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Abstract: The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse
Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although
existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging
factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a
promising avenue for more effective AF evolution prediction. Five ML models were developed to
obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing
diverse approaches and optimizing to minimize prediction errors, while the remaining third was
reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy:
0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson
Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific
associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31
(p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale
classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the
early identification of MACE risk in the assessment of patients with AF.

Keywords: atrial fibrillation; major adverse cardiovascular events (MACE); machine learning; artifi-
cial intelligence

1. Introduction

Despite being the most prevalent cardiac arrhythmia, the early identification, diag-
nosis, and treatment of atrial fibrillation (AF) remain challenging. AF affects millions
of individuals globally and is linked to a heightened risk of stroke, heart failure, and
mortality [1–4]. These medical conditions collectively fall under the term Major Adverse
Cardiovascular Events (MACE) and are subject to extensive research [5]. The diagnosis of
AF is associated with a fourfold increase in heart failure incidence and an eightfold increase
in MACE occurrence [6].

Risk factors for MACE in AF patients have been identified as age, gender, hypertension,
diabetes (known as “traditional”), biomarkers, genetic variants, imaging parameters, and
left atrial function [7–10]. In recent years, there has been growing interest in identifying new
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predictors of MACE in AF patients [11] beyond traditional ones such as obesity, chronic
obstructive pulmonary disease (COPD), or chronic renal failure [7,8,12]; this novel approach
is associated with a reduced risk of MACE, including mortality and thromboembolism [13].

Several proposals for stroke risk assessment in AF have been developed, such as
CHA2DS2-VASc [14], the Framingham score [15], Anticoagulation and Risk Factors in Atrial
Fibrillation (ATRIA) [16], Cohorts for Heart and Aging Research in Genomic Epidemiology
for Atrial Fibrillation (CHARGE-AF) [17,18], and Atrial Fibrillation Research In CATalonia
(AFRICAT) [19]. However, there are still challenges and limitations with clinical risk scores
that restrict their applicability to certain populations. Moreover, the discriminatory ability
of clinical risk scores in predicting stroke risk for an individual is at best moderate [20]. For
MACE risk specifically, some studies [21,22] have proposed additional scoring systems or
modifications to existing scores to better predict cardiovascular events in patients with AF.
Leveraging artificial intelligence (AI) and machine learning (ML) techniques on electronic
health record (EHR) data offers a potential avenue to further refine these risk prediction
models. However, it is important to note that the extent of performance improvement
achieved through AI and ML approaches can vary [23,24].

Therefore, more comprehensive risk prediction models incorporating a wider range
of predictors or with more prognostic value are needed. Such models can be achieved
using ML algorithms, which offer a promising approach in AF patients [2], as they can
integrate large amounts of data from multiple sources and identify complex patterns and
correlations that may not be evident using traditional statistical methods.

The heterogeneous mechanisms and risk factors associated with AF make it necessary
to target personalized treatment approaches, requiring extensive patient data to identify spe-
cific patterns. AI algorithms are particularly suitable for handling high-dimensional data,
predicting outcomes, and ultimately optimizing strategies for patient management [25].
Recent advances in ML have resulted in great success and have also been utilized to analyze
electrocardiogram (ECG) data and predict the future occurrence of arrhythmias. Future
Innovations in Novel Detection for Atrial Fibrillation (FIND-AF), an extensively scalable
ML algorithm, is capable of analyzing routinely collected primary care data to identify
individuals with an elevated risk of short-term AF [26]. Other studies have demonstrated
the utility of machine learning-based models in AF for real-time identification of a variety
of rhythms using 12-lead or single-lead ECG recordings, as well as for diagnosis, outcome
prediction, disease characterization, and treatment assessment [2,27–33]. However, they
do not address the discrimination of cardioembolic from noncardioembolic stroke among
individuals with AF with high accuracy and surpassing traditional risk scores. These
methods provide precise and efficient algorithms for data analysis, improving prediction
accuracy, pattern identification, and task automation. If patients at higher risk of MACE
could be identified, treatment strategies could be developed to potentially reduce incidence
and associated complications.

