar availability.
The predicted energy generation of 1.068 kWh demonstrates the ML model’s accuracy
in forecasting production. Weather conditions are retrieved dynamically from the Open-
Weather API, allowing for real-time pricing updates on the blockchain based on current
environmental factors.

“"eghi”: 1039.23,
“"predicted_energy”: 1.068,
“"timestamp”: "2025-03-16 10:50:32"
“"weather”: {
"AirTemperature™: 30.78,
"CloudOpacity”: 0.4,
"RelativeHumidity™: 51,
"WeatherCondition™: 1.

"WindSpeed”: 2.57

Figure 9. Weather conditions and energy prediction.

3.4. Blockchain Contract Updates

To verify that the contract is being updated correctly, an Alchemy Web3 API call was
executed to fetch the most recent energy price stored on-chain.

The smart contract successfully returned the base price on the Ethereum network (see
Listing 4).

Listing 4. Example output showing successful connection to the Ethereum network and the base
price returned by the smart contract.

Successfully connected to the Ethereum
network.
Base Price: 217920817994 wei

This confirms that the contract is correctly linked to the Alchemy Web3 API, ensuring
smooth interaction with Sepolia Testnet, and the latest price update is successfully stored
on-chain, proving end-to-end integration from data ingestion to smart contract storage.
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3.5. SQL Database Logging for Predictions and Weather Data

To track historical pricing trends, all ML predictions and weather updates are stored
in an SQL database (solar_predictions.db). This setup enables persistent storage with
timestamps, ensuring that each prediction is recorded for future analysis.

Table 5 illustrates the most recent entries logged into the SQL database, showcasing
three records of ML-predicted solar energy output alongside corresponding cloud opacity
values. Each entry is timestamped, ensuring precise tracking of prediction history over time.
For instance, at 12:48:38 on 16 March 2025, the predicted energy output was 0.1241 kWh
with a cloud opacity of 0.4, indicating moderate cloud cover. Comparatively, earlier entries
show a slight decrease in cloud opacity (0.2) paired with fluctuating energy predictions,
such as a notably low value of 0.01 kWh at 12:07:08. This suggests a possible non-linear
relationship between cloud opacity and solar output, underlining the importance of contin-
uous data logging for trend analysis and model refinement. The structure of the database
not only ensures historical data preservation but also supports in-depth examination of
environmental factors affecting solar energy generation.

Table 5. Recent database records for machine learning predictions.

ID Timestamp Pred. Energy Cloud
(kWh) Opacity
3 16 March 2025 12:48:38 0.1241 0.4
2 16 March 2025 12:29:23 0.1588 0.2
1 16 March 2025 12:07:08 0.01 0.2

3.6. Blockchain Transaction Logs and Verification

Blockchain verification was performed by analyzing transaction logs to confirm that
pricing updates were successfully recorded on-chain. The seller’s transaction was success-
fully processed and validated on the Sepolia Testnet, ensuring that the contract address
accurately reflected the updated energy price. Minimal gas fees were consumed, making
the updates cost-efficient while maintaining transparency. The blockchain state changes
confirm that the smart contract executed updates as expected, demonstrating the seamless
integration of machine learning-based predictions, real-time weather data retrieval, and
smart contract execution on Sepolia. This system provides a fully decentralized and Al-
driven energy pricing mechanism, enabling real-time market adjustments based on solar
energy availability and demand.

3.7. Seller’s Address Transactions

The blockchain-based peer-to-peer (P2P) energy trading platform records every trans-
action on-chain to ensure transparency, traceability, and immutability. These transactions
include interactions between sellers and the smart contract, such as energy pricing up-
dates, listings, and sales. By leveraging blockchain, each transaction remains permanently
verifiable, ensuring a fair trading ecosystem.

