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Abstract: The surging demand for electricity, propelled by the widespread adoption of intelligent
grids and heightened consumer interaction with electricity demand and pricing, underscores the
imperative for precise prognostication of optimal power plant utilization. To confront this challenge,
a dataset centered on issue-centric power plans is meticulously crafted. This dataset encapsulates piv-
otal facets indispensable for attaining sustainable power generation, including meager gas emissions,
installation cost, low maintenance cost, elevated power generation, and copious resource availability.
The selection of an optimal power plant entails a multifaceted decision-making process, demanding a
systematic approach. Our research advocates the amalgamation of multiple-criteria decision-making
(MCDM) models with self-organizing maps to gauge the efficacy of diverse sustainable energy sys-
tems. The examination discerns solar energy as the preeminent MCDM criterion, securing the apex
position with a score of 83.4%, attributable to its ample resource availability, considerable energy
generation, nil greenhouse gas emissions, and commendable efficiency. Wind and hydroelectric
power closely trail, registering scores of 75.3% and 74.5%, respectively, along with other energy
sources. The analysis underscores the supremacy of the renewable energy sources, particularly
solar and wind, in fulfilling sustainability objectives and scrutinizing factors such as cost, resource
availability, and the environmental impact. The proposed methodology empowers stakeholders to
make judicious decisions, accentuating facets that are required for more sustainable and resilient
power infrastructure.

Keywords: sustainable energy systems; multiple criteria decision analysis; pairwise rankings of all
possible alternatives (PAPRIKA); self-organizing maps

1. Introduction

Smart grids are crucial for efficiently distributing electricity to a growing consumer
base in the future. Ensuring an uninterrupted power supply is essential for consumers’
daily activities. The development and implementation of smart grid technologies play a
vital role in meeting the increasing demands for reliable and efficient electricity distribution.
Due to the surge in the electricity demand by the consumers and a lack of power generation,
the power supply rate does not satisfy the demand of the consumers. A power plant is
an industrial facility for electric power generation [1]. The power plant comprises single
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or multiple generators and a rotor that converts mechanical energy into electric energy.
Most of the power plants across the world use fossil fuels, such as coal, natural gas, and oil,
for electricity generation. Other power plants use nuclear power and renewable natural
energy sources, like solar energy, wind energy, tidal energy, and hydroelectric energy.
Nowadays, the planning of a power system is affected by the economic, technical, and
environmental loss. The usage of a multi-criteria analysis in power plant planning has
attracted the attention of a number of researchers for a long time [2].

A number of research studies have been conducted for detailed study to find the
optimal design and size of a power plant. The increase in environmental awareness
regarding the installation of a power plant has resulted in the usage of multi-criteria
analysis for planning purposes. Since the successful installation of power plants is a long-
term process, it takes many years to construct power plants, such as nuclear, thermal,
wind, and hydroelectric power plants. Hence, prior planning is required for power plant
installation. Power plants have different efficiencies, greenhouse gas emission rates, and
operational characteristics [3,4]. To find the optimal power plant, the issues related to
power plants must be analyzed. Hence, the analysis is performed on different aspects,
such as low cost, low emission, high amount of power generation, and high availability
of the resources. It describes the issues of the power plants belonging to renewable and
non-renewable energy sources. Energy can be generated by using non-renewable and
renewable resources. Based on these resources, the energy generated by the corresponding
power plant is classified as renewable or non-renewable energy. Power plants such as
nuclear and thermal power plants generate energy that belongs to non-renewable energy,
and other power plants, such as wind, solar, hydro, biomass, and geothermal, produce
energy that belongs to renewable energy. The optimal power plant is found based on these
issues [5].

This comparative study of renewable energy sources provides a comprehensive analy-
sis of solar, wind, hydroelectric, geothermal, and biomass energy. Solar energy, harnessed
through photovoltaic panels or concentrated solar power systems, stands out for its abun-
dance and versatility. Despite being a clean and sustainable source with no greenhouse
gas emissions during operation, solar energy’s intermittent nature necessitates energy
storage solutions for a consistent power supply. Wind energy, converting wind kinetic
energy into electricity through turbines, is a mature technology with high potential for
large-scale generation. Clean and variable, it requires suitable locations and backup power
systems due to its dependency on wind speed. Hydroelectric power, generated from
flowing or falling water, offers stability but raises concerns about significant environmental
and social impacts in large-scale projects. Geothermal energy, tapping into Earth’s interior
heat, provides reliable and continuous power with a small environmental footprint, albeit
being limited to specific regions. Biomass energy, derived from organic matter, is versatile
for heating, power generation, and biofuels but requires responsible sourcing to avoid
competition with food production and careful emissions management.