The primary objectives of this study encompassed the identification of noteworthy
clinical indicators associated with MACE in patients with new AF. It further aimed to assess
the prognostic impact of these predictors within a community cohort, aged 65–95 years,
tracked from 2015 to 2021.

2. Materials and Methods
2.1. Study Design

This was an observational study, and the data were retrospectively collected where
possible, or manually collected otherwise. The specific codes of the International Classifica-
tion of Diseases (ICD-10) were used. The project encompassed the broader demographic of
individuals aged 65–95 years (n = 40,297) who did not have AF as part of their inclusion
criteria and was conducted within the Primary Care facilities of Terres de l’Ebre, located in
Catalonia, Spain, during the period spanning from 1 January 2015 to 31 December 2021.

The data were available from the electronic medical datasets (E-CAP and SAP) man-
aged by the Catalan Health Institute (ICS), which collect information from primary care
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centers and hospitals in the health region anonymously and without contact with the cases
included, as follows:

1. The Health Plan [33] outlines healthcare priorities in the “Terres de l’Ebre” Healthcare
Region (Catalonia, Spain) from 2021 to 2025.

2. The HC3 Patient Episode Dataset provides clinical information of care on inpatient
and outpatient care in Catalan hospitals.

3. The clinical database of 11 primary care teams includes comprehensive health data
for 97.7% of residents, covering symptoms, tests, diagnoses, comorbidities, prescribed
medication, and referrals.

4. The Integrated System of Electronic Prescription (SIRE) captures information on
prescribed medications.

5. The Statistics Institute of Catalonia includes demographic information [34–36].

The datasets generated, used, and analyzed during the current study are available
from the corresponding author on reasonable request.

2.2. Eligibility Criteria

All patients over 65 years of age from Terres de l’Ebre (N 55,459) without AF or MACE
in their clinical history were considered, and the following criteria were defined:

1. Outcomes: AF patients who had a MACE.
2. Inclusion criteria: Subjects aged 65–95 years who met the inclusion criteria: high

risk-AF (according to the risk model and belonging to Q4) [19], active clinical history
in any of the health centers of the territory with information accessible through the
shared history (HC3), without previous AF or MACE, residing in the territory, and
attached to any of the Primary Care Teams (EAP) of the territory.

3. Exclusion criteria: under 65 years of age or over 95 years of age, living outside
Terres de l’Ebre, a previous diagnosis of AF, treatment with anticoagulants, impaired
cognitive status, Barthel score < 55 points, or pacemaker or defibrillator wearer. Non-
availability or loss of accessibility to the information necessary for the study was
considered a reason for exclusion.

2.3. Data and Preprocessing

The overall composition of the dataset for MACE prediction is given in Table 1 Numeri-
cal calculations and data analysis were performed using Python library version 3. Code and
models used for the analysis are available online (https://github.com/vmalonsobarberan/
MACE) (accessed on 15 December 2023).

Table 1. Comparison of the performance of different models.

Machine
Learning

Model
Accuracy Precision Recall F1 Score Sensitivity Specificity PPV NPV AUC

Random Forest 96.78% 0.8456 0.9263 0.8841 0.9885 0.8456 0.9741 0.9263 96.78%
Extra Trees 98.82% 0.9641 0.9554 0.9597 0.9923 0.9641 0.9938 0.9554 98.82%
AdaBoost 99.99% 0.9994 1 0.9997 1 0.9994 0.9999 1 99.99%
XGBoost 99.95% 1 0.9971 0.9985 0.9995 1 1 0.997 99.95%

LightGBM 99.96% 1 0.9977 0.9988 0.9996 1 1 0.9977 99.96%

2.4. Model Development

To develop ML models for estimation, we took features of the individuals with newly
diagnosed AF who developed MACE, following the eligibility criteria. ML model develop-
ment was performed using the SKLearn and TensorFlow libraries due to their versatility
and ease of programming. For each fold, hyperparameters were tuned on training data
using a randomized search after the determination of a candidate hyperparameter set.
Evaluation of validation data was performed using the metrics described in the next section.

https://github.com/vmalonsobarberan/MACE
https://github.com/vmalonsobarberan/MACE
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Five different ML models were implemented based on the following algorithms: Random
Forest, Extra Trees, AdaBoost, XGBoost, and LightGBM. They were trained on all the
features (variables) used in the study to predict the development of MACE within one year
as well as to predict the development of AF.

