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Abstract

General-purpose graphics computing on processing units (GPGPUs) face significant perfor-
mance limitations due to memory access latencies, particularly when traditional memory
hierarchies and thread-switching mechanisms prove insufficient for complex access pat-
terns in data-intensive applications such as machine learning (ML) and scientific computing.
This paper presents a novel hardware design for a memory prefetching subsystem targeted
at DDR (Double Data Rate) memory in GPGPU architectures. The proposed prefetching
subsystem features a modular architecture comprising multiple parallel prefetching en-
gines, each handling distinct memory address ranges with dedicated data buffers and
adaptive stride detection algorithms that dynamically identify recurring memory access
patterns. The design incorporates robust system integration features, including context
flushing, watchdog timers, and flexible configuration interfaces, for runtime optimization.
Comprehensive experimental validation using real-world workloads examined critical
design parameters, including block sizes, prefetch outstanding limits, and throttling rates,
across diverse memory access patterns. Results demonstrate significant performance im-
provements with average memory access latency reductions of up to 82% compared to
no-prefetch baselines, and speedups in the range of 1.240-1.794. The proposed prefetching
subsystem successfully enhances memory hierarchy efficiency and provides practical de-
sign guidelines for deployment in production GPGPU systems, establishing clear parameter
optimization strategies for different workload characteristics.

Keywords: GPGPU; hardware prefetching; memory system; DDR; DRAM memory; parallel
computing; high-performance computing (HPC)

1. Introduction

General-purpose computing on graphics processing units (GPGPUs) are specialized
hardware devices designed to perform highly parallel computation systems [1-9]. Their
target is to accelerate a wide range of computational tasks, including ML, high-performance
computing, scientific simulations, data analytics, and more. Such workloads are typically
offloaded from CPUs to GPGPUs, which can provide significant performance improve-
ments. From an energy and power perspective, GPGPUs are highly efficient computing
engines that exploit massive data parallelism by utilizing identical processing elements
capable of executing numerous threads simultaneously in a Single Instruction Multiple
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Threads (SIMT) manner. Consequently, GPGPUs are exceptionally suitable for throughput-
oriented tasks, as their parallel architecture not only leverages inherent workload data-level
parallelism but can also effectively mitigates high memory latency.

GPGPUs have gained significant popularity in recent years due to their ability to
accelerate ML applications [8-10], such as vision recognition, natural language processing,
and video analytics. ML algorithms often involve large datasets and complex computations,
which can be time-consuming to execute on traditional CPUs. GPGPUs, however, are well
suited for ML applications that exhibit massive data parallelism and require extensive
matrix and vector processing during both training and inference. As GPGPUs execute
a massive number of threads, their performance is highly dependent on the memory
system to provide sufficient bandwidth. To support high-bandwidth connectivity with
the memory, GPGPUs incorporate specific architectural features, such as a multi-level
memory hierarchy with several levels of cache, wide off-chip multiple Double Data Rate
(DDR) DRAM memory channels, memory compression mechanisms, and high-bandwidth
memory (HBM). Although GPGPUs can hide memory latencies through thread switching,
there are several scenarios where this approach is insufficient. To further reduce memory
latency, GPGPUs often employ memory prefetching techniques.

Memory prefetching [11,12] is a technique used in computer systems to improve
memory access times by predicting and loading data into the cache or local memory before
it is requested by the processor. There are several approaches to memory prefetching,
including hardware-based prefetching, software-based prefetching, and hybrid approaches
that combine hardware and software prefetching. Including memory prefetching offers
several potential benefits in GPGPUs.

1. Improve memory hierarchy efficiency. GPGPUs incorporate large memory hierar-
chies, enabling a wider range of applications to be executed efficiently. However,
relying solely on the memory hierarchy system to handle complex memory access
patterns in GPGPU workloads has been shown to be inefficient [2,13]. Moreover, due
to the large number of concurrently executing threads, it is highly challenging for
GPGPUs to exploit data locality and utilize cache structures as effectively as general-
purpose processors. Consequently, data movement between main memory and caches
often results in contention and degraded performance [14-16]. Memory prefetching
can detect memory access patterns and proactively fetch the required data into the
cache or local memory before it is needed, thereby improving the effectiveness of the
memory hierarchy.

2. Improve data locality. The large number of threads running on a GPGPU can signifi-
cantly impact data locality. Due to the limited capacity of the memory system, as the
number of concurrent threads increases, the pressure on memory resources rises. This
leads to an increased cache miss ratio and restricts the footprint size of each thread
in the on-chip memory. In such scenarios, memory prefetching can enhance memory
locality and reduce the average memory access time.

3. Reduce asynchronous task switching overhead. Heterogeneous systems consisting
of a CPU and a GPGPU often execute workloads divided into two kernels: a control
kernel running on the CPU and a computational kernel with data parallelism running
on the GPGPU. These workloads are structured such that the control kernel executes
on the CPU first. Once completed, the workload is passed to the GPGPU for execution
of the computational kernel. Upon completion, the results are passed back to the
CPU. This asynchronous back-and-forth task switching between the CPU and GPGPU
can continue until the workload is complete. During each task switch, it is necessary
to reload the thread context into the GPGPU’s local memory, which increases task
switching overhead and reduces overall throughput. Memory prefetching can mitigate
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this overhead by preloading necessary data into the GPGPU’s local memory, thereby
improving overall utilization.

4. Improve core utilization. GPGPUs execute a massive number of threads using fine-
grained scheduling. Since threads are switched every clock cycle, any long-latency
memory access or absence of required data in the local memory may stall threads,
reducing effective core utilization. Memory prefetching can minimize these memory
access latencies, thereby enhancing GPGPU utilization and overall performance.

The efficient handling of memory access patterns in GPGPUs is crucial for achieving
high performance in data-intensive workloads such as ML, scientific simulations, and
high-performance computing. While traditional memory hierarchies and thread-switching
mechanisms are effective in mitigating memory latency, they often fall short when memory
resources are limited. This paper proposes a novel hardware prefetching subsystem tailored
for GPGPU architectures to address these challenges.

We introduce a DRAM-based memory prefetching subsystem for GPGPUs, primarily
targeted at DDR memory via a standard Advanced eXtensible Interface (AXI) bus [17],
with similar applicability to HBM. The proposed prefetching subsystem features a modular
architecture comprising multiple parallel prefetching engines, each configured to handle
distinct non-overlapping memory address ranges. Each engine maintains a self-learned con-
text that dynamically adapts to the memory access patterns of its assigned range, enabling
efficient detection and prediction of stride-based and spatially local memory accesses. The
prefetch subsystem integrates a primary scheduler that routes memory transactions to the
appropriate prefetch engine or directly to the memory controller when outside the prefetch
engine’s address range. Additionally, each prefetch engine is equipped with dedicated data
buffers, queues, and a configurable stride detection mechanism that identifies and predicts
recurring memory access patterns. To ensure robustness and adaptability, the design incor-
porates features such as context flushing for handling changes in access patterns, watchdog
timers to recover from system inactivity or deadlocks, and a flexible configuration interface
for fine-tuning operational parameters. By leveraging these architectural elements, the
prefetch engine proactively fetches data blocks before they are requested by the GPGPU,
significantly reducing memory latency and improving overall system throughput. This mi-
croarchitectural design not only enhances memory hierarchy efficiency but also optimizes
parallelism by minimizing thread stalls caused by long-latency memory accesses.

To validate the effectiveness of our proposed prefetch subsystem design, we conducted
an extensive experimental analysis using real-world workloads across diverse GPGPU
applications. Our comprehensive evaluation framework examines multiple critical design
parameters including block sizes (ranging from 32 bytes to 256 bytes), prefetch outstanding
limits, and throttling rates to characterize the prefetching engine’s performance under
various operational conditions. The experimental analysis encompasses memory access
pattern analysis, demonstrating latency improvements, with particular focus on applica-
tions with predictable access patterns such as convolutional neural networks (CNNs) and
more complex workloads with irregular memory access behaviors. Our results demonstrate
that the proposed prefetching subsystem can achieve significant memory access latency
reductions of up to 82% compared to no-prefetch baselines, with speedups in the range of
1.240-1.794x. The experimental validation reveals critical insights about the relationship
between prefetch configuration parameters and performance, showing that larger block
sizes (256 bytes) provide superior performance for spatially local access patterns, while
smaller block sizes with minimal outstanding requests prove optimal for stride-based ac-
cess patterns. Additionally, our analysis demonstrates the importance of proper throttling
rate selection, revealing that aggressive prefetching beyond optimal thresholds can de-
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grade performance below baseline levels, emphasizing the need for adaptive configuration
mechanisms in practical GPGPU prefetching implementations.
The main contributions of this paper are as follows:

1. Modular DRAM-based Prefetching Engine. We propose a specialized hardware
prefetch subsystem for GPGPU architectures featuring multiple parallel engines with
dedicated address ranges, self-learned context mechanisms, and adaptive stride detec-
tion for efficient handling of diverse memory access patterns.