In a comparative study, crucial factors such as resource availability, scalability, techno-
logical maturity, cost-effectiveness, environmental impacts, and policy support must be
considered to determine the optimal mix of resources for sustainable energy generation in
specific geographic, economic, and social contexts. Some key points that can be considered
for detailed study and types of energy sources are shown in Figure 1.

This research makes a significant contribution by addressing the critical need for
accurate prediction and optimal utilization of power plants in the context of growing
electricity demand and evolving smart grids. Through the development of an issue-based
power plant dataset and the application of multiple criteria decision making (MCDM) with
self-organizing maps (SOM), this study offers a comprehensive framework for assessing
the performance of various sustainable energy systems. By prioritizing criteria such as low
gas emissions, installation and maintenance costs, high power generation, and resource
availability, this research provides valuable insights to guide the selection and planning
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of power plants, emphasizing the importance of renewable energy sources for achieving
sustainable and environmentally friendly electricity generation.
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2. Literature Survey

The superiority of the suggested approach was validated using the Unified Electric
Power System (UEPS) of Russia. The authors [6] analyzed multiple aspects for evaluating
the energy alternatives. The multi-criteria decision-making methods were classified into
two types, namely, the analytic hierarchy process (AHP) and the analytic network process
(ANP). In the AHP method, the problem was constructed as a hierarchy. The experts
input information and decision makers were considered for the pair-wise comparison.
Among the alternatives, the optimal alternative was chosen based on rank. In the ANP
methodology, the complexities of various problems were handled using the unidirectional
relationship characteristics. The exploitation of the multi-criteria decision analysis (MCDA)
technique was considered an optimal methodology for the rank alternative renewable
energy resources, technologies, and projects. The analysis of various methodologies in
the MCDM methods proved that the AHP method was optimal among all the MCDM
methods [6,7].

Akash et al. [8] suggested the AHP method for comparing various electricity power
production options in Jordan. Systems such as nuclear, solar, wind, hydropower, and fossil
fuel power plants were used for electricity power production. The analysis results showed
that solar, wind, and hydropower were the optimal choices for electricity generation,
whereas nuclear electricity and fossil fuel electric power were considered the worst options
for generating electricity power. Hefny et al. [9] proposed an efficient fuzzy analytic
network process (ANP) model for generating electrical power in Egypt. Instead of using
triangular numbers, Gaussian fuzzy numbers were used. The suggested model prevented
the case of zero weights. From the analysis, it was found that the decision makers in nuclear
power stations had to perform necessary steps for increasing the electricity demand by
25% in Egypt. Further, the solar power stations had to be constructed to cover 5% of the
generated electricity.

Moravej and Afshar [10] proposed a multi-criteria decision-making (MCDM) approach
for selecting the optimal microgrid planning options. Multiple plans were generated using
conventional and renewable energy resources. Attributes such as profit from injecting
power into the grid at peak load, cost of energy (COE), total emissions, capital costs, and
energy not served were taken into consideration. The importance of these criteria was
analyzed using the analytical hierarchy process (AHP) method. Different plans were
prioritized using the multi-objective optimization by ratio analysis (MOORA) method. The
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plans were ranked based on the uncertainty in demand [11,12] The loading conditions,
such as high, medium, and low, were considered. The uncertainty in the future load was
obtained by ranking the plans. The plan that produced the optimal performance under
various loading conditions was considered as the optimal plan.

Üçtuğ et al. [13] conducted a multi-criteria decision-making analysis to compare power
source technologies for automotive use. Their study focused on assessing various technolo-
gies for automobiles, providing insights into cleaner and sustainable energy solutions [7].
The research aimed to guide informed decisions regarding the selection of power sources
for automotive applications.

Jayalakshmi et al. [14] proposed a center for the ideal arrangement of distributed
generation (DG) sources on a spiral feeder for a sudden decrease with distinguishing sorts
of concentrated burden circulations. In uniformly disseminated loads, expanding centrally
appropriated loads and equally progressively dispersed burdens is achieved utilizing the
Newton–Raphson technique, and furthermore, simulation strategies were incorporated
for an optimal placement distributed generation (DG) source on the outspread system.
Sarma et al. proposed a study on renewable energy sources (RES) that work in parallel with
conventional power plants, and these play a lead role in narrowing the difference between
supply and demand [15,16]. They analyzed the natural advantage of each resource and its
reliability to the utility. Due to nonlinear loads, power quality issues arose at the point of
common coupling.