A fundamental part of the study, prior to the construction of the learning models,
consisted of “Feature Engineering”, which consists of the analysis and selection of the
variables, as well as the processing of the data they contain. To this end, those that only
contribute noise and/or are correlated with others that have a greater influence on the
objective we aimed to predict were eliminated.

The performance of MACE prediction was quantified using the following metrics:
precision, recall, accuracy, and F1 score (combination of precision and recall). Two thirds of
the data (36,973) were randomly selected for training and model building using different
approaches and optimized to reduce the prediction error. The remaining 1/3 (18,486) was
used for testing and validation. The models underwent testing using this separate test data
to assess their performance on data that had not been utilized during the training phase.
This evaluation aimed to determine whether the models could effectively generalize and
make accurate predictions on unseen data.

2.5. Model Performance Analysis

Several metrics were used to evaluate the algorithms, including prediction robustness,
completeness, sensitivity, specificity, precision, recall, accuracy, and F1 score (combination of
precision and recall). Evaluation of these metrics allowed us to adjust the hyperparameters
of the model to improve the most desirable aspect of the model. The model with the highest
and most robust performance was chosen after evaluating the performance of the different
models using the mean value of the area under the ROC curve. The assessment of our
models included consideration of the standard deviation of the results to evaluate their
stability, along with an analysis of sensitivity, specificity, and accuracy. After fitting and
evaluating different models, the best model was selected, and the hyperparameters were
adjusted to obtain the optimal results.

2.6. Model Interpretability

The Shapley Additive exPlanations (SHAP) method was used to analyze which factors
were the most important and to what extent they contribute to the model’s predictions.
An individual automatic explainability model was also created to allow an analysis to be
made for each individual patient. The latter allows, after analyzing a patient’s variables, to
explain how likely a patient with AF is to have a MACE and which factors contribute to
this prediction and to what extent.

2.7. Statistical Analysis

The traditional statistical analysis of the baseline data was previously documented [6].

3. Results
3.1. Study Population Patient Characteristics

The study encompassed a cohort of 2574 individuals devoid of prior MACE incidents,
with a mean age of 81.22 ± 7.91 years and a gender distribution of 52.01% women. A
detailed analysis of baseline characteristics, as outlined previously [6], revealed notable
distinctions among the study groups. Notably, women who experienced MACE exhibited
a higher mean age (82.23 ± 7.59 years, compared to 80.53 ± 8.05 years for males, p < 0.001)
and a higher prevalence of cardiovascular risk factors and comorbidities. Refer to Table 2
for a comprehensive overview of the selected variables instrumental in model construction.
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Table 2. Distribution of AF patients according to the presence of MACE.

Variables No MACE (%) MACE (%) p All

All 1527 59.32% 1047 40.68% 2574
Woman 785 51.41% 558 53.30% 0.356 1343
Age average 80.53 ± 8.05 82.23 ± 7.59 <0.001 81.22 ± 7.91
Hypertension, arterial 1112 72.82% 833 79.56% <0.001 1945
Diabetes mellitus 406 26.59% 363 34.67% <0.001 769
Dyslipemia 692 45.32% 524 50.05% 0.020 1216
Vascular disease 59 3.86% 286 27.32% <0.001 345
Dementia/cognitive
impairment 174 11.39% 136 12.99% <0.001 310

Liver disease 6 0.39% 4 0.38% 1.000 10
Renal failure 339 22.20% 337 32.19% <0.001 676
Cancer 516 33.79% 340 32.47% 0.496 856
Thyroid disease 109 7.14% 106 10.12% 0.018 215
OSAHS 1 60 3.93% 66 6.30% 0.007 126
COPD 2 225 14.73% 222 21.20% <0.001 447
Inflammatory disease
(Crohn’s and Colitis) 9 0.59% 7 0.67% 0.804 16