2. Robust System Integration Features. We design comprehensive system-level features, in-
cluding context flushing for handling access pattern changes, watchdog timers for deadlock
recovery, and flexible configuration interfaces for runtime parameter optimization.

3. Comprehensive Experimental Validation. We conduct an extensive performance
analysis using real-world workloads, demonstrating memory access latency improve-
ments of up to 82% and providing detailed characterization of optimal configuration
parameters, including block sizes, outstanding limits, and throttling rates.

4. Design Guidelines and Performance Insights. We provide critical insights into
the relationship between prefetch configuration parameters and performance across
different workload types, establishing guidelines for optimal prefetcher deployment
in practical GPGPU systems.

The remainder of this paper is organized as follows: Section 2 provides the background
and discusses related work on memory prefetching techniques. Section 3 introduces the de-
sign and microarchitecture of our proposed DRAM-based prefetch subsystem, detailing its
key components and operational mechanisms. Section 4 describes the simulation environ-
ment used to evaluate the performance of the prefetch subsystem, including the workload
setup and metrics used for analysis. Section 5 presents the results of our experimental
analysis, highlighting the improvements in memory hierarchy efficiency, data locality, and
system throughput. Section 6 discusses the trade-offs of prior prefetching approaches
for GPGPUs and presents a comparison with our proposed scheme. Finally, Section 7
concludes the paper, summarizing the contributions and outlining potential directions for
future research.

2. Background and Related Work

This section provides an overview of GPGPU architecture, DDR and HBM memories,
and prior works related to prefetching in GPGPUs.

2.1. GPGPU Architecture

A GPGPU typically comprises several key components, as illustrated in Figure 1,
which depicts the architecture of Nvidia’s Fermi GPU [1-7,9]:

*  Multiple processing cores that are organized into one or more “streaming multiproces-
sor” (SM) units as illustrated in Figure 2. Each SM unit is responsible for executing a
set of instructions in parallel such that all processing cores at any given time execute
the same instruction of different data elements. SM also consists of a large register
file, an instruction cache, a data cache/scratchpad memory, a dispatch unit, and a
thread scheduler.

* L2 cache/shared memory is located between the SMs and the external physical mem-
ory. The shared memory is used to store shared data between all SMs.

*  Multi-channel off-chip physical memory (DRAM) is typically slower than the other
types of memory in the GPGPU but is much larger and can be used to store larger
amounts of data. GPGPUs typically employ multiple memory controllers which
provide multiple simultaneous access channels to the physical memory to satisfy the
high bandwidth requirements.
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Figure 1. Fermi GPU architecture with 16 streaming multiprocessors (source: Nvidia [1]).

CUDA Core

Dispatch Port
Operand Collector

Result Queue

Figure 2. Fermi GPU streaming multiprocessor architecture (source: Nvidia [1]).

GPGPUs employ hierarchical thread scheduling mechanism [1]. A workload as-signed
to the GPGPU, often referred to as a kernel, is composed of multiple blocks. Each block
consists of multiple threads that are assigned to a single SM. The SM executes the threads
within a block in a fine-grain scheduling manner. The SM scheduler divides the threads



Technologies 2025, 13, 455

6 of 31

within the block into groups of warps. In addition, the SM scheduler retrieves a single
instruction from all the threads in a warp to be executed simultaneously. This process is
repeated every clock cycle for each warp. Once the execution of an instruction is completed
for all threads of the block, the thread scheduler proceeds to execute the next instruction in
a similar fashion.

2.2. DDR Memory and HBM

DDR DRAM [18] has long been the primary memory technology in GPUs and CPUs,
offering high density and relatively low cost. DDR achieves higher throughput than single-
data-rate memories by transferring data on both the rising and falling edges of the clock
signal. Its operation relies on multi-bank architectures and burst transfers, where rows
are activated, data is read or written sequentially, and precharge operations restore the
bank state. DDR modules are typically organized in channels and ranks, each with an
independent command, address, and data interface, enabling parallelism at the system
level. While DDR provides scalability and flexibility, its bandwidth is limited by off-chip
signaling constraints and relatively narrow interfaces.

HBM [19], in contrast, is designed to overcome these bandwidth limitations by using
3D-stacked DRAM dies connected through through-silicon vias (TSVs). HBM integrates
wide interfaces (typically 1024 bits per stack) directly adjacent to the GPU die via an
interposer, drastically reducing signal distance and increasing bandwidth per watt. The
principle of operation is similar to DDR in terms of bank activation and burst transfers, but
HBM'’s massively parallel interface and physical integration enable much higher sustained
throughput. Although this work primarily targets DDR-based memory systems, the same
prefetching concepts can be extended to HBM, since the fundamental principles of bank-
level access, burst transactions, and row-buffer locality remain applicable.

2.3. Prior Works

Extensive research has been conducted on prefetching methods. Generally, there are
three major kinds of prefetching methods: software-based prefetching, hardware-based
prefetching, and combined hardware and software prefetching.

Software-based prefetching methods typically rely on compiler algorithms to insert
prefetching instructions [20-24]. A compiler algorithm for inserting prefetching instructions
into codes that operate on dense matrices was introduced in [21]. Data references that are
likely to be cache misses are identified by the compiler algorithm, and prefetches are issued
only for them. An improved compiler algorithm, Resource-Aware Prefetching (RAP), was
proposed in [22]. The RAP algorithm makes use of limited resources more efficiently. The
number of miss information/status holding register entries is used to control the prefetch
distance. Effective implementation of software prefetching can be challenging in real
applications [23]. The reduced latency must be significant enough to compensate for the
issue of prefetching instructions and the generation of addresses. An interesting use case of
software prefetching in computational fluid dynamic modeling was demonstrated in [24].
The authors discuss the importance of auto-tuning for determining the optimal prefetch
distances and the right prefetch destinations.

A hardware-based prefetching approach has been implemented in various types of
processors and includes sequential prefetching, stride prefetching, and global history buffer
(GHB) prefetching methods.

Sequential prefetching is based on spatial locality and assumes an access pattern in a
specific direction. The spatial locality of the pattern is used to prefetch consecutive blocks
in the same direction. One block look ahead (OBL), also known as next line prefetching,
initiates a prefetch for cache line b + 1 when cache line b is accessed. The number of
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prefetched cache lines can be increased from one to K, that is, prefetching cache lines
b+1,...,b+ Kwhen cachelineb is accessed. In stream prefetching, the prefetched data are
stored in stream buffers and not in the cache, thus avoiding cache pollution. In refs. [25-27]
the stream bulffer is used to aid the cache, prefetching cache lines one after another in
a certain pattern. The prefetched cache line will be presented to the cache in case of a
missed cache.

Stride prefetcher aims to determine patterns in the delta between the addresses of the
memory accesses. Once a pattern is detected, the prefetcher fetches one or more blocks
according to the pattern. In [28], a separate cache called the Reference Prediction Table
contains previous reference addresses and recent strides. The Reference Prediction Table
is indexed by a look-ahead program counter (ahead of the real program counter), which
is used to control the prefetches. In [29], a stride prediction table is used to determine the
distances between strides made within the loop body of a numerical program.

The GHB prefetcher stores all the global addresses of the missed accesses in a FIFO
buffer [30]. These addresses are placed at the bottom of a table and removed from the
top. Linked lists within the buffer maintain GHB history information. GHB prefetcher
can be used in conjunction with sequential prefetching or stride prefetching. Elements
of software and hardware prefetching can be combined. For example, the number of
prefetched cache lines K for each access may be calculated by the compiler and passed to
the hardware prefetcher.