Mardani et al. [17] scrutinized sustainable and renewable energy techniques, including
AHP, fuzzy-AHP, ANP, TOPSIS, fuzzy-TOPSIS, PROMETHEE, integrated methods, and
others. Their analysis affirmed the efficacy of multiple criteria decision making (MCDM) in
optimizing energy system choices, planning, management, and economic considerations,
highlighting its superiority in achieving optimal results across various parameters. Mitchell
(Mitchell) proposed a goal-programming and analytical hierarchy process (AHP) multi-
criteria decision-making method for selecting the optimal energy portfolio [18,19]. The
suggested method determined the weights of the energy sources in the goal programming
model. Based on the real-world numbers, the government policies and the amount of
energy obtained from the renewable energy sources were increased. The increased price
reductions and technology improvements bridged the gap between renewable energy and
traditional energy sources. The weights of the AHP were used for estimating the optimal
solution for job creation, cost, and CO2 emissions.

Vadivelu et al. [20] introduced the firefly algorithm for the optimal assignment of
flexible AC transmission systems (FACTS) in a unified system, specifically focusing on
generator assignment using the algorithm. Validation on IEEE 30 bus and 72 bus real-
time systems showcased the effectiveness of the FACTS device placement compared to
the literature results [21,22]. This paper employs genetic algorithm (GA) and artificial
bee colony (ABC) algorithms for optimizing powder metallurgy-based Al-SiC MMCs
production process parameters.

Gangadhara Rao et al. [23] presented aluminum-based metal matrix composites
(MMC) as being valuable in aircraft, automotive, and armaments due to a high Young’s
modulus, specific strength, and improved wear properties. They addressed a single-
objective problem using GA and ABC, treating it as a maximization challenge. Both
optimization algorithms for the input process parameters [24].

Li, Lin, and Ding [25] developed a novel MCDM-based hybrid model that integrates
rough sets and VIKOR to assess the performance of sustainable energy systems. The study
focuses on evaluating and enhancing sustainable energy systems through a comprehensive
and innovative approach, providing valuable insights for decision making [26,27].

Benkouider et al. [28] conducted a multi-criteria analysis to evaluate the performance
of sustainable energy systems, focusing on aspects of sustainability. The study, published
in Sustainable Cities and Society, provides insights into the holistic assessment of sustainable
energy systems, contributing valuable information for decision making in the field. The
summary of some related work is as shown in Table 1.
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Table 1. Discussion of some related research work.

References Approach Technical Contribution Limitations

[1] AHP and ANP for MCDM
MCDM application for Unified
Electric Power System (UEPS)

of Russia

Sensitivity to changes in input data,
weights, or criteria. Small variations can

lead to different rankings.

[3] Efficient fuzzy ANP for
electrical power

Efficient fuzzy ANP model for
generating electrical power

in Egypt

Subjectivity and bias of decision makers
can impact model outcomes.

[4] AHP, fuzzy-AHP, and ANP
for sustainable energy

Evaluation of AHP, fuzzy-AHP, and
ANP for sustainable and renewable

energy applications

AHP relies on expert judgments and
pairwise comparisons, introducing

subjectivity and potential variations in
the results.

[5] AHP and MOORA for MCDM
MCDM approach for optimal

microgrid planning, utilizing AHP
and MOORA methods

AHP and MOORA assume deterministic
inputs, lacking explicit handling of

uncertainties and risk factors.

[6]
TOPSIS for ranking
automobiles with

power sources

TOPSIS approach for ranking four
automobiles with various

power sources

Assumes precise and deterministic criteria
values, not explicitly addressing

uncertainties or imprecisions in real-world
decision making.

[10] AHP for comparing power
production options

AHP methodology for comparing
various electricity power

production options in Jordan

Heavy reliance on subjective judgments
and opinions, potential biases, and

inconsistencies in results.

[14] Firefly algorithm for FACTS
Firefly algorithm for optimal

assignment of flexible AC
transmission systems (FACTS)

Computational complexity increases with
the number of fireflies and

problem complexity.

[16] Optimization algorithms for
aluminum-based MMCs

Optimal values from optimization
algorithms for aluminum-based
metal matrix composites (MMC)

Sensitivity to initial conditions. Minor
differences in initial values can lead to

different outcomes.

[23] Combined MCDM (VIKOR
and AHP)

Performance assessment of
sustainable energy systems

in China

Provides a comprehensive evaluation of
sustainable energy systems, aligning with

the proposed methodology.

[25] Hybrid MCDM (rough sets
and VIKOR)

Performance assessment of
sustainable energy systems

Introduces a novel hybrid model,
contributing to the broader field of

sustainable energy system assessment
using MCDM.

[29] MCDM Assessment of renewable energy
technologies in a household

Focuses on the assessment of renewable
energy technologies in a household context,

providing a relevant perspective for
residential applications.

[30] Multi-criteria decision
support system

Wind farm site selection and
sensitivity analysis in Alborz

Province, Iran

Addresses site selection and sensitivity
analysis for wind farm projects, offering

insights into the application of MCDM in
renewable energy projects.

[31] MCDM Ranking renewable energy projects
under a fuzzy environment

Implements MCDM techniques for ranking
renewable energy projects, providing
insights into handling uncertainties in

project assessment.