Deep vein thrombosis 20 1.31% 17 1.62% 0.506 37
Weight (kg) 77.47 ± 5.7 78.03 ± 16.51 0.038 77.69 ± 16.04
BMI 3 29.32 ± 5.28 29.75 ± 5.51 0.041 29.49 ± 5.38
Heart rate/min 76.05 ± 1847 75.71 ± 18.47 0.625 75.91 ± 18.47
Cholesterol mg/dL 184.23 ± 38.07 164.98 ± 38.14 <0.001 176.4 ± 39.24
ProBNP (pg/mL) 1550 3301.75 ± 2882.7 0.625 2951.4 ± 2616.52
Dimer D (ng/mL) 1753.59 ± 2714.47 1319.72 ± 2954.13 0.337 1532.56 ± 2838.47
Glomerular filtration rate
(mL/min/1.73 m2) 66.11 ± 19.8 59.85 ± 20.74 <0.001 63.48 ± 20.43

Serum albumin (g/dL) 4.94 ± 5.43 5.04 ± 14.85 0.835 4.98 ± 10.68
Lymphocytes (×103/µL) 2.12 ± 1.11 2.02 ± 1.62 0.072 2.08 ± 1.34
Statins 505 33.07% 607 57.98% <0.001 945
Anticoagulation 1207 79.04% 787 75.16% 0.021 1994
Antivitamin-K 613 40.14% 331 31.61% <0.001 944
NOAC 4 595 38.96% 458 43.74% 0.015 1053
Anti-aggregants 67 4.38% 74 7.06% 0.003 141
Pfeiffer score ± SD 2.91 ± 3.1 2.61 ± 2.8 0.218 2.75 ± 2.94
CHA2DS2-VASc ± SD 3.26 ± 0.95 4.62 ± 1.02 <0.001 3.81 ± 1.20
CCI 5 ± SD 1.24 ± 1.19 2.67 ± 1.31 <0.001 1.82 ± 1.43
CONUT score ± SD 1.31 ± 0.54 1.48 ± 0.61 <0.001 1.38 ± 0.58
Wells score ± SD 1.35 ± 0.48 1.33 ± 0.47 0.415 1.34 ± 0.47
COVID-19 150 9.82% 110 10.51% 0.573 260
Death 1279 83.76% 777 74.21% <0.001 2056

1. OSAHS: obstructive sleep apnea-hypopnea syndrome; 2. COPD: chronic obstructive pulmonary disease; 3. BMI:
Body Mass Index; 4. NOAC: new oral anticoagulants; 5. CCI: Charlson Comorbidity Index.

3.2. Machine Learning Model
3.2.1. Comparison between the Different Models

In the comparative analysis of various pre-trained models, AdaBoost emerged as the
top-performing model, showcasing exceptional metrics, with an accuracy of 0.9999, recall
of 1, and an F1 score of 0.9997. This marked superiority was evident, making AdaBoost the
optimal choice, balancing both sensitivity and specificity (Figure 1).

Following closely behind, XGBoost (accuracy: 0.9995; recall: 0.9971; F1: 0.9985) and
LightGBM (accuracy: 0.9996; recall: 0.9977; F1: 0.9988) emerged as the second-best models
in our evaluation (Table 1). Notably, Random Forest and Extra Trees, while achieving
commendable Area Under the Curve values (Figure 2), did not match the performance
levels achieved by AdaBoost.
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The confusion matrices of the different models and cross-validation were calculated.
Each model has a confusion matrix. The models were ranked by true positive rates (Table 2).