Prefetching mechanisms for GPGPU have been proposed in several studies. Most of
them are variations of the described methods. However, straightforward implementations
of CPU-like prefetching mechanisms may not improve performance [31]. A GPGPU
compiler for memory optimization and parallelism management was proposed in [32].
Memory accesses are analyzed by the compiler and a temporary variable is used to prefetch
data. GPGPU memory usage is improved, and workload is distributed in threads and
thread blocks. Thread-level and data-level parallelism are assumed to be observed by
application developers and the optimized compiler is used to optimize memory and
parallelism performance. One of the challenges of the software-based prefetching approach
is the limited capability of the compiler to predict prefetched memory addresses at compile
time, especially for applications with irregular or dynamic memory access patterns. This
limitation can result in suboptimal prefetching decisions, increasing memory utilization
and may result in cache pollution.

A next-line prefetching technique, in conjunction with a warp scheduling technique
for improving GPGPU performance and the efficiency of the prefetching, was proposed
in [33]. The prefetching mechanism with the aware scheduling technique aims to improve
L1 hit rates in GPGPUs and to improve DRAM row locality. However, this prefetching
method may provide only a small improvement in performance [34].

Stride prefetching methods for GPGPUs may be categorized into intra-warp stride
prefetching and inter-warp stride prefetching. Intra-warp stride prefetching is based
on targeting future load instructions in the same warp. Intra-warp stride prefetching
mechanisms for graph algorithms on GPGPUs were proposed in [35]. Target loads detected
by the hardware data are prefetched into unallocated registers that are not being used by
other active threads. Inter-warp prefetching mechanisms are based on the detection of
stride patterns and base addresses in different warps. A many-thread-aware prefetching
mechanism for GPGPU applications based on inter-stride prefetching was proposed in [31].
Cooperative thread array (CTA)-aware prefetcher and scheduler based on using a leading
warp to compute base addresses of CTAs was proposed in [34,36]. Adaptive inter-stride
prefetching mechanisms on GPGPUs for reducing power consumption were proposed
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in [37]. Inter-warp prefetching combined with orchestrated scheduling mechanisms for
GPGPUs were proposed in [38].

In [39], a prefetching mechanism for L1 caches was proposed based on using a ded-
icated pattern descriptor specification. Warp-aware selective prefetching based on the
dynamic selection of slow progress warps was proposed in [40]. Adaptive prefetching
and scheduling architecture (APRES) based on a dynamic L1 prefetch and data cache
partitioning was proposed in [41]. In APRES, high locality and patterns of stride accesses
across warps are used to increase cache hits. Latency-tolerant register file architecture
(LTRF) based on hardware and software cooperative register prefetching was proposed
in [42]. LTRF is based on a two-level hierarchical register structure where the estimated
working set is being prefetched to a register cache.

Typical prefetching mechanisms may not be highly efficient when irregular memory
accesses are required, e.g., in graph analytics problems. In [43], a data-structure-aware
prefetching (DSAP) mechanism was proposed in order to accelerate the breadth-first search
algorithm. Adaptive fine-grain prefetching management is used to increase the efficiency
of the prefetching. Finally, ML-based prefetchers have gained a lot of interest recently.
ML-driven prefetchers learn memory access patterns and prefetching can be modeled as a
classification problem for sequence prediction. For attempts in this direction see, e.g., [44]
and references therein.

3. GPGPU Prefetcher Design

In this section, we describe the microarchitecture of our proposed GPGPU data
prefetcher and provide the details on the design implementation.

3.1. Microarchitectural Overview

The system-level overview of our proposed GPGPU data prefetcher is illustrated in
Figure 3. The data prefetcher is located between the GPGPU memory bus and the DRAM
controller. The GPGPU is connected to the data prefetcher through the standard Advanced
eXtensible Interface (AXI) 4.0 [17] primary bus, where the GPGPU issues memory access
transactions to the DRAM physical memory. The data prefetcher module is connected to a
DRAM memory controller through a subordinary AXI bus. On the primary AXI bus, the
GPGPU is the bus master, while the prefetcher is the bus slave, and in the subordinary AXI
bus, the prefetcher acts as a master while the DRAM memory controller acts a slave. Table 1
lists the main AXI channel signals, including their bit-widths, directions, and functional
roles in read and write transactions. The prefetcher maintains a set of control registers
which are initialized by the GPGPU to configure the prefetcher operation and will be
described later. The CPU, DRAM controller, and the DRAM physical layer (PHY) are
illustrated in Figure 3 for the sake of clarity of the overall system and are out of the scope
of this work.

A detailed microarchitectural scheme of the prefetcher is depicted in Figure 4. The
prefetcher subsystem consists of a set of parallel prefetch engines (the number of engines is
a design parameter that can be set at the design stage). Every prefetch engine maintains
the following: 1. a self-learned context which is distinctly configured to handle a specific
non-overlapping memory address range, and 2. data buffers and queues. A prefetch
engine can handle only transactions that fall into the prefetch engines” address range, while
transactions that fall out of all the prefetch engines” address ranges are routed directly
to the subordinate AXI bus. The usage of multiple prefetch engines allows for handling
multiple different working sets and data streams within a single or multiple threads.
Memory accesses issued by the GPGPU are scheduled by the prefetch subsystem’s primary
scheduler and are assigned to a prefetch engine. The primary scheduler also forwards
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all other accesses that do not fall into the memory regions of the prefetch engines to the
subordinary AXIbus. The primary scheduler also handles all the returning access responses
from the memory system (e.g., read responses) or responses from the prefetch engines to
the GPGPU. All DRAM memory accesses that are initiated by the prefetch engines are
handled by the prefetch subsystem’s subordinary scheduler and are forwarded to the AXI
subordinary bus. The subordinary scheduler also forwards all the returning responses
from the DRAM memory controller to the corresponding prefetch engines or the primary
scheduler (when the response is not related to any of the prefetch engines).

Configuration
registers

GP-GPU Prefetch
Subsystem

.
g 3
= @
2 ‘©
= 9]
< =]
€ IS
] o
2 g
= @
3 £
= T

NEI Master
Ports Ports

Primary AXI Subordinary AXI

Figure 3. The GPGPU prefetcher system-level block diagram.

Table 1. AXI channel signal summary.

Data Field Number of Bits Direction (m/s) Description
AXI Read Request Channel

valid 1 Output/Input Read request valid

ready 1 Input/Output Read request ready

len 8 Output/Input Burst length

addr 64 Output/Input Read address

. Read request

id 7 Output/Input transaction ID

AXI Read Data Channel

valid 1 Input/Output Read data valid

ready 1 Output/Input Read data ready
Last read data

last 1 Input/Output indicator

data 256 Input/Output Read data

id 7 Input/Output ~ ead response

transaction ID

AXI Write Request Channel

valid 1 Output/Input Write request valid
ready 1 Input/Output Write request ready
len 8 Output/Input Burst length

addr 64 Output/Input Write address

id 7 Output/Input Write request

transaction ID
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Figure 4. The GPGPU prefetch subsystem high-level block diagram.

The microarchitecture of the prefetch engine is depicted in Figure 5. The prefetch

engine comprises two modules: a controller, which is responsible for managing the prefetch

engine operation, and data buffers and queues that host the prefetched data blocks. The

prefetch engine has the following features:

1.

Detection and learning capability of relevant transactions. Based on the arbitration
configuration policy (which will be described later) and the prefetcher engine context,
each transaction is either claimed by its dedicated prefetch engine that is assumed to
take the ownership for handling the transaction or forwarded to the DRAM controller.
Stride access detection and prediction. The prefetch engine can exploit both spatial
and temporal locality of memory accesses on the primary AXI bus. Repeated accesses
on the primary AXI bus (temporal locality) can leverage fast access to data stored in
the prefetch engine data buffers. Additionally, memory accesses with a fixed address
stride are learned by the prefetch engine resulting in prefetching data blocks with a
corresponding stride.

Self-learned context, which maintains the state of the engine during the prefetch
operation. The context consists of the following elements:

(@)  AXI transaction ID (AXI ID): Specifying the transaction ID field on AXI bus
for the prefetch transactions. The AXIID is used to avoid ordering violations
and guarantee consistency and coherency of all transactions within the same
AXIID.

(b)  AXIaddress: Identifying the next address to be prefetched from the memory system.

() AXlIburst length: Denoting the number of beats required for a burst operation.
Typically, consecutive memory accesses are assumed to have the same burst
length and size.

(d)  Stride: Specifies the learned distance between two consecutive memory accesses
issued on the primary AXI bus that are within the memory region of the
prefetch engine.

Flush mechanism: When a new transaction mapped to the prefetch engine misses the
learned context, i.e., the requested data are not available in the data buffer or when
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the stride is changed, the prefetch engine will flush its learned context and restart the
learning process.