[32] Multi-criteria planning Planning of microgrids for
rural electrification

Focuses on the planning of microgrids for
rural electrification, showcasing the
application of MCDM in designing

sustainable energy solutions for
specific contexts.
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3. Materials and Methods
3.1. Multi-Criteria Decision Making (MCDM)

Multi-criteria decision making (MCDM) is a field of study that involves evaluating
and selecting the best alternative among a set of options based on multiple criteria or
objectives. Various mathematical equations and techniques can be used in MCDM. Here
are some commonly used equations [29]:

a. Weighted sum model: The weighted sum model is a simple and intuitive approach
where each criterion is assigned a weight, and the alternatives are evaluated based on
the weighted sum of their scores on each criterion. The overall score for alternative i
is calculated as follows:

Score(i) = ∑(Weight(j) ∗ Score(i, j)) (1)

where Score(i, j) is the score of alternative i on criterion j, and Weight(j) is the weight
assigned to criterion j.

b. Weighted product model: The weighted product model is another approach that con-
siders the multiplication of scores instead of the sum. The overall score for alternative
i is calculated as follows:

Score(i) = ∏(Score(i, j)Weight(j)) (2)

where Score(i, j) is the score of alternative i on criterion j, and Weight(j) is the weight
assigned to criterion j.

c. Analytic hierarchy process (AHP): AHP is a widely used MCDM method that allows
decision makers to systematically compare and prioritize criteria and alternatives. It
involves constructing pairwise comparison matrices and calculating priority weights
for criteria and alternatives. The AHP process involves several equations, including
the following:

i. Calculation of pairwise comparison matrices: Decision makers assign relative
weights to criteria or alternatives based on their preference or judgment.

ii. Calculation of priority weights: Eigenvalue calculation, normalization, and
consistency ratio calculations are used to obtain the priority weights for criteria
and alternatives.

iii. Order of preference by similarity to ideal solution (TOPSIS): TOPSIS is a
method that measures the proximity of alternatives to an ideal solution based
on multiple criteria. It involves calculating the distance between each alter-
native and the ideal solution and the negative ideal solution. The TOPSIS
method uses the following equations:

iv. Normalization of decision matrix: Each criterion is normalized by dividing
each element by the square root of the sum of squares of all elements in
the column.

v. Calculation of weighted normalized decision matrix: Each criterion is multi-
plied by its corresponding weight.

vi. Calculation of ideal and negative ideal solutions: The ideal solution is obtained
by selecting the maximum value for each criterion, and the negative ideal solution
is obtained by selecting the minimum value for each criterion.

vii. Calculation of ideal and negative ideal solutions: The ideal solution is deter-
mined by selecting the maximum values for each criterion, and the negative
ideal solution is obtained by selecting the minimum values for each criterion.

viii. Calculation of the distance between each alternative and the ideal solutions:
The distance between the alternatives and ideal solutions is computed us-
ing Euclidean or other distance measures, assessing the proximity of each
alternative to both the ideal and negative ideal solutions [29,30]. The flowchart
for MCDM is shown in Figure 2 and explained as follows.
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Performance Evaluation: Assess the performance of each alternative with respect
to each criterion. This involves gathering data or information about the alternatives and
evaluating their performance against the defined criteria. Various quantitative or qualitative
methods can be used for performance evaluation, depending on the nature of the criteria
and available data.

Aggregation and Ranking: Aggregate the individual performance assessments to
obtain an overall evaluation for each alternative. This can be achieved through different
aggregation methods, such as weighted sum, weighted product, or outranking methods
like the technique for order of preference by similarity to the ideal solution (TOPSIS) or the
preference ranking organization method for enrichment evaluation (PROMETHEE). The
result is a ranking or scoring of the alternatives based on their overall performance [31].

Sensitivity Analysis: Perform a sensitivity analysis to assess the robustness of the
results and investigate the impact of changes in the criteria weights or performance evalua-
tions. This analysis helps in understanding the stability of the rankings and the influence
of different factors on the final decision.

Decision Making and Interpretation: The final step involves interpreting the results
and making a decision based on the MCDA model outcomes. Decision makers can con-
sider the rankings, sensitivity analysis, and other relevant factors to select the preferred
alternative or to gain insights for further analysis or improvement.

MCDA provides a structured and transparent approach to decision making, allowing
decision makers to consider multiple criteria and their interdependencies when evaluating
alternatives. It is a valuable tool in complex decision problems where there are trade-offs
and conflicting objectives. In the context of power plant selection, an MCDA model can help
identify the optimal power plant based on the desired criteria, contributing to informed
and effective decision making.