3.2.2. Predictors by Outcomes

Figure 3 shows the main prognostic factors for MACE in AF patients. From most to
least important were an elevated CCI, cancer, diabetes mellitus, COPD/asthma/bronchitis,
cognitive impairment, vascular disease, high values of the CHA2DS2-VASc, and Wells scale.
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3.2.3. Model Interpretation

Figure 4 encapsulates a comprehensive overview of the feature contributions within
the optimal model, AdaBoost. The SHAP (SHapley Additive exPlanations) summary
chart delineates the significance of various characteristics, with the following five features
emerging as the most influential: CCI, diabetes mellitus, cancer, Wells scale, and CHA2DS2-
VASc. This SHAP summary chart not only identifies the primary features impacting the
prediction but also quantifies their respective magnitudes through the SHAP values. The
figures provide valuable insights into the relative importance of each feature, aiding in a
nuanced understanding of the predictive dynamics within the AdaBoost model.
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Figure 5, the SHAP bar plot, serves as a visual representation elucidating the overall
significance of each feature in predicting the occurrence of MACE. The height of the
bars directly correlates with the importance of each feature to the model—higher bars
denote greater importance. This graphical representation offers a clear and straightforward
depiction of the overall magnitude and relevance of individual features in influencing
the predictive outcome of MACE within the model. The visual emphasis on bar height
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facilitates an immediate understanding of the relative contributions of different features,
enhancing the interpretability of the model’s decision-making process.
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The analysis delved into the influence of specific diseases, as outlined in the model,
as predictors of MACE in AF patients. A CCI score exceeding 2.67 ± 1.31 (p < 0.001), a
CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk classification in
the Wells scale were all observed to significantly elevate the risk of MACE. These findings
underscore the nuanced interplay of individual patient characteristics, providing valuable
insights into the factors contributing to the heightened risk of MACE in AF patients.

In Figure 6, the force chart dynamically illustrates the contributions of each feature in
directing the model prediction from the base value to the ultimate result. The length of the
colored bars within the chart serves as a visual indicator of the magnitude of each feature’s
contribution. This graphical representation offers a dynamic and insightful portrayal
of how individual features influence the model’s predictions, emphasizing the varying
degrees of impact that contribute to the final outcome. The length of each bar provides a
quick and intuitive assessment of the relative importance of each feature in shaping the
model’s decision-making process.
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4. Discussion

The study identified AdaBoost as the best-performing model for MACE prediction
in AF patients. Additionally, the CCI, concurrent cancer diagnosis, diabetes mellitus, and
Wells and CHA2DS2-VASc scores emerged as primary predictors of MACE among patients
newly diagnosed with AF. In a previous investigation [6], subsequent adjustments for age,
gender, body mass index, cardiovascular risk factors, antiplatelets, and anticoagulants
revealed that only the CHA2DS2-VASc, CCI, and CONUT scores remained as independent
prognostic factors for MACE in individuals with a recent diagnosis of AF [6].

The various potential benefits of the results can be described in the different sections
included in the flowchart for the approach and treatment of AF [14] as risk stratification,
the prevention of thromboembolism among patients with silent AF and stroke without a
previous diagnosis of AF, and for specific comorbidities such as chronic coronary disease,
peripheral artery disease, heart failure, chronic kidney disease, and cognitive impairment.
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AF almost quintuples the risk of MACE [6], especially ischemic stroke and heart failure.
The 23.5% with known AF were not receiving oral anticoagulant therapy [37]. The AF
was associated with more severity, disability, and a 20% increase in stroke-related costs.
The clinical benefits of appropriate anticoagulation are widely recognized, and clinicians
should be aware of the importance of anticoagulation therapies in stroke prophylaxis,
the occurrence of stroke, and the downstream economic burden on an increasingly aging
population [38]. Patients with AF may benefit from evaluating factors such as the AdaBoost
model. This information can assist in making informed decisions about treatment.

The decision to prescribe oral anticoagulants for preventing MACE in patients with
intermediate annual risk of thromboembolic events, as determined by classic risk scores
like CHA2DS2-VASc or an equivalent, and who are uncertain about the benefits of anti-
coagulation, may require additional discussion. This is due to the diverse magnitude of
risk associated with each factor across different populations. Managing specific patient
groups, particularly those with risk factors for MACE, can improve risk discrimination by
incorporating additional factors, as seen with the AdaBoost model.