Figure 10 shows transaction details, including timestamps, block numbers, gas fees,
and unique transaction hashes. These records help ensure fair energy trading and track
seller behavior. Each transaction demonstrates how the seller engages with the smart
contract, listing energy, adjusting prices, and completing transactions. Gas consumption
and transaction fees reveal the computational cost of these operations. Maintaining an
immutable, decentralized record facilitates energy trading and fosters participant trust.
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3.8. Static Pricing Analysis

Static pricing blockchain transactions provide reliable standards for analyzing token
values and market trends. By capturing unchangeable pricing data as a foundation for eco-
nomic analysis in decentralized markets, this approach aids researchers in understanding
price stability and trading patterns for energy tokens.

® Transaction Hash: 0x304540229b21¢6229b93e566¢75827c0b7248caaf78574d6b57bf448dc612b28 (O

® status: © success

® Block: © 7838302 346211 Block Confirmations

® Timestamp: ® 49 days ago (Mar-05-2025 02:50:24 PM UTC)

@From:~ T 7 oxBcbc1ADDS081900a69BAE4200DF1a716f51ad7f0 © | e

ACTIVE SELLER

| s | TRANSACTION LIST

@t _ ([ 0x40282507db84c6551 e1a23a569389eacadadalos Created ] () @

® value: 4 0ETH

® Transaction Fee: 0.00651533975878232 ETH

® Gas Price: 3.042163049 Gwei (0.000000003042163049 ETH)

Figure 10. Seller’s address transactions.

Figure 11 depicts an Ethereum transaction recording a transfer of five EnergyToken
(ENGY) units on 4 April 2025, with 19 block confirmations. The transaction hash provides
a unique identification, even though the timestamp (11:18:00 AM UTC) determines the
execution time. This transaction implied creating a new contract address, therefore indicat-
ing potential expansion of new trading mechanisms within the energy token ecosystem.
The static energy trading contract is the fundamental component of the peer-to-peer solar
energy trading platform. By running on Ethereum Sepolia and being written in Solidity, it
allows safe transactions at fixed prices between registered parties. The contract introduces
EnergyToken (ENGY), which stands for energy units; the first supply is assigned to the
administrator’s wallet for ecosystem distribution.

® Transaction Hash: 0xe60f5bd1417f2¢c150ed6bfb199cd7eeb08c8367436060616d1€511651474¢c956
@ status: © Success

@ Block: 8048620 19 Block Confirmations

® Timestamp: ® 4 mins ago (Apr-04-2025 11:18:00 AM UTC)

® From: 0x8cbc1ADD5081900a69BAE4200DF1a716f514d7f0

@ Interacted With (To): [[21 0x0312¢758chf10172054b7423f4a68b4ca0fdf0d6 Created ] o

® ERC-20 Tokens Transferred: All Transfers

0x8cbc1ADD...6f514d7f0 received 5 ERC-20: EnergyToken (ENGY)

0x00000000...000000000 sent 5 ERC-20: EnergyToken (ENGY)

Figure 11. Ethereum transaction details showing EnergyToken (ENGY) transfer in static pricing.

Including OpenZeppelin libraries—ERC20, AccessControl, ReentrancyGuard—the
contract strengthens security and role-based authorization. The ADMIN_ROLE manages
price setting, token minting, and seller registration. Though the fixed price offers consis-
tency, it overlooks solar irradiance affecting actual energy prices, weather changes, and
real-time demand. The contract maintains a registry of active sellers under admin-registered
addresses only eligible for token acquisition. The buyEnergy() function allows for safe
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transactions and correspondingly transfers tokens by means of set pricing cost calculations.
Openly, the contract produces events viewable via blockchain explorers: StaticPriceUp-
dated, SellerAdded, SellerRemoved, and Energy Purchased. Among the security elements
are restricted minting powers and protection against readmission. Running on Sepolia, this
is a lightweight version that uses very little gas and only requires 0.005-0.01 ETH. It makes
no use of outside oracles or APIs. Unlike more complex dynamic solutions employing
machine learning and real-time data, this simpler approach provides a clear starting point
for tokenized energy transactions.