5. Watchdog timer: Upon detection of a lack of activity either on the primary AXI
bus or the subordinary AXI bus (due to a potential system failure or deadlocks), a
designated watchdog mechanism will flush the learned context of the prefetcher and
allow restarting to learn a new context.

6. Configurability: Allowing users to configure prefetch engine functionality, which will
be further described.

~

Primary AXI: Data Data Path

Controller m
FSMs Prefetch data buffers and
Op Code queues
AXI

Predictor «—» transactions
handler

Learned context j

Figure 5. Prefetch engine microarchitecture.

Primary AXI: Address and Control

The design implementation details of the GPGPU prefetch engines and subsystem are
described in the next subsections.

3.2. Prefetch Engine Microarchitecture

The prefetch engine is connected to both the primary and subordinate AXI buses. Each
prefetch engine AXI interface includes three channels: read address, read data, and write
address. The AXI write data and write response channels bypass the prefetch engines and
are forwarded from the GPGPU interface directly to the memory interface. Upon every
memory transaction initiated by the GPGPU, the prefetch engine acts as follows:

1. Read or write memory accesses that are outside the address range of the prefetch
engines are forwarded directly to the DRAM controller.

2. Read memory accesses that hit the address window of the prefetch engine are claimed by
the prefetch engines, which take ownership generating a read response to the GPGPU.

3. Write memory accesses within the address range of the data stored in the prefetch
buffer will result in flushing the learned context. The data prefetched by the engine
will be disposed, outbound prefetch requests will be canceled, and the prefetch engine
will initiate the learning process anew.

The prefetch engine controller and its data path, illustrated in Figure 5, operate
concurrently. The controller is responsible for managing the AXI channels connected to
the prefetch engines using two FSMs: The first FSM, denoted as a “Predictor” in Figure 5,
manages the prefetch context, handles the learning process, and predicts the next prefetch
transactions. The second FSM is the AXI transaction’s handler, which is responsible
for managing inbound and outbound memory transactions in accordance with the AXI
protocol. The data plane module consists of a prefetch queue that holds the pending
prefetch requests and data blocks prefetched from the memory system. Both control and
data planes communicate bidirectionally. The data plane exposes its internal state to
the control plane, while the controller manages the data plane using a set of designated
command through Opcodes (operation codes) that will be described is Section 3.4.

3.3. Controller Microarchitecture

The controller includes the predictor FSM and the AXI transaction’s handler. The
predictor FSM consists of four states required to learn stride-based patterns, predicting the
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next block address, and issuing the prefetch read access based on the learned pattern. The
following are the predictor states:

e IDLE. An initial state. Upon the first read request, that falls into the prefetch engine
address range, the predictor stores the AXI ID and AXI burst length, and transitions to
the ARM state.

*  ARM. Upon a read request, that falls into the prefetch engine address range, if the
AXIID and burst length match those learned in the IDLE state, then 1. the stride will
be stored in the prefetch engine context as the distance from the current address to the
address stored in the context, and 2. the predictor will transition into an ACTIVE state.
In case of mismatch, the predictor will transition to a CLEANUP state.

*  ACTIVE. On every cycle, the predictor will issue consecutive prefetch requests if the
following conditions apply: 1. The number of outstanding prefetch requests have
not reached the configured limit (specified in the configuration registers which will
be described later). 2. The prefetch queue in the data plane has sufficient storage
space for the next prefetch request. 3. The predicted prefetch address falls within the
configured address range. In case of a new read request that mismatches the learned
context, the controller will transition to the CLEANUP state.

¢ CLEANUP. This state can be reached by the conditions that have been described
previously, or by a special signal indication from the arbiter. It prevents receiving new
requests from the AXI initiator until the completion of all outstanding requests, to
ensure a safe flush.

The AXI transaction handler (illustrated in Figure 5) executes memory transactions in ac-
cordance with the AXI bus protocol and the state of the data path (described in Section 3.4).
When a transaction is initiated, the handler asserts the required AXI bus signals and sends
the necessary indications to the Predictor and the data path through the designated Opcode.
The handler prioritizes the handling of transactions in the following order:

*  Valid read request from the AXI initiator. When a new transaction is initiated on the
primary AXI bus, the handler acknowledges the initiator’s request and assigns a new
request to the data path. In the case of a read request falling into the prefetch window
that has not been prefetched yet, it issues a new read request to the subordinate
AXI bus.

*  Data path responses. When new read responses have been prefetched to the data path,
the handler dispatches the data from the data path to the AXI initiator.

*  Subordinate AXI bus pending responses. When the subordinate AXI bus initiates a
response, the handler acknowledges the subordinate bus response and places the data
responses into the data path buffers.

e Ready address prediction. When a new address prediction is ready, the handler
initiates a new prefetch transaction to the subordinate AXI bus.

In addition to initiating data transfer events, the prefetch engine also follows the AXI
protocol sequence to communicate with the memory controller (DDR or HBM2). When a
prefetch request is triggered, the prefetch subsystem asserts the valid signal on the AXI
read request channel while providing the burst length (1en), starting address (addr), and
transaction identifier (id). The memory controller responds by asserting ready, completing
the handshake and accepting the request. After the request is issued, the memory controller
returns data over the AXI read data channel. For each beat of data, the memory controller
asserts valid while driving the data and associated id fields. The prefetch subsystem
responds with ready, ensuring proper flow control. The final beat of a burst is indicated
by the last signal. The prefetch engine buffers the received data into its internal buffer
until the demand access from the GPGPU core consumes it. Write requests follow a similar
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handshake, where the prefetcher forwards a GPGPU request by issuing the addr, len,
and id signals on the write request channel, followed by data transfers on the write data
channel, each synchronized with valid/ready handshakes. The completion of the write
burst is confirmed through the write response channel with the corresponding transaction
id. Figure 6 illustrates the communication sequence for a typical read transaction.

Prefetch Engine Memory (DDR/HBM) Controller
Request Channel

VALID, ADDR, LEN, ID

READY

Data Channel

VALID, DATA, ID

READY

...burst continues...
VALID (LAST=1)

<

Figure 6. AXI read communication sequence between the prefetch engine and memory controller.

3.4. Data Path

The data path incorporates a prefetch data queue composed of data containers. Each
data container serves as a storage unit for prefetched data within the queue, supporting
a scalable number of data blocks and configurable block sizes, both defined by design
parameters. Additionally, a data container is capable of handling burst transfers, which
involve sequentially binding multiple AXI data beats. The queue of data containers is
managed using three pointers:

1. The head-of-queue pointer, which identifies the block at the front of the queue;

2. The tail pointer, which indicates the next available block to be populated;

3. The burst offset pointer, which tracks the position of the next AXI beat within an
ongoing burst transfer.

The data container is controlled by the controller using a set of Opcodes, which define specific
operations for managing container blocks. These Opcodes enable the following functionalities:

1. Reserve. Allocates a container block in the queue for a new prefetch request.

2. Read. Retrieves data from a container block for transfer to the primary AXI bus initiator.

3. Write. Stores incoming data from the subordinate into a previously reserved block
within the queue. The controller provides the burst length information from the
prefetch engine context as part of this command.

4. Flush. Used by the controller to clear the container data when transitioning to
CLEANUP state.

The data path communicates its status to the controller through the following signaling
mechanisms:

*  Queue Almost Full. Signals that the container queue has reached a predefined “almost
full” threshold. This notification informs the controller about the queue’s occupancy
level, enabling proactive management of incoming data.

e Prefetch Request Count. Provides the controller with the total number of prefetched
requests currently stored in the container queue. This count allows the controller to
enforce the configured limit on outstanding prefetch requests.

*  Outstanding Request. Indicates the presence of at least one pending request in the
queue. During the controller’s CLEANUP state, this signal ensures that the controller
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refrains from initiating a flush operation until all outstanding requests have been
fully processed.

3.5. Configurable Features

The prefetch engines and subsystem are equipped with dedicated configuration regis-
ters. The registers are exposed as memory-mapped configuration registers, allowing them
to be programmed at runtime. They can be updated either by the external CPU, through
the GPGPU'’s configuration space mapped into the CPU’s address space, or by kernel code
executed on the GPGPU if the configuration is embedded in the launch parameters. While
the number and structure of these registers are fixed at the design stage, their contents
can be reprogrammed dynamically, ensuring flexibility across different workloads. The
configuration registers comprise the following:

¢  Address Range Configuration (Bar and Limit). Specifies the memory address range
for each prefetch engine. Only read requests within the defined address range are
processed by the prefetch engine, ensuring efficient handling of memory operations.
¢  Prefetch Engine Performance Settings.