Moreover, it addresses the optimization of treatment decisions concerning the burden
of AF in relation to the associated risks of thromboembolism and ischemic stroke. This
involves assessing the need for anticoagulant treatment decisions in individuals experi-
encing either paroxysmal or persistent AF because of the predictive significance of the AF
burden [39,40]. A pioneering aspect of this approach involves the comprehensive analy-
sis of large patient cohorts and the integration of diverse data sources, including blood
biomarkers, electrical signals, and medical images [41]. The significance of this research
extends into the domain of Personalized Risk Assessment, providing a promising approach
for the early non-invasive detection of AF. This extends to optimizing treatment approaches
and anticipating long-term clinical trajectories.

The algorithm emphasizes the CCI as the primary predictor, a widely utilized tool in
the medical field for predicting the risk of mortality linked to chronic health conditions.
It encompasses various factors such as heart disease, diabetes, and cancer and assigns
specific weights to each based on their impact on mortality. The cumulative score is then
employed to estimate an individual’s overall health status and prognosis. A higher CCI
score correlates with an elevated risk of adverse outcomes or mortality. Remarkably, until
now, the CCI has not been previously associated with the risk of thromboembolism in
patients recently diagnosed with AF. Notably, there have been instances where the use of
anticoagulant therapy was linked to a lower CCI score [42]. While the CCI has undergone
extensive validation and widespread use in predicting outcomes across various medical
contexts, its application in specific situations, such as predicting outcomes in patients with
AF [6], may not have been as comprehensively explored.

The presence of cancer emerges as the second-ranking predictor of MACE. While the
algorithm does not specify the type of cancer, numerous studies have explored the connec-
tion between cancer and thromboembolism in patients with AF. Some of these studies not
only identify cancer as a significant predictor of MACE, encompassing thromboembolic
events [43], but also suggest that the onset of new AF is associated with an elevated risk of
developing cancer [44,45]. These findings underscore the intricate interplay between AF,
cancer, and thromboembolic complications, as well as the importance of considering both
conditions in clinical assessment and management [46].

The Wells score has not been widely recognized as a prognostic factor for thromboem-
bolism among patients with AF; it is typically used to assess the likelihood of deep vein
thrombosis and pulmonary embolism. AF and venous thromboembolism share several
common risk factors. Moreover, the presence of AF may be linked to a higher risk of
developing VTE, and individuals with a high risk of experiencing VTE may also face an
elevated risk of developing AF [47]. This bidirectional association highlights the potential
interplay between these two conditions, suggesting that they may influence each other’s
occurrence and progression. Further research is warranted to fully understand the com-
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plex relationship between AF and VTE and its implications for clinical management and
preventive strategies.

Diabetes mellitus and peripheral artery disease play an important role as a predictor
of MACE [7,48]. Although they are also variables included in the CHA2DS2-VASc and CCI
scales, they alone are also an important variable for the development of MACE, and the
significance of CHA2DS2-VASc is widely recognized among patients with nonvalvular AF
receiving oral anticoagulants [6,14,49,50]. In a recent study [51], machine learning models
demonstrated satisfactory performance in forecasting MACE among patients with Type 2
diabetes mellitus. Notably, these models exhibited a higher accuracy in predicting strokes
than myocardial infarction and heart failure.

Eventually, the study shed light on the significant role of COPD in the development of
MACE among patients with AF, in alignment with existing evidence [8,12,50,52]. Prolonged
P-wave duration acts as a potent precursor to AF, a condition that may be triggered by
obstructive sleep apnea [53]. The presence of COPD in AF patients may contribute to an
increased risk of MACE, emphasizing the importance of considering and managing this
comorbidity when evaluating cardiovascular outcomes in this patient population.