3.9. Dynamic Pricing-Based Energy Trading

The dynamic smart contract used in this work enables real-time energy pricing based
on live data inputs. Operating on the Ethereum Sepolia testnet, this Solidity contract brings
intelligence and flexibility to energy pricing using blockchain, Chainlink oracles, and ML
projections. The pricing logic of the contract uses real-time grid prices, ML model forecasts
(XGBoost with 97.45% R?), current weather conditions, and time-of-day multipliers. The
pricing engine calculates prices using Chainlink feed data and the ML model by adding
weather and demand changes for three distinct time periods: Before Peak (09:00-18:00),
Peak (18:00-22:00), and After Peak (22:00-09:00).

Figure 12 illustrates how the smart contract dynamically updates energy prices. The
model integrates solar forecasts, weather conditions, and market demand to adjust rates effi-
ciently, ensuring cost-effective trading while maintaining market stability. Security is main-
tained by role-based access control, which only lets the admin (DEFAULT_ADMIN_ROLE)
see private functions. Rapidly turned away are those who try to enter uninvited for re-
stricted activities. A system that guarantees every transaction gets its own unique nonce,
thus preventing repeat attacks using nonces, helps to make the system more secure. Trans-
actions trying to use the same nonce are rejected immediately. The contract lets the seller
add or remove items and tracks them using indexed mapping. Among the events it sends
on every change are PriceUpdated, MLPriceUpdated, WeatherConditionUpdated, and
SellerAdded. It also provides a backup strategy should the Chainlink feed fail to run. These
tools and tracking capabilities let frontends be open and observed. Using a minimally
funded wallet of 0.6 ETH, the contract was tested on Sepolia, showing gas efficiency under
real-time conditions, full functionality with live updates, and security against unautho-
rized tampering and widespread Ethereum attacks. This confirms the system’s readiness
for production deployment in energy trading markets requiring flexibility, security, and
real-time adaptability.

® Gas Limit & Usage by Txn: 2,159,845 2,141,680 (99.16%
ge oy , 199, | 214,
® Gas Fees: Base: 1.542163049 Gwei | Max: 3.456958954 Gwei | Max Priority: 1.5 Gwei )
Prices updates based on

demand.peak hours are handled by
® Burnt & Txn Savings Fees: © Bumnt: 0.00330281975878232 ETH ($0.00) <* Txn Savings: 0.0008883600938204 ETH ($0.00) ¢ p:his input d;m_ .
@ Other Attributes: Txn Type: 2 (EIP-1559)  Nonce:84  Position In Block: 26 I
5 A
|® Input Data: 0x60206040526064600755605F6008556078600955605a600a55348015610023575F80fd5b506040516 |
| 128cc3803806128cc83398181016040528101906100459190610428565b60015F819055505F 73FFFFFF |
| FREf e f e fffffffffffffffffffle8173ffffffffffffffffffrfrfrfrfifffffrfrfrfffffico |
L 36100ba576040517f08c379 1

View Input As v

Figure 12. Dynamic pricing adjustments in the energy trading system.
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3.10. Static Pricing vs. Dynamic Pricing

Static Pricing offers a set transaction fee, making it simple but inflexible during network
congestion. On the other hand, dynamic pricing changes prices in real-time depending on
demand, so improving efficiency and resource distribution.

Table 6 differentiates between two blockchain transactions under static and dynamic
pricing models. Showing no gas metrics or dynamic features but rather token mining of
three ENGY tokens, the static pricing transaction suggests a simple and pre-determined
cost structure. The dynamic pricing transaction, on the other hand, runs a smart contract
function call to record an active seller. This transaction emphasizes advanced features such
as gas consumption monitoring, dynamic pricing set at 718 Gwei, and integration with an
active seller tracking system.

Table 6. Comparison of static and dynamic pricing features.