—  Outstanding Prefetch Requests. Sets an upper limit on the number of outstanding
prefetch requests. This limit prevents oversubscription of a prefetch engine and
ensures fair resource allocation, avoiding starvation of other engines.

- Bandwidth Throttling. Defines the maximum rate of prefetch requests. This
configuration enables control over the bandwidth consumption of individual
prefetch engines, optimizing system performance.

*  Almost Full Threshold. Establishes the threshold value for prefetch buffer occupancy,
signaling when the buffer is nearing its capacity.

*  Watchdog Timer. Specifies the time limit for the watchdog timer, which will be
elaborated upon in subsequent sections.

3.6. Prefetch Engine Flow of Operation

The complete flow of the prefetch engine is summarized in the flow diagram illustrated
in Figure 7. The flow diagram shows that the prefetch engine’s learning process is triggered
by a read request that falls into the memory window. In this case, the prefetch engine
moves from IDLE state to ARM state and learns the AXI ID, burst length, and start address
of the memory access. In the ARM state, the prefetch engine waits for the next request
that falls into the memory window. In the case of a write request or read request that does
not match the AXI ID or burst length, the prefetch engine moves to CLEANUP state and
flushes the learned context. Otherwise (when a read request matches AXI ID and burst
length), the prefetch engine learns the address stride of the memory access. The stride
is calculated by subtracting the new memory access address from the previous one. The
prefetch engine then transitions from ARM to ACTIVE state. As long as the prefetch engine
receives read requests that fall into the configured memory window and match the burst
length and AXI ID, it remains in the ACTIVE state. In addition, in the ACTIVE state, the
prefetch engine continuously performs prefetching of the learned context as long as it does
not exceed the number of outstanding prefetch requests and bandwidth throttling limit
described previously. In the case of write access or any access that does not match the
AXIID or burst length (assuming it falls into the prefetch engine memory windows), the
prefetch engine transitions into the CLEANUP state and flushes the learned context. When
the context is flushed, the prefetch engine moves back to the IDLE state and starts the
learning process anew.
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Figure 7. Prefetch engine flow diagram. The state of the predictor FSM is indicated by square brackets.

To illustrate the operational flow of the prefetch engine, consider the following exam-

ple. Assume the prefetch engine is configured with an address range of 0x1000-0x2000

and its container includes 16 blocks. The following is the sequence of memory accesses
performed by the GPGPU.

1.

Read request. Address: 0x1000, burst length: 3, AXI ID: 10.

¢ The prefetch engines store the address, AXI ID, and burst length in prefetch context.
¢  The prefetch engine transitions into the “ARM’ state.

Read request. Address: 0x1004, burst length: 3, AXI ID: 10.

*  Since the access address falls into configured window and matches the learned
burst length and AXI ID, the prefetch engine calculate and store the stride in
the prefetch context which consists of the following learned context: stride: 0x4,
burst length: 3, AXI ID: 10.

*  The prefetch engine transitions into the “ACTIVE’ state.

The prefetch engine issues a prefetch request to fetch the next predicted address:
0x1008, burst length: 3, AXI ID: 10. Once the data of the prefetch request is received
from memory, the prefetch engine stores the data in the container.

The GPGPU issues a read request on address: 0x1008, burst length: 3, AXI ID: 10. Since
the data has already been prefetched, the data is forwarded immediately to the GPGPU.
The GPGPU performs a read request of address: 0x1100, burst length: 3, AXI ID: 10.

*  The request has a mismatch with the learned stride in the prefetch engine.
*  The prefetch engine moves to CLEANUP state and forwards the request to the
subordinary AXI bus.

When there are no outstanding requests, the prefetch engine flushes the learned
context and data container and transitions to IDLE state.

4. Simulation Environment

We conducted an experimental performance analysis of our prefetching subsystem

within an integrated testbench simulation environment developed in SystemVerilog. Our
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environment, illustrated in Figure 8, includes the prefetch subsystem, along with behavioral
stubs representing the GPGPU, DDR memory, and CPU. The CPU stub serves as the central
orchestrator, managing control over the entire system. The simulation environment executes
a variety of GPGPU workloads, which will be detailed in subsequent sections.

Simulation Testbench
CPU stub

- Configuration

space

Prefetch Subsystem
GPU stub SystemVerilog Model

NEV Master
Ports

GPU memory trace

Figure 8. Prefetch engine simulation environment.

4.1. DRAM Memory Stub

The DRAM memory stub, illustrated in Figure 9, is assumed to model either DDR
memory operation under the following assumptions.

DRAM Stub

AXI DRAM
Responder

Response

Figure 9. DRAM memory stub.

e Every prefetch engine is associated with a single DRAM memory window.

e The DRAM memory stub maintains a single queue for all memory requests serving in
a “First-Come First-Serve” (FCFS) policy.

*  The DRAM memory controller page policy assumes an open-page policy, i.e., last
accessed memory page is kept open. This allows accesses that fall into the open page
to be accessed faster (fast page mode).

All read requests are enqueued into a First-Come, First-Served (FCFS) queue. After being
dequeued, the requests pass through a delay module that emulates DRAM memory latency.
The latency is determined based on whether the memory access targets an open page or a
closed page. An open-source AXI DRAM Responder module [45] is utilized to manage the
responses to read requests. In contrast, all write requests are treated as posted transactions,
with the DRAM stub immediately acknowledging them upon receipt.
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4.2. GPGPU and CPU Stubs

The GPGPU stub processes memory access traces generated by the gpgpu-sim sim-
ulator [46]. The gpgpu-sim is a cycle-accurate GPU simulator that includes a functional
model which simulates the parallel thread instruction execution on the GPGPU cores. The
simulator can run CUDA or OpenCL computing workloads. The stub reads memory access
records from the trace file and generates transactions on the AXI bus while adhering to the
time intervals specified in the trace file. It comprises two key SystemVerilog modules:

*  Trace Module. Responsible for reading the gpgpu-sim trace file, parsing the memory
access records, and supplying the transactions.

e  AXI Initiator Module. Converts the transactions provided by the trace module into
AXI-compliant transactions and initiates them on the primary AXI bus.

The CPU stub is a SystemVerilog testbench module, which is responsible to configure the
prefetch subsystem, and GPGPU and DRAM memory stubs.

4.3. Complete Simulation Flow

The simulation framework is designed to evaluate the performance of the prefetching
subsystem within a SystemVerilog-based testbench environment. Figure 10 illustrates the
overall simulation flow of our framework. A CUDA application is executed on gpgpu-
sim, which generates memory access traces containing cycle-accurate address information.
These traces are then processed by the Tracer module to drive AXI transactions into the
prefetching subsystem. The subsystem communicates with the memory controller and
DRAM stub, while the Testbench Monitors capture latency, efficiency, and performance
metrics for analysis. This representation highlights the interaction between simulation
components and the way the prefetching subsystem is evaluated. The flow, depicted in
Figure 10, comprises several interconnected components.

e Trace Generation @. Memory access traces are generated using gpgpu-sim executing
CUDA-based applications. The traces contain memory access records, including cycle
numbers and addresses.

e Tracer Module @. The Tracer module reads the gpgpu-sim trace files and processes
the memory access records. It ensures that transactions are generated on the AXI bus
while adhering to the timing constraints specified in the trace file.

¢ Prefetching Engine: The prefetcher is the core component under evaluation. It interacts
with two sets of AXI ports.

- Slave Ports €. Receive memory transactions from the Tracer module.
- Master Ports @. Issue prefetching requests to the DRAM memory controller and
DRAM stub.

Additionally, the Configuration Space AXI Port is managed by the CPU stub, which
orchestrates the simulation and configures the prefetcher.

e Memory Controller and DRAM Stub @: The Memory Controller and DRAM stub em-
ulate DRAM memory behavior, including latency modeling for open and closed page
accesses. This stub responds to read and write requests generated by the prefetcher
and Tracer modules.

e  Testbench Monitors @. Testbench Monitors collect statistics during the simulation,
including memory latency, prefetching efficiency (defined as the fraction of memory
accesses served by useful prefetches, as reflected in the reduced-latency bins of the
histograms), and overall system performance. These metrics are compiled into a
Statistics Report File for post-simulation analysis.
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Figure 10. Simulation flow.