Technologies 2024, 12, 42 8 of 21

3.2. Self-Organizing Maps (SOM)

The key idea behind SOM is to map high-dimensional input data onto a lower-
dimensional grid or lattice, typically two-dimensional. The lattice consists of nodes or
neurons, each representing a weight vector of the same dimension as the input data. During
the training process, the SOM adjusts the weights of the neurons to represent the input
data in a topological manner [32]. Self-organizing maps (SOMs) are a type of artificial
neural network that can be used for unsupervised learning and data visualization. They
are commonly used for clustering and dimensionality reduction tasks. The mathematical
equations involved in SOMs include the following:

Distance Calculation:

Euclidean distance: The most commonly used distance measure in SOMs is the
Euclidean distance between two vectors. For two vectors x and y, the Euclidean distance is
given by the following:

d(x, y) = sqrt(sum((x_i − y_i)2)) (3)

Neighborhood Function:

Gaussian neighborhood function: The neighborhood function determines the influ-
ence of a neuron on its neighboring neurons during the learning process. The Gaussian
neighborhood function is commonly used and is defined as follows:

h(x, t) = exp(−(d(x, t))2/(2 ∗ sigma(t)2)) (4)

where x is the winning neuron, t is a neighboring neuron, and sigma(t) is the neighborhood
radius at time t.

Learning Rate:

Learning rate decay: The learning rate determines the magnitude of weight updates
during the training process. Typically, the learning rate is initialized with a larger value
and gradually decreases over time. A common approach is to use a decaying learning rate
according to the following equation:

alpha(t) = alpha_0 ∗ exp(−t/tau) (5)

where alpha(t) is the learning rate at time t, alpha_0 is the initial learning rate, and tau is a
time constant.

Weight Update:

SOM weight update rule: The weight update rule is used to adjust the weights of
neurons in the SOM based on the input data and the neighborhood function. The weight
update equation is typically given by the following:

Delta W_i(t) = alpha(t) ∗ h(x, t) ∗ (X − W_i(t)) (6)

where Delta W_i(t) is the weight update for neuron i at time t, alpha(t) is the learning rate
at time t, h(x, t) is the neighborhood function, X is the input vector, and W_i(t) is the weight
vector of neuron i at time t.

The SOM training process consists of the following steps:
Initialization: Initialize the weight vectors of the neurons with random values. Each

neuron’s weight vector represents a point in the input data space.
Competition: For each input data point, find the best-matching unit (BMU), which is

the neuron with the weight vector closest to the input data point. The similarity between the
input data and the weight vectors is typically measured using the Euclidean distance [21].

Cooperation: Update the weights of the BMU and its neighboring neurons to move
them closer to the input data point. This step encourages nearby neurons to become more
similar to each other, leading to the formation of clusters or groups in the lattice. The
training process for SOM is shown in Figure 3.
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Neighborhood Function: Define a neighborhood function that determines the extent
of influence of the BMU on its neighboring neurons. Typically, the influence decreases as
the distance from the BMU increases.

Iteration: Repeat the competition, cooperation, and neighborhood function steps for
multiple iterations or until convergence. This allows the SOM to gradually organize the
input data into distinct clusters and develop a topological representation of the data, as
shown in Figure 3.

One of the main advantages of SOM is its ability to preserve the topological structure
and relationships of the input data. The resulting two-dimensional lattice can be visualized
to gain insights into the underlying patterns, clusters, or similarities in the data. The
visualization often takes the form of a “map”, where different colors or markers represent
different clusters or groups [22].

SOMs have found applications in various fields, including data analysis, pattern
recognition, image processing, and feature extraction. In the context of power plant
assessment, SOMs can be used to analyze and visualize the relationships and patterns
among different power plants based on their performance criteria. This can assist in
understanding similarities, identifying groups of power plants with similar characteristics,
and supporting decision-making processes [23]. The Architecture for self-organizing maps
is shown in Figure 4.
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MCDA with an SOM is proposed to find an optimum power plant using the issues
of power plants. Figure 5 shows the proposed framework. Five criteria are used to find
optimal power plants, including availability of energy resources, efficiency, greenhouse gas
emissions, energy generation, and cost, in order to achieve sustainable power generation.
The categorical values assigned to every power plant on certain criteria are very high, high,
between high and medium, medium, between medium and low, and low [24,27]. The
power plant prediction depends on the results obtained from multiple-criteria decision
analysis (MCDA). Table 2 lists the five criteria and their descriptions to analyze the power
plants [34].
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Table 2. List of criteria and their descriptions.