Feature Static vs. Dynamic Value

. 0x08c01296017417226 (Static) / 0x03d50258229¢1£06
Transaction Hash )

(Dynamic)

Status Success / Success
Block Number 9024004 / 9024008
Timestamp Apr 04, 2025, 11:18 AM UTC / Apr 05, 2025, 02:50 PM UTC
Sender Address 0x91cel14d042081 / 0x80bd14d02801
Receiver Contract 0x011227438521 / 0x4ba52805984f
Transaction Type Token Mining (Static) / Function Call (Dynamic)
Ether Transferred 0ETH / OETH
Gas Used Not Displayed / 410852 ETH
Gas Price Not Displayed / 718 Gwei
Dynamic Pricing Not Enabled / Enabled via calculateDynamicPrice()
Active Seller Tracking Not Available / Via getActiveSellers()
ML-Predicted Price Not Available / Via m1PredictedPrice()
Demand Multiplier Not Included / Via demandMultiplier ()

Not Considered / Integrated via
updateWeatherAndDemand ()
Peak Hour Multipliers Not Applicable / Implemented

Weather Condition

External Oracle Usage Not Supported / Chainlink Oracle for pricing and weather
Real-Time Data Handling Static Only / ML and Oracle Based

Security Features Basic Transfer / Role-based, reentrancy-safe

Analytical Value Limited / Enables dynamic policymaking

Because it employs several cutting-edge technologies that typical pricing systems
lack, our proposed dynamic pricing approach much exceeds mere transaction processing.
mlPredictedPrice() alters prices to fit to how a machine learning system projects the market
will perform. Since the weather influences how much renewable energy is generated, the
updateWeatherAndDemand() function facilitates environmental consideration.

The dynamic pricing model’s main advantage is its improved resource allocation
during periods of high demand. Demand multipliers and price variations during peak
hours help to make these goals achievable. The system leverages Chainlink, a kind of
outside oracle, to obtain constant grid pricing and meteorological data from dependable
off-chain sources. Combining real-time external information in this manner allows for
quicker and more accurate price choices. Dynamic pricing has significantly improved
security and analysis. While gathering a great variety of data enables professionals to
examine it so they may create plans and policies for reacting to demand, role-based access
controls and reentrancy protection mechanisms keep deals safe. These qualities all enable
us to be more explicit about the goals of our investigation.
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Demand-responsive energy pricing allows the dynamic pricing system to find the best
resource use in many demand situations. Improved peak-hour logic and real-time machine
learning projections help to make this possible. Monitoring prices and changing them based
on active sellers and dynamic demand multipliers suggests that network performance
helps stabilize the grid. Clear choices for suppliers to register and track pricing will help
users of the energy market to feel more secure and involved. Considering environmental
factors and weather, price is a better predictor of the generation capacity of green energy
sources whose output fluctuates with the circumstances. Thus, enhanced security, role-
based access controls, and reentrancy prevention help keep the system stable and guarantee
fair transactions. These characteristics offer a real-time trading system motivated by a
combination of economic incentives, grid needs, and environmental objectives. This stops
token abuse and energy waste.

Dynamic price systems complicated characteristics allow them quick and simple re-
sponses to network problems, market changes, and external factors. Dynamic pricing, smart
contracts, transparency, and automation support scalable, flexible energy trading systems.

3.11. Transaction Event Logs

Transaction event logs ensure the accuracy and transparency of contract updates in
our peer-to-peer energy trading platform. These logs record every interaction with the
smart contract, including pricing updates, energy trading transactions, and modifications
by active sellers. Figure 13 illustrates the documented event logs, serving as a permanent
record of all executed functions.

Transaction Receipt Event Logs

Address  0x40a82507db84c6551e1a23a56938%aeadal3alc8 (0 @ @& v

RoleGranted (index_topic_1 bytes32 role, index_topic_2 address
Name account, index_topic_3 address sender) View Source

TOpiCS 0 0x2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d

The bytes32 r 1:role Hex v = I
representation of the | |
role being granted

This shows the admin 3: sender Hex v ‘
role was self-assigned e ‘
during deployment. " ‘

Address  0x40a82507db84c6551e1a23a56938%¢aeada3alc8 L @ @ v
35

PriceUpdated (uint256 stage, uint256 price, uint256 timestamp) View
Name  Source

Topics 0 0x15819dd2fd9f6418b142e798d08a18dobfo6ea368f4480b7bod3f75bd966bc48

Parameter’s are encoded in hex format,showing
blockchain’s raw data i

Figure 13. Transaction Event Logs in the smart contract.