5. Experimental Analysis

Using the simulation environment introduced earlier, we conducted performance
evaluations on two distinct benchmarks: a CNN which is part of the gpgpu-sim bench-
mark suite [46] and the Needleman-Wunsch (NW) [47] algorithm written in Cuda. These
testbenches were selected to represent applications with varying memory access patterns, al-
lowing for a comprehensive analysis of the prefetcher’s behavior under diverse workloads.
Both testbenches share the following hardware and memory configurations:

¢  Operating Frequency: 667 MHz.
*  DRAM Stub Configuration (aligned with DDRS5 specifications):

-  Page Size: 2 KBytes.
- Access Latency: 120 ns for page hits and 150 ns for page misses.

In addition, we have configured the prefetch engines’ memory regions based on the
profiling of the benchmark behavior to identify and characterize the dominant memory
access regions [48-50]. This ensures that the configuration reflects the actual access patterns
of each benchmark rather than an arbitrary choice. In our simulations, we assume that
memory regions are optimally configured, since arbitrary configurations could include
unused regions and would not be representative of realistic system behavior.

5.1. Benchmark Characteristics

As part of our experimental analysis, we start by examining two benchmarks: the
gpgpu-sim CNN model and the NW algorithms, which are described next.

5.1.1. CNN Model

The CNN model benchmark [46], part of the gpgpu-sim benchmark suite, consists of
a 5-layer inference model trained for the classification of handwritten digits. The model
reads activations and filter weights stored as tensors in memory and performs matrix
multiplications at each layer. The results of these matrix multiplications, representing the
activations for subsequent layers, are stored in memory for further processing. Figure 11
illustrates a sample of the CNN model’s memory access addresses over time during
execution on gpgpu-sim. Each point corresponds to a memory request at a given cycle,
showing clear evidence of spatial locality where consecutive addresses across multiple
regions are accessed repeatedly. The highlighted region in red indicates one such memory
range that is assigned to a dedicated prefetch engine. This mapping demonstrates how
regions are identified and bound to prefetchers to exploit locality, enabling more efficient
handling of access patterns and improving data retrieval performance.



Technologies 2025, 13, 455

19 of 31

250,000

245,000

240,000

235,000

230,000

]

225,000,

77[7,00[!‘

215,000

Address

210,000

205,000

200,000
30,000 50,000 70,000 90,000 110,000 130,000 150,000 170,000

Cycle
Figure 11. CNN model memory access patterns.

5.1.2. The Needleman-Wunch Algorithm

The Needleman-Wunsch algorithm [47] is a dynamic programming method used
for global sequence alignment, commonly applied in bioinformatics to align DNA, RNA,
or protein sequences. It constructs a scoring matrix to compute the optimal alignment
between two sequences by maximizing similarity while accounting for mismatches and
gaps. The algorithm initializes the first row and column of the matrix with gap penalties,
representing alignments with leading gaps. Subsequently, each cell in the matrix is filled
by calculating the maximum score among three possibilities: a match score derived from
aligning corresponding elements of the sequences, a gap penalty for insertion, and a gap
penalty for deletion. The following code snippet implements the matrix initialization and
filling steps of the Needleman-Wunsch algorithm:

d < Gap penalty score
for i = 0 to length(A)
F(i,0) « d = i
for j = 0 to length(B)
F(0,j) « d = j
for i = 1 to length(A)
for j = 1 to length(B)
Match «+ F(i - 1, j - 1) + S(Ai, Bj)
Delete < F(i - 1, j) + d
Insert < F(i, j - 1) +d
F(i,j) ¢+ max(Match, Insert, Delete)

Here, ‘A’ and ‘B’ represent the two input sequences to be aligned, where ‘Ai” and ‘Bj’
refer to the individual elements at position ‘i’ and j’ in sequences ‘A’ and ‘B’, respectively.
‘S(Al, Bj)’ is the substitution score, which quantifies the similarity or mismatch between
the elements ‘Ai” and ‘Bj’. Finally, ‘d’ is the gap penalty, a predefined negative score
applied when a gap is introduced in either sequence during alignment. These components
collectively define the scoring mechanism used to populate the matrix ‘F’ and determine
the optimal alignment.

Figure 12 illustrates a segment of memory access addresses over time for the NW
algorithm. The figure clearly shows that the algorithm exhibits both spatial and tempo-
ral locality: memory access addresses increment in fixed strides and then repeat across
successive cycles. This repetitive pattern indicates predictable reuse of data, which can
be effectively exploited by a prefetching strategy. Similar to the CNN test case, a prefetch
engine is assigned to a narrow memory region, highlighted in red in the figure. This
assignment demonstrates how profiling of access patterns enables targeted prefetching,
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ensuring that recurring stride-based requests are serviced effectively by the prefetch engine
and improving overall efficiency of memory accesses.
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Figure 12. WN algorithm memory access patterns.
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5.2. Performance Analysis

The performance analysis begins with illustrating the operation of the prefetch sub-
system through Verilog simulations. The analysis is conducted using benchmarks from a
CNN model, where we compare the latency of a single read request without prefetching to
the scenario where the prefetch subsystem is utilized. The waveforms under consideration
consist of five distinct groups of signals, described as follows:

1.  General Signals: Includes the clock signal (clk) and the predictor state of the prefetcher
(st_pr_cur).

2. GPU to Prefetcher: AXI signals representing read requests initiated by the GPU and
directed to the prefetcher.

3. Prefetcher to RAM: AXI signals representing read requests initiated by the prefetcher
and forwarded to the DRAM memory stub.

4.  RAM to Prefetcher: AXIsignals representing read data responses sent from the DRAM
memory stub back to the prefetcher.

5. Prefetcher to GPU: AXI signals representing read data responses sent from the
prefetcher to the GPU.

Figure 13 illustrates the waveform of signals for the scenario where a read request is
issued by the GPGPU to the prefetch engine and subsequently forwarded by the prefetcher
to the DRAM memory with no prefetching. In this case, as the requested data is not found
in the prefetched buffer (the prefetch engine is in the ARM state), the overall latency is
114 clock cycles (171 ns).

Figure 14 depicts the waveform of signals when the prefetch engine is in the ACTIVE
state and the requested data hits the data buffer within the prefetch engine. Here, the
response is returned after a single clock cycle, demonstrating a latency reduction of over
200 times compared to the no-prefetching scenario.
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Figure 13. Prefetch engine signal waveform for a single read request with no prefetching.
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Figure 14. Prefetch engine signal waveform for a single read request with prefetching.

We use the WN algorithm benchmark to demonstrate the impact of block size on
prefetch engine performance and its ability to exploit spatial locality. Figure 15 illustrates
a waveform of the system signals when a data block of 128 bytes is used. As observed
in the marked red box in this figure, the prefetch engine experiences frequent stride
misses, resulting in short durations in the ACTIVE state and recurrent transitions to the
CLEANUP state.
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Figure 15. Prefetch engine signal waveform illustrating recurrent stride misses (illustrated in the
red box).

Figure 16 provides a closer view of these interferences, where it can be seen that the
learned stride of the prefetch engine is occasionally interrupted by an inconsistent negative
stride (—0x20) instead of the fixed positive stride initially learned.
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Figure 16. Prefetch engine signal waveform illustrating recurrent stride misses zoom in.

This observation is further supported by analyzing the memory access patterns of
the WN algorithm, illustrated in Figure 12 and zoomed in Figure 17. The WN algorithm
exhibits monotonically increasing clusters of memory accesses with a positive stride across
cycles. Each cluster includes three memory accesses, which follow a pattern of decreasing
stride, indicating localized access behavior followed by progressive jumps. These three
accesses correspond to the code described in Section 5.1.2, where each iteration of the WN
scoring matrix loop performs memory accesses with fixed negative strides for the Match,
Delete, and Insert operations. Figure 17 highlights this pattern at a finer granularity. The
circled region shows three clustered accesses per iteration, and the arrow illustrates their
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progression across cycles. This zoomed-in view makes the relationship between algorithmic
operations and memory behavior more explicit, confirming how the stride-based pattern is
repeatedly generated by the NW scoring matrix update logic.

Address

Cycle

Figure 17. Zoomed-in image of WN algorithm memory access patterns.