While simpler models, such as logistic regression and decision trees, are more straight-
forward to interpret, they frequently exhibit inferior predictive performance compared to
more sophisticated algorithms, including ensembles of decision trees like XGBoost and
random forests [54]. Harnessing ML [53] algorithms facilitates the early identification of
subtle indicators of thromboembolism risk from intricate datasets, thereby uncovering
latent relationships among the risk factors associated with AF. The LightGBM model re-
vealed associations between ischemic stroke and various peripheral blood biomarkers (such
as creatinine, glycated hemoglobin, and monocytes) not considered by CHA2DS2-VASc
and demonstrated significance in predicting ischemic stroke among AF patients [55,56].
These algorithms not only facilitate the analysis and correction of potential confounding
factors but also serve as powerful tools to identify and mitigate bias in the AI system. Con-
tinuous monitoring using ML algorithms offers ongoing assessment of thromboembolic
risk among AF patients, contributing to the tracking of disease progression, monitoring
treatment response, and promptly detecting any sudden changes in health status. Ad-
ditionally, by enhancing follow-up through the prediction of patient-specific risks, these
algorithms can prioritize follow-up visits and interventions, ultimately leading to improved
patient outcomes.

Using the Deep Learning methodology, the results were slightly inferior to those
achieved with Machine Learning (accuracy of 0.9678). The primary reason for this dis-
crepancy may be the fact that neural networks demand a substantial amount of data to
effectively learn. They are characterized by an abundance of parameters that require tun-
ing, allowing them to grasp intricate, high-dimensional patterns. However, this proves
to be a disadvantage when the dataset is limited. In instances of small datasets, these
models become prone to overfitting, essentially ‘memorizing’ the training data rather than
‘learning’ the underlying pattern. Consequently, this results in suboptimal generalization
performance when applied to unseen data.

The strengths of the study include the models of prediction, the high-quality datasets,
and strict adherence to data privacy regulations, as well as clinical context and domain
knowledge, making it easy to interpret the reasons behind their predictions. In summary,
incorporating machine learning algorithms into the clinical management of individuals at
high risk of AF and those with AF yields potential benefits, including personalized risk
assessment, data-driven decision support, and improved patient care. However, further
validation in independent studies is required.

Some limitations should be considered, as external validation is essential before
effectively adopting and integrating AI systems into patient care. One crucial factor that
largely determines the efficiency and accuracy of these models is the quantity of data
available. For small datasets, like in our case, traditional machine learning models tend to
outperform their deep learning counterparts, contrary to popular belief. AI models trained



Technologies 2024, 12, 13 11 of 14

on specific datasets might not generalize well to different populations or healthcare settings,
and overfitting could limit their applicability. Additionally, it is important to note that
correlation does not necessarily imply causation. Establishing causal relationships between
risk factors for AF and thromboembolism requires further research and experimentation.
By addressing these limitations and maintaining responsible and effective AI use, we can
enhance our understanding beyond not only the early detection of AF but also the risk
associated with the incidence of MACE, providing opportunities to intervene in modifiable
risk factors, and including aspects such as monitoring methods, detection technologies,
and biomarkers linked to the association between AF and thromboembolism, ultimately
leading to enhanced patient care outcomes.

Artificial intelligence-based clinical decision support systems may improve the out-
comes among patients who have AF, but the efficacy of the tool in the real world is
seldom reported. Future research could explore additional advantages, such as personal-
ized risk assessment. By analyzing extensive datasets, including social determinants of
health [18,57,58], biomarkers [59], multimodality imaging parameters [60,61], and nutri-
tional status associated with AF risk [57,62], a comprehensive assessment can be made.
This integration facilitates a more comprehensive and personalized risk assessment for
each individual, allowing the identification of distinctive patterns and factors specific to
the patient. This approach leads to more accurate risk predictions compared to traditional
statistical models [6,23,63] and, consequently, may improve treatment decision making.

5. Conclusions

The application of Machine Learning, employing multiple models, indicates that
the AdaBoost model is the most effective in predicting MACE in patients with newly
diagnosed AF, with an accuracy of 0.9999, recall of 1, and an F1 score of 0.9997. The
primary prognostic factors identified included an elevated Charlson Comorbidity Index,
cancer, diabetes mellitus, COPD, cognitive impairment, vascular disease, and high values
on the CHA2DS2-VASc and Wells scale. This finding contributes to the optimization of
treatment decisions concerning the burden of AF in relation to the associated risks of
thromboembolism and ischemic events.
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