The graphic presents two essential event logs from the smart contract. Event Log #34
documents a RoleGranted event that tracks permission allocations throughout the system.
This log indicates the self-assignment of an administrator position during deployment, with
three indexed topics: a bytes32 representation of the role, the account address obtaining
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rights, and the sender address initiating the modification. This permission framework
guarantees that only authorized individuals can alter the system.

Event Log #35 records a PriceUpdated event that monitors alterations in energy pric-
ing data. This event comprises three parameters (stage, price, and timestamp), with all
data encoded in a hexadecimal format, as shown in the raw data section. This thorough doc-
umentation of price modifications ensures pricing transparency for all network members.

These detailed event logs improve the system’s openness, accountability, and depend-
ability in several aspects. Initially, they furnish incontrovertible proof of all modifications
to the contract’s status. Secondly, they establish an audit trail for regulatory compliance
by recording the individuals who implemented modifications and the corresponding
timestamps. Third, they allow participants to independently check the authenticity of
transactions and price adjustments. Ultimately, they function as definitive records for re-
solving disputes should conflicts occur among energy merchants. Our peer-to-peer energy
trading platform fosters confidence among players and preserves the integrity of all energy
transactions through a comprehensive logging mechanism.

3.12. Transaction State Verification

Verification of blockchain transaction states is essential for the secure and reliable
execution of smart contract operations. This procedure is crucial for ensuring transparency
and system integrity, since it verifies that all pricing updates and transactions are precisely
documented on the blockchain.

As seen in Figure 14, the system authenticates and records modifications to smart
contracts following each execution. This includes functions such as energy trading and
dynamic pricing modifications. These alterations are documented on-chain, rendering them
immutable. The solution guarantees accountability and adherence to the logic established
in smart contracts by preserving a permanent and tamper-proof transaction history. This
not only bolsters confidence among participants but also safeguards against unauthorized
modifications and fraudulent actions.

advanced A set of information that represents the current state is updated when a transaction takes place on the network. The below is a summary of those changes :
Address Before After State Difference
A 0x349C7DDA..E3C594463
Storage (1)

Storage Address:  0x0000000000000000000000000000000000000000000000000000000000000007

Before: Hex ~ = 0x000000000000000000000000000000000000000( )0000000000000064
After: Hex v = Ox000000000( J000000000005a
0.452376827079826007 Eth 0.452206609828948631 Eth
0x8¢cbc1ADD...6f514d 70 w 0.000170217250877376
Nonce: 143 Nonce: 150
OxE276Bc37..3263DfBSe  Producer 99,677,193.608680248515179206 Eth 99,677,193.608850206318301126 Eth  0.00016995780312192

Figure 14. Transaction state verification in the Smart Contract.

3.13. Security Mechanisms and Unauthorized Access Handling

To ensure integrity and protection against unauthorized manipulation, only the admin
(DEFAULT_ADMIN_ROLE) is permitted to invoke sensitive functions such as updateML-
Price, setWeatherCondition, or add/remove sellers. The contract integrates role-based
access control via OpenZeppelin’s AccessControl. When an unauthorized account attempts
to perform restricted actions (e.g., updating ML price), the system immediately rejects the
request, preventing any gas wastage or state modification. This is evident from the backend
logs shown in Figure 15.
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The contract canceled the transaction when a regular wallet tried to change the ML
price without enough money or permission, showing that prices were protected and access
was controlled. The contract additionally establishes a mechanism to prevent replay attacks
utilizing nonces. Each significant transaction possesses a unique nonce; any nonces that are
utilized multiple times are promptly disregarded. Figure 15 illustrates the requisite nonce
for executing and transmitting a legitimate transaction from the administrator. The contract
rejected the replayed transaction data due to error code -32603, which involved the same
nonce. This case demonstrates that the contract ensures each transaction is distinct and the
timestamp is accurate, hence enhancing its resistance against spoofing and replay attacks.