Figure 18 presents a waveform of the system signals when the block size is increased to
256 bytes. In this configuration, the prefetch engine successfully captured memory accesses
with strides between clusters (0x400 bytes) while also accommodating the negative strides
within each cluster. This was achieved because the 256-byte block boundary encompassed
the data of the accesses in the cluster within the prefetched block. As shown in Figure 18,
this resulted in a stable ACTIVE state for the prefetch engine, with no disruptions to the
learned stride.
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Figure 18. Prefetch engine signal waveform with data block of 256 bytes.

Figure 19 shows the CNN memory read access time histogram (block size = 64 bytes) as
observed by the GPU, comparing cases with and without our hardware prefetch subsystem.
Without prefetching, two distinct latency bins dominate: ~120 ns corresponding to DRAM
page hits, and ~150 ns corresponding to DRAM page misses. When the prefetch engines are
enabled with zero outstanding transactions, it effectively acts as a cache for GPGPU requests,
reducing the fraction of high-latency accesses. While this configuration already improves
average latency compared to the baseline, enabling prefetching with multiple outstanding
transactions (in this case, four) further shifts the distribution toward the minimum-latency
bin (10 ns). Notably, the number of minimum-latency accesses approximately doubles,
demonstrating the effectiveness of our prefetch subsystem in hiding memory latency and
improving overall throughput.
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Figure 19. CNN memory read access time histogram (block size = 64 bytes).

Figure 20 presents a histogram analysis of NW memory read access times, demon-
strating the significant performance benefits of the prefetching engines across different
block sizes (assuming one outstanding prefetch request). The results show that prefetching
dramatically improves memory access time compared to the no-prefetching baseline, which
exhibits widely distributed access times ranging from 120 to 450 ns. Among the prefetching
configurations, 256-byte blocks achieve the highest performance improvement, concentrat-
ing approximately 75% of memory accesses at the lowest latency bin (10 ns), while 128-byte
blocks achieve about 43% of accesses at this optimal latency. In contrast, 64-byte blocks
demonstrate a bimodal distribution with peaks at 120 ns (47%) and 150 ns (30%), indicating
less effective spatial locality exploitation. The analysis clearly demonstrates that larger
prefetch block sizes provide superior performance.
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Figure 20. NW memory read access time histogram (number of outstanding prefetch requests = 1).

Figure 21 illustrates the relationship between average memory read latency and
prefetch outstanding limits for the CNN benchmark, comparing different block sizes
and a no-prefetch baseline. The results reveal several key insights about our prefetching
engine effectiveness for the CNN benchmarks. The system with no-prefetch (green line)
maintains consistently high latency at approximately 130 ns. In contrast, both prefetching
configurations demonstrate dramatic latency reductions, achieving the lowest latency of
approximately 8 ns.
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Most significantly, the analysis shows that increasing the prefetch outstanding limit
beyond one request provides negligible latency benefits. This finding suggests that for
applications with highly predictable, constant-stride memory access patterns, aggressive
prefetching strategies are unnecessary and potentially wasteful. Instead, optimal perfor-
mance can be achieved using smaller block sizes (32 bytes) with minimal outstanding
requests. Additionally, when the number of outstanding requests is set to zero, the prefetch
engines operates as a cache. In this mode, a block size of 64 bytes yields a lower average
latency compared to the 32-byte configuration.
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Figure 21. Average memory read access time for the CNN benchmark as a function of the outstanding
prefetch request limit and block size.

Figure 22 illustrates the impact of prefetch engine configuration on memory read access
latency for the NW benchmark, which exhibits a different behavior compared to the CNN.
In this case, limiting the number of outstanding prefetch requests can degrade performance
due to the CLEANUP phase of the prefetch engine: once in the CLEANUP state, the engine
must wait for all outstanding prefetch responses to complete before returning to IDLE. The
more outstanding requests allowed, the longer the engine remains stalled in this phase
before resuming operation. As shown in the figure, the optimal configuration employs large
data blocks (128 bytes or 256 bytes) with 1-8 outstanding requests, reducing the average
memory access latency by up to 80%. A block size of 64 bytes also improves the average
memory access latency; however, it is more effective to configure the prefetch engine as a
cache only, since stride learning provides limited benefit for the NW benchmark.

Table 2 summarizes the best latency results achieved so far by the prefetch subsystem
for each benchmark, along with the corresponding configuration parameters. As shown,
the CNN benchmark reached a minimum average latency of 8 ns with small block sizes of
32 bytes, while the NW benchmark benefited from larger blocks of 256 bytes, achieving a
latency of 65 ns.

Table 2. Best-performing configurations of the prefetch engines for the CNN and NW benchmarks,
showing the lowest observed memory latency and the corresponding settings.

Prefetch Outstanding
Limit [Requests]

CNN 1 32 8
NW 1 256 65

Benchmark Block Size [Bytes] Latency [ns]
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Figure 22. Average memory read access time for the NW benchmark as a function of the outstanding

prefetch request limit and block size.

Figure 23 demonstrates the impact of prefetch throttling rates on memory access
latency using a prefetch engine configured with 32 outstanding limit requests for the NW
benchmark. The results are similar to those shown in Figure 22. Both prefetching configura-
tions (256 bytes and 128 bytes block sizes) achieve substantial latency reductions compared
to the no-prefetch baseline, which maintains a constant latency of approximately 250 ns
across all throttling rates. The 256 byte block configuration delivers superior performance,
achieving minimum latencies of 60-80 ns at low throttling rates (10~3 to 102 [1/cycle]),
while the 128 byte block configuration achieves latencies of 120 ns in the same range.
However, the results clearly illustrate that excessively high throttling rates severely de-
grade performance, with both configurations experiencing dramatic latency increases as
the throttling rate approaches 10! [1/cycle] and beyond. Most notably, the 128 byte block
configuration suffers major performance degradation at the highest throttling rate, reaching
latencies of approximately 340 ns—worse than the no-prefetch case. The analysis confirms
that selecting appropriate prefetching parameters within the optimal range of 1073 to
1072 [1/cycle] can reduce transaction latency by up to 80%.

400

—e—Block size 256B —e—Block size 128B

350 —e—\Without prefetch

— 300

250

Average Latency[n

0.000 0.001 0.010 0.100 1.000
Prefetch throttling rate [1/cycle]

Figure 23. NW memory read access time histogram (number of outstanding prefetch requests = 1).
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Table 3 reports the best-performing configuration identified for the NW benchmark.
With a prefetch throttling rate of 0.01 cycles and a block size of 256 bytes, the prefetch engine
reduced the average memory latency to 65 ns, significantly outperforming the baseline.

Table 3. Best performing prefetch throttling configuration of the prefetch engines for NW benchmark,
showing the lowest observed memory latency and the corresponding settings.

Prefetch Throttling .
Benchmark Rate [1/Cycles] Block Size [Bytes] Latency [ns]
NW 0.01 256 65

To evaluate the effectiveness of our prefetching subsystem, we ran simulations of
the CNN and NW benchmarks using a 256-byte block size with one outstanding prefetch
request to measure the resulting speedup. For the CNN, the prefetch subsystem reduced
latency by up to 80% and achieved a speedup of 1.589x, while for NW, we observed
latency reductions of up to 80% with a speedup of 1.794x. In addition to these two bench-
marks, we evaluated five further applications from the gpgpu-sim benchmark suite [51]
to demonstrate the generality of our approach. MUMmerGPU, a high-throughput DNA
sequence alignment program [52], exhibits both regular and irregular access patterns; the
prefetch subsystem achieved latency reductions of about 74% with speedups of up to
1.671x. LPS, a Jacobi solver for a 3D Laplace discretization [53], features regular strides,
with latency reductions of up to 78% and speedups of 1.556 x. DG, a mini Discontinuous
Galerkin solver [54], combines block-based and irregular mesh accesses; here, the prefetch
subsystem achieved moderate improvements with 64% latency reduction and speedups
of 1.463x. BFS, a graph traversal benchmark [55] characterized by pointer chasing and
highly irregular memory access, showed more limited benefits with 40% latency reduction
and speedups of 1.240x. Finally, WP, a numerical weather prediction application [56],
achieved substantial benefits with 82% latency reduction and speedups of 1.557 x, thanks
to its largely regular access patterns. Overall, these results demonstrate that the proposed
prefetch subsystem consistently reduces memory latency across a wide range of workloads,
with the greatest gains observed for benchmarks with regular memory access patterns.
Table 4 summarizes the speedup, latency reduction, and minimum latency achieved for
each of the examined benchmarks.