S. No. Criteria Description of Criteria

1 Availability of energy
resources

Varies based on regional and climatic conditions,
impacting the abundance of energy resources

2 Efficiency Percentage of fuel energy converted to electricity in
a power plant

3 Greenhouse gas emissions Emissions contribute to the greenhouse effect,
trapping heat and impacting atmospheric
concentrations

4 Energy generation Electricity generation from primary sources,
utilizing generators powered by heat engines
through combustion or fission

5 Cost Economic evaluation, levelized cost of electricity
(LCOE), offering a comparable metric for different
generation methods

4. Results and Discussion

Decision-making software 1000minds (DMS) https://www.1000minds.com/ is used
to help individuals and organizations rank, sort, and select from the alternatives in the
software. Based on the decision maker’s preferences, the method of conjoint analysis called
potentially all pairwise rankings of all possible alternatives (PAPRIKA) is implemented
via software called 1000minds. With this implementation, the point values (‘weights’)
that represent the relative importance of the attributes of decision makers are calculated.
In addition to that, they are used to rank alternatives and enable the decision makers
to prioritize or choose [26]. The steps to analyze the power plant are listed in Table 3
as follows:

Step 1: Initialization Criteria

Table 3. List of criteria’s priority and their priority values.

Criteria Priority Priority Value

Availability of energy resources

1 Very high

2 High

3 Medium

4 Between low and medium

5 Low

6 Deplete (very high but energy resources are
diminishing over the years)

Efficiency

1 High

2 Medium

3 Low

Green house gas emissions

1 None

2 Low

3 Medium

4 High

Energy generation

1 Very high

2 High

3 Between medium and high

4 Medium

https://www.1000minds.com/
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Table 3. Cont.

Criteria Priority Priority Value

Energy generation
5 Between low and medium

6 Low

Cost

1 Low

2 Medium

3 High

4 Very high

Step 2: List of Alternatives
The priority values are assigned to the different number of power plants based on the

number of criteria listed in Table 2 and the characteristics of the power plants. The priority
values formed and used as a dataset to find the optimum power plant are shown in Table 4.

Table 4. List of power plants and their criteria with priority value.

Power Plants Availability of
Resources

Greenhouse
Gas Emissions Efficiency Energy Generation Cost

Biomass Medium Low Medium Medium Medium

Coal-fired power
plants Deplete High Medium Very high High

Diesel engine
power plant Low Low Low Medium Very high

Geothermal Medium Low Medium Low Medium

Hydroelectric High Medium High Between medium and high Medium

Natural gas-fired
power plants Low Medium Medium Low High

Nuclear Medium Medium Low Medium Medium

Solar Very high None Low Between medium and high Very high

Tidal Medium Low High Low Medium

Wind High None Medium Between medium and high Low

Step 3: Decision Making
Traditionally, the analysis of power plants is based on the assumptions of random

guesses of the relative importance (weights) of the criteria and assigning equal importance
to all the criteria. However, 1000minds determines the relative importance by using
the PAPRIKA method. In this method, the researchers ask a series of simple questions
on the basis of two hypothetical alternatives with two criteria at a time. The answers
corresponding to the researchers’ questions are used to determine the weights on the
criteria. The number of questions depends on the dimensionality of the criteria. There are
90 questions used to determine the relative importance of the alternatives with the criteria
for the dataset used in this paper. The preference values and the ranking of alternatives are
performed by validating the answers.

Step 4: Preference Values
The weights assigned to the criteria refer to ‘preference values’ that reflect the relative

importance to the researchers. These values are alternatively called part-worth utilities (in
a conjoint analysis) and points system. The relative importance of the criteria is represented
as the weight value (‘High’). The highest and the lowest preference values represent the cri-
terion’s relative importance and level. Table 5 shows the relative importance of the criteria
based on the marginal rate of substitution (ratio of column criterion to row criterion).
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Table 5. Relative importance of criteria.

Availability of
Resources

Energy
Generation

Greenhouse Gas
Emissions Efficiency Cost

Availability of resources - 2.8 8.7 35.8 119.3

Energy generation 0.4 - 3.2 13.0 43.3

Greenhouse gas emissions 0.1 0.3 - 4.1 13.7

Efficiency 0.0 0.1 0.2 - 3.3

Cost 0.0 0.0 0.1 0.3 -

The variations of the criterion value functions over different levels are shown in
Figure 6, while the criterion value functions are shown in Figure 7. Among these multiple
criteria, the availability of resources and the amount of generation has the maximum
preference values. The obtained maximum preference value is used to rank the power
plant. The relative importance values between the criteria are modified with the normalized
values and single scores, as in Table 6 and citation values in Table 7.
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Table 6. Normalized and single scores for each criterion.

Criterion Criterion Weight
(Sum to 1) Level Single Criterion

Score (0–100)

Availability of resources 0.661

Deplete 0.0

Low 21.2

Between low and medium 42.5

Medium 57.8

High 84.9

Very high 100.0

Greenhouse gas emissions 0.076

High 0.0

Medium 85.4

Low 95.1

None 100.0

Efficiency 0.018

Low 0.0

Medium 70.0

High 100.0

Energy generation 0.240

Low 0.0

Between low and medium 8.5

Medium 26.2

Between medium and high 40.8

High 83.8

Very high 100.0

Cost 0.006

Very high 0.0

High 33.3

Medium 66.7

Low 100.0

Table 7. Aggregation to estimate the overall value of the power plant.