O Connected to Sepolia

0 Admin: 0x8cbc1ADDS081900a69BAE4200DF 1a716f514d7f0

O Unauthorized: 0x111fA8C4A7b0480F 1ad89815a592EdAf7bc78940
O Contract nonce: 3

O Attempting unauthorized ML price update...
0 Unauthorized Access Blocked: {'code’: -32003, ‘'message’”. 'insufficient funds for gas * price + value: have 0 want 1000000000000000%

OO Attempting replay attack...
O Valid admin tx sent: a29089fa41fb7e92f270c1a56809080554a0a05370a2c603afd60bb3cedf372e
O Replay Attack Blocked: {'code": -32603, 'message”. replacement transaction underpriced’}

Figure 15. Security monitoring logs showing blocked unauthorized access attempts and replay
attack prevention.

4. Conclusions

This paper demonstrates the development of a peer-to-peer blockchain solar energy
trading system utilizing Ethereum’s Sepolia testnet, integrating real-time meteorological
data, machine learning forecasts, and dynamic pricing mechanisms. The suggested XG-
Boost model attained an accuracy of 97.45% in predicting solar output, enabling precise
estimation of energy generation depending on climatic conditions. The implemented So-
lidity smart contract facilitates energy trading via dynamic price modifications influenced
by supply and demand, peak times, and projected output. Experimental results confirm
system effectiveness through efficient contract execution, transaction verification, and auto-
matic pricing modifications. The use of the Wei denomination for pricing enables precise
microtransactions and minimizes gas costs. Database integration ensures comprehensive
recording of all predictions and transactions, hence guaranteeing total system transparency.

Despite the promising results, the system faces several limitations that constrain its
immediate large-scale deployment. The current implementation operates on the Ethereum
Sepolia testnet with inherent scalability constraints of approximately 15 transactions per
second, which may pose challenges for high-volume energy markets. The reliance on
external weather APIs introduces potential points of failure during network outages or
service disruptions. The machine learning model requires continuous retraining to main-
tain predictive performance as weather patterns evolve, and the current focus on solar
energy trading may not fully address multi-source renewable energy portfolios. Future
work should contemplate the integration of Layer-2 scaling solutions such as Polygon or
Arbitrum to improve transaction throughput, implementation of cross-chain interoperabil-
ity protocols to expand market liquidity, development of multi-energy source prediction
models incorporating wind and storage systems, integration of IoT sensors for direct energy
meter readings, carbon credit trading mechanisms, and regulatory compliance frameworks
for legal deployment across different jurisdictions.

This research illustrates that the amalgamation of machine learning with blockchain
technology facilitates an open, secure, and efficient autonomous energy market. The
findings may accelerate the shift towards more ecologically sustainable energy solutions.
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Nomenclature

Symbol Description

X Feature matrix for ML prediction (R"xd)
T; Air temperature at time f (°C)

I Solar irradiance at time ¢ (W/m?)

Wi Wind speed at time ¢ (m/s)

H; Humidity at time ¢ (%)

Ct Cloud cover percentage at time ¢ (%)

P jt1 Historical energy generation from t — k to t — 1 (kWh)
AT Temperature gradient at time ¢

h Hour of day (0-23)

sin(27th/24), cos(27th/24) Trigonometric variables for time-of-day patterns

n Number of samples

Y; True value for data point i

Y; Predicted value for data point i

Y Meanof Y; (Y = 1 Y | V)

0 ML model parameter/hyperparameter vector
Q] Parameter search space

0* Optimal parameter vector

E[L()] Expected loss function

L(9) Loss for parameters 0

K Number of folds in cross-validation

N Samples in fold k

Dy Validation dataset in fold k

MAE Mean Absolute Error

MSE Mean Squared Error

RMSE Root Mean Squared Error

MAPE Mean Absolute Percentage Error

R? Coefficient of determination

N Learning rate (XGBoost)

d Maximum tree depth (XGBoost)

Ao L2, L1 regularization coefficients (XGBoost)
Ptb”s", Ptf inal Base price and final dynamic price at time ¢

St, D¢ Total supply and demand at time ¢ (kWh)
ENGY EnergyToken (ERC-20 token)
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RBAC Role-Based Access Control
Chainlink Oracle Oracle for real-time blockchain data
Sepolia Testnet Ethereum test network
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