Table 4. Summary of prefetch engine performance results. The table reports the best-performing
configurations of the proposed prefetch engines across a range of representative benchmarks, includ-
ing machine learning (CNN), bioinformatics (NW, MUMmerGPU), scientific workloads (LPS, DG),
graph analytics (BFS), and weather prediction (WP). For each case, the results highlight the maximum
observed latency reduction, the corresponding minimum memory latency achieved, and the resulting
application speedup. These results demonstrate that the proposed prefetching approach consistently
reduces memory access latency across diverse application domains, with speedups ranging from
1.240% (BFS) to 1.794x (NW).

Benchmark Type Latency Reduction Min. Latency [ns] Speedup
CNN [46] ML workload Up to 80% ~8-10 1.589 %
NW [47] Bioinformatics Up to 80% ~60-80 1.794 x
MUMmerGPU [52]  Bioinformatics Up to 74% ~50-100 1.671x
LPS [53] Scientific Up to 78% ~8-15 1.556 x
DG [54] Scientific Up to 64% ~30-60 1.463x
BFS [55] Graph analytics Up to 40% ~60-120 1.240x

WP [56] Weather forecast Up to 82% ~10-20 1.557 %
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6. Discussion

Table 5 highlights the trade-offs of prior prefetching approaches for GPGPUs, rang-
ing from software compiler-based schemes to hardware-assisted warp- or thread-aware
prefetchers. While most of these studies achieved relatively small performance improve-
ments, they are often constrained by design-specific limitations. For example, compiler-
based prefetching [32] can suffer from a lack of runtime visibility, leading to inaccurate
decisions for irregular memory patterns. Inter-thread and CTA-aware prefetching [31,34,36]
introduce dependencies between threads or may restrict the prefetching scope to coopera-
tive arrays, which can reduce efficiency. Similarly, opportunistic or stream-based prefetch-
ers [33,39] can be highly sensitive to application-specific patterns, limiting their general
applicability. More advanced designs such as WASP [40], APRES [41], and LTRF [42]
provide notable gains, but they require either scheduling modifications, cache partitioning,
or cooperative hardware/software mechanisms that increase design complexity.

In contrast, our proposed prefetching subsystem combines generality, adaptivity, and
robustness in a modular hardware framework. Its ability to dynamically reconfigure block
sizes (32-256B) and outstanding request limits (1-64) enables runtime tuning across diverse
workloads, which is not possible in static software-based prefetching. The inclusion
of context flushing and watchdog timers ensures resilience against irregular or stalled
access patterns, mitigating one of the key weaknesses of stride- or warp-based designs.
Unlike thread-dependent methods, our prefetcher operates independently of scheduling
or compiler hints, reducing reliance on programmer annotations or cooperative warp
behavior. Furthermore, the prefetch subsystem employs multiple memory windows, allowing
the prefetcher to operate concurrently on different memory regions and to adaptively
exploit diverse spatial locality patterns. Most importantly, experimental results demonstrate
average latency reductions of up to 80% and speeds of 1.585-1.794x for CNN and NW
benchmarks, respectively.

Table 5. Comparison of GPU prefetching mechanisms. This table summarizes prior hardware- and
software-based GPU prefetching techniques alongside the proposed approach in this study. For
each method, the approach, main features, and limitations are described, together with reported
performance improvements. The comparison highlights the evolution from compiler-based and op-
portunistic prefetching schemes to more advanced warp-aware and adaptive scheduling techniques.
Unlike prior approaches, the proposed runtime-configurable prefetching engine (this study) supports
a wide range of access patterns through dynamic block sizing, outstanding request control, context
flushing, and watchdog timers. As shown, it achieves substantially higher latency reduction (up
to 82%) and application speedup (1.794x), demonstrating clear advantages in both flexibility and

effectiveness over existing solutions.

Method Approach Key Features Limitations Performance
Improvement
Limited in capturing runtime
_ oo irregular patterns that are unknown
Many-thread-aware Hardware and Inter thrg ad.prefetchmg. at compile time; Inter-thread o
. prefetching is performed L . 15-16%
prefetching [31] software prefetching introduces dependencies
between threads .
between threads, reducing
overall efficiency
GPGPU compiler-based Compller Prefetches via temporary L1m1tec.1 al?ﬂlty to predict .
refetching [32] Software variables, improving memory dynamic/irregular memory access Minor
P i usage and workload distribution patterns; can result in cache pollution
. - Opportunistic memory-side
OWL: O.p portunistic Hardware prefetching taking advantage of Limited to open DRAM rows 2%
prefetching [33]
open DRAM rows
CTA-aware Hardware Cooperative thread arrays stride Limited thread scope within the 10%

prefetching [34,36]

prefetching

cooperative array
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Table 5. Cont.
Method Approach Key Features Limitations Performance
Improvement
Spare register-aware Data prefetching mechanism for
P 8 Hardware load pairs where one load depends  Limited to graph algorithms 10%
prefetching [35]
on the other
Uses adjacent threads to identify - . T
APOGEE [37] Hardware address patterns and dynamically Limited to ﬁad]acent threads; relies on 19%
T latency hiding through SIMT
adapt prefetching timeliness
Orchestrated prefetching Hardware Coordinates thread scheduling Requires modification in warp 7_059,
and scheduling [38] and prefetching decisions scheduling ?
Stream data Hardware and Data'pre'fetchmg' l?ased on Tightly coupled toan Qfﬂlne
application-specific data-pattern data-pattern specification 9.2x
prefetcher [39] software descripti L
escriptions per application
Warp—aware selective Hardware Dynamically selec’fs slow-progress lelteq if warp behavior is 16.8%
prefetching (WASP) [40] warps for prefetching unpredictable
. Contentions between demand fetch
. . Group warps predicted to execute .
Adaptive prefetching and . L and prefetch require cache o
. Hardware the same load instruction in the RN 27.8%
scheduling (APRES) [41] partitioning; dependent on thread
near future . .
cooperative characteristics
Latency-tolerant register Hardware and Two-level h1e;arch1cal register Reh.e? on com}nle-hme Prefetch ‘ .
X structure; estimated working set decisions, which may miss dynamic 31%
file (LTRF) [42] software . - .
prefetched to register cache runtime behavior
Runtime configurable (32-256B . . Up to 82% latency
. Hardware complexity; requires .
. blocks, 1-64 outstanding requests); . ! K reduction; and
This study Hardware . . proper throttling configuration;
context flushing; watchdog timers; ower consumption considerations speedup up to
handles diverse access patterns P P 1.794 %

7. Conclusions

This paper presents a comprehensive design and implementation of a hardware-
based DRAM memory prefetching subsystem specifically tailored for GPGPU architec-
tures. Our work addresses the critical challenge of memory access latencies in massively
parallel GPU workloads, which often overwhelm traditional memory hierarchies and
thread-switching mechanisms.

The proposed modular prefetching subsystem architecture demonstrates several key
advantages over conventional approaches. The multi-engine design with dedicated address
range handling enables efficient scaling and reduces contention, while the adaptive stride
detection mechanism successfully identifies and predicts diverse memory access patterns
across different workload types. The integration of robust system-level features, including
context flushing, watchdog timers, and flexible configuration interfaces, ensures reliable
operation and adaptability to varying computational demands.

Our comprehensive experimental validation reveals significant performance improve-
ments across multiple metrics. The prefetching subsystem achieves memory access latency
reductions of up to 82% and speed of 1.240-1.794 x for the benchmarks examined. The
analysis of different block sizes, outstanding limits, and throttling rates provides significant
insights into prefetcher behavior, demonstrating that 256-byte block sizes are optimal for
spatially local access patterns, while smaller blocks with minimal outstanding requests suit
stride-based patterns. Importantly, our results highlight the necessity of proper throttling
rate selection, as excessive prefetching can degrade performance below baseline levels.

The practical implications of this work extend beyond the specific design presented.
Our findings establish clear guidelines for prefetcher deployment in production GPGPU
systems and provide a foundation for future research in adaptive memory prefetching.
The modular architecture enables straightforward integration into existing GPU memory
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hierarchies, while the comprehensive parameter analysis offers actionable insights for
system designers.

Future research directions include exploring ML-based pattern prediction algorithms,
investigating adaptive throttling mechanisms that dynamically adjust to workload charac-
teristics, and extending the design to handle emerging memory technologies such as HBM
and processing-in-memory architectures. Additionally, the integration of our prefetching
subsystem with GPU compiler optimizations and runtime systems presents opportunities
for further performance enhancements in heterogeneous computing environments.
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