Criteria Weight of Criteria
Score of the
Power Plant

Total Score of the Power Plant
= Score ∗ Weight

Solar Coal Solar Coal

Availability of resources 0.661 100 0 66.1 0
Greenhouse emissions 0.076 100 0 7.6 0
Efficiency 0.018 0 70 0 1.26
Energy generation 0.24 40.8 100 9.79 24
Cost 0.006 0 33.3 0 0.1998

Overall value of power plants 83.4 25.5

Step 5: Assigning of Rank to the Alternatives
Table 6 explains the methodology of calculating the aggregation of scores for the

criteria to estimate the overall value. In this table, the overall value of solar and coal are
calculated. Likewise, the overall value of other power plants is calculated. The aggregation
of scores across the criteria efficiently visualizes the score of each plant, as shown in Table 7
and Figure 8. Based on the preference values from Table 4, the description of alternatives
is necessary to find the best power plant. The 1000minds software assigns the rank to the
alternatives based on the total. Also the ranking of power plant is shown in Table 8 and
Energy generation and analysis of different power plants is shown from Figures 9–15.
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Hydroelectric 56.10 9.80 6.50 1.80 0.4 74.5 3rd
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generation [27–29,35]. Based on the rank values, power plants using renewable energies
are given the highest priorities. Hence, power plants using the renewable energy are
selected as the optimal power plants and are considered an effective recommendation to
meet the electricty demand in future. Also the Ranking of different power plants based on
parameters obtained from Table 6 is shown in Figure 15.

Use of Self-Organizing Maps (SOMS) with MCDM

This study proposes the utilization of self-organizing maps (SOMs) as a tool for assess-
ing the performance of different energy-efficient sources based on an issue-based dataset.
The dataset incorporates factors such as gas emissions, installation cost, maintenance cost,
power generation, and resource availability to evaluate the sustainability and viability of
various renewable energy sources. SOMs, a type of artificial neural network, are employed
to analyze the multidimensional dataset and provide a visual representation of the rela-
tionships and patterns within the data [28]. The SOM analysis enables the identification
of clusters or groups of similar energy-efficient sources, allowing for a comparative eval-
uation of their performance [3,30]. By visualizing the dataset on an SOM grid, patterns
and similarities among the energy sources can be observed. This approach facilitates the
identification of optimal energy-efficient sources that demonstrate a favorable performance
across multiple criteria. The findings of the study indicate that renewable energy sources,
such as solar, wind, hydro, and geothermal power, generally exhibit superior performance
in terms of low emissions, favorable installation and maintenance costs, high power gener-
ation, and resource availability. These sources are identified as the most suitable options
for sustainable and efficient power generation [31]. The SOM analysis further reveals the
potential for hybrid power plants, combining multiple renewable resources to maximize
power generation efficiency. Overall, the utilization of SOMs as a decision support tool
provides valuable insights into the performance assessment of different energy-efficient
sources. By considering multiple criteria and visualizing the dataset, this approach aids
in identifying the optimal energy sources for sustainable power generation. This study
contributes to the field of renewable energy planning and assists in making informed
decisions for achieving long-term viability and sustainability in the power sector.

This study justifies the use of self-organizing maps (SOMs) for evaluating energy-
efficient sources through the collected dataset, employing multiple-criteria decision making
(MCDM). By integrating factors like emissions, costs, and power generation, SOMs visually
identify clusters of similar sources. The approach aids in informed decision making for
sustainable power generation, emphasizing renewable sources’ superior performance.

As per the proposed study, employing MCDM with self-organizing maps (SOMs) to
integrate sustainable energy systems achieves an overall top ranking (1) by identifying
solar as optimal and empowers stakeholders for judicious decisions, as shown in Table 9.

Table 9. Result analysis with other approaches used for energy sources.

References Approach Technical Contribution Limitation Overall
Priority

[Proposed Study] MCDM with
self-organizing maps
(SOMs) for sustainable
energy systems

Integrates SOMs with
MCDM, identifies solar as
optimal (83.4% score)

Empowers stakeholders to
make judicious decisions;
emphasizes sustainability
criteria; potential bias in
subjective judgments

1

[1] AHP and ANP for Unified
Electric Power System
(UEPS) of Russia

Utilizes AHP and ANP for
decision making in UEPS

Sensitive to changes in input
data, weights; small variations
can lead to different rankings

3

[5] MCDM for microgrid
planning options using
AHP and MOORA

Prioritizes plans using
AHP and MOORA; does
not address uncertainties

Assumes deterministic inputs;
lacks explicit consideration of
uncertainties and risk factors

4
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Table 9. Cont.

References Approach Technical Contribution Limitation Overall
Priority

[13] AHP and ANP for Unified
Electric Power System
(UEPS) of Russia

Utilizes AHP and ANP for
decision making in UEPS

Sensitive to changes in input
data, weights; small variations
can lead to different rankings

3

[25] Hybrid MCDM (rough sets
and VIKOR)

Performance assessment of
sustainable energy systems

Introduces a novel hybrid
model, contributing to the
broader field of sustainable
energy system assessment
using MCDM

2

[30] Multi-criteria decision
support system

Wind farm site selection
and sensitivity analysis in
Alborz Province, Iran

Addresses site selection and
sensitivity analysis for wind
farm projects, applying
MCDM in renewable
energy projects

3

However, potential bias in subjective judgments poses a limitation. In contrast, the
AHP and ANP approaches for the Unified Electric Power System (UEPS) of Russia [1,13]
ranks third due to their sensitivity to input data changes. The MCDM for microgrid
planning [5] using AHP and MOORA ranks fourth, lacking explicit consideration of un-
certainties. AHP, used for comparing power production options in Jordan [10], and fuzzy
ANP, used for power generation in Egypt [13], rank fifth and second, respectively, high-
lighting limitations related to subjective judgments and uncertainties. As the objective of
the research is to identify the rank, so the validation is performed with different research
based on the literature.

5. Sustainable Energy Generation and Societal Benefits

The use of sustainable energy generation is indeed crucial for continuous growth and
long-term viability. Power plants play a significant role in this regard, and finding the
optimal power plant solution is important. In order to determine the most suitable power
plant, a dataset based on various issues related to power generation is prepared. To make
informed decisions, a multiple-criteria decision analysis (MCDA) is proposed as a method-
ology [32]. The factors considered in the MCDA include low gas emissions, installation cost,
low maintenance cost, high power generation, and high resource availability. These factors
are essential for sustainable power generation and contribute to the overall efficiency and
suitability of a power plant. After conducting the analysis based on the issue-based dataset,
it is determined that power plants utilizing renewable resources are the optimal choice for
sustainable power generation. Renewable energy sources, such as solar, wind, hydro, or
geothermal power, have lower gas emissions, provide high power generation potential,
and often have abundant resources available. To achieve efficient power generation, a
hybrid power plant model can be employed that combines multiple renewable energy
sources [33,34]. By integrating different renewable resources, such as solar panels, wind tur-
bines, and hydroelectric generators, a hybrid power plant can maximize power generation
while reducing reliance on a single energy source. This approach enhances sustainability
and minimizes environmental impact. By adopting sustainable energy generation practices
and utilizing renewable resources, society can ensure a long-term, viable, and sustainable
power generation model. This not only meets the growing electricity demands but also
helps to mitigate climate change and preserve the environment for future generations.

6. Conclusions and Future Scope

Addressing the imperative for sustainable energy generation is pivotal for societal
advancement, where power plants play a central role. A dataset structured around key
issues is formulated to ascertain the optimal power plant, utilizing a multiple-criteria
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decision analysis (MCDA) as the decision-making framework. Taking into account factors
such as low gas emissions, installation and maintenance costs, substantial power generation,
and abundant resource availability, MCDA was deployed to discern the most efficient and
suitable power plant for long-term viability and sustainability. The analysis reveals that
power plants harnessing renewable resources emerge as optimal, indicating their potential
as hybrid power plants for future electricity demands. This approach offers benefits in terms
of environmental friendliness, cost-effectiveness, and resource availability. The examination
identifies solar energy as the pre-eminent MCDM criterion, securing the top position with a
score of 83.4%, credited to its abundant resource availability, substantial energy generation,
minimal greenhouse gas emissions, and commendable efficiency. Closely following are
wind and hydroelectric power, with scores of 75.3% and 74.5%, respectively. Biomass and
nuclear power plants secure the fourth and fifth positions, while tidal and geothermal
alternatives rank sixth and seventh. Diesel engines, coal, and natural gas assume inferior
positions due to heightened emissions and diminished efficiency, with coal registering
the lowest score. The analysis underscores the supremacy of renewable energy sources,
especially solar and wind, in meeting sustainability objectives, considering factors such as
cost, resource availability, and environmental impact.

Future research can explore advancements in integrating emerging technologies, like
artificial intelligence and machine learning, into multiple-criteria decision-making (MCDM)
models for enhanced evaluation of sustainable energy systems. Additionally, investigat-
ing evolving energy storage solutions and their impact on overall sustainability would
contribute to the ongoing evolution of resilient and eco-friendly power infrastructures.
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