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Abstract: Synthetic Aperture Radar (SAR) is a well-established 2D imaging technique employed as
a consolidated practice in several oil spill monitoring services. In this scenario, onboard detection
undoubtedly represents an interesting solution to reduce the latency of these services, also enabling
transmission to the ground segment of alert signals with a notable reduction in the required downlink
bandwidth. However, the reduced computational capabilities available onboard require alternative
approaches with respect to the standard processing flows. In this work, we propose a feasibility
study of oil spill detection applied directly to raw data, which is a solution not sufficiently addressed
in the literature that has the advantage of not requiring the execution of the focusing step. The
study is concentrated only on the accuracy of detection, while computational cost analysis is not
within the scope of this work. More specifically, we propose a complete framework based on the use
of a Residual Neural Network (ResNet), including a simple and automatic simulation method for
generating the training data set. The final tests with ERS real data demonstrate the feasibility of the
proposed approach showing that the trained ResNet correctly detects ships with a Signal-to-Clutter
Ratio (SCR) > 10.3 dB.

Keywords: SAR raw data processing; ship detection; convolutional neural networks

1. Introduction

Since the deployment of the first satellite with a synthetic aperture remote sensing sys-
tem into orbit in 1978 [1], the use of SAR imagery has been a vital part of several scientific do-
mains, including environmental monitoring, early warning systems, and public safety [2].

The SAR functioning principle can be described as follows [3]: microwave signals
are emitted from a radar mounted on a moving object, such as a satellite, and later, the
back-scattered signals (echoes) are collected to generate raw data. The motion of the sensor
is opportunistically used to synthesize a very long antenna and obtain a high-resolution
image of the scene being observed by properly integrating the collected raw data. SAR
is distinguished from other mapping techniques by its active operational mode. In fact,
the sensor has its own energy source for illuminating the local region. Thanks to this, SAR
permits service regardless of solar radiation or time of day. In addition, it is possible to select
the transmitted wavelength in a specific range wherein the attenuation of electromagnetic
waves generated by the atmosphere can be neglected. As a result, the SAR sensor can
work in the day, night, and nearly all weather conditions and can even monitor a cloud-
covered region. SAR could be described as “non-literal imaging” since the raw data do not
resemble an optical image and are incomprehensible to humans (see Figure 1). For this
reason, SAR raw data are typically processed by means of a focusing algorithm that, in a
nutshell, implements space-variant two-dimensional filtering of raw data. More specifically,
the focusing step uses the motion of the sensor to synthesize a very long antenna and
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obtain a higher-resolution image of the scene being observed. The result of this process is a
complex image, known as a Single Look Complex (SLC) image. The generic pixel of the
SLC image corresponds to a specific cell on the ground. The phase of the image is typically
used to extract information about the sensor pixel distance in interferometric applications
related to Digital Elevation Model (DEM) generation [4] and ground motion monitoring [5].
The amplitude of the image is related to the backscattering coefficient of the cells on the
ground and is typically used in segmentation and classification applications, such as oil
and ship detection (see Figure 2).

Figure 1. Example of the real part of an SAR raw image taken in a ship and an oil spill scene.

Figure 2. Example of focused SAR image taken in a ship and an oil spill scene.

Although several efficient focusing approaches are available in the scientific litera-
ture [6–9], the processing of raw data requires a significant amount of computational power.
Moreover, focusing represents only the first step of the detection process since it may
be necessary to introduce further processes, such as calibration [10] and despeckle filter-
ing [11], before proceeding with the actual detection phase. As a result, it is almost never
practical to perform it onboard, and consequently, the data are transmitted back to Earth to
be processed. This introduces a non-negligible latency, which is the main limitation to the
implementation of SAR-based real-time services. This is the case, for example, for oil and
ship detection services. Although the potential of SAR data has been well demonstrated
and consolidated for maritime surveillance [12–14], the latency due to the transmission of
radar data to the ground segment currently represents a strong limitation.

In this scenario, onboard detection would represent an interesting solution to the
problem thanks to the possibility of performing detection as soon as data are taken, thus
also enabling transmission to the ground segment of alert signals only, with a notable
reduction in both latency and downlink bandwidth. However, as already mentioned,
the reduced computational capabilities onboard prevent the application of algorithms
adopted on ground computing centers and even the simple focusing step can represent a
complex operation from a computational point of view. The objective of next-generation
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studies [15] is then to optimize Earth Observation (EO) data processing in order to deliver
EO products to the end user with very low latency using a combination of advancements
in onboard processing. As a result, in the field of the EO, the demand for real-time decision-
making capabilities jointly with the need to optimize data acquisition and transmission
has led to a significant interest in onboard intelligence, particularly in scenarios such as the
early detection of disasters, extreme events, maritime situation awareness, and automatic
target recognition, where swift and informed decisions can mitigate potential risks and
minimize impacts and damages [16].

In this scenario, Artificial Intelligence (AI) can provide the needed boost, thus allowing
new applications to be realized [17], by focusing directly on the information contained in
the data, autonomously extracting relevant features for a given application. In particular,
as highlighted in [18], Convolutional Neural Networks (CNNs) have demonstrated remark-
able results in several space applications, such as scene classification, object recognition,
pose estimation, change detection, and others; while the initial paradigm was to have
these applications run using a server-hosted processor, recent advances in microelectronics
provide efficient hardware accelerators enabling the implementation of AI algorithms
“at the edge” [19]. Furthermore, according to [18], mission lifetime extensions, as well as
improvement by means of delta training, could also be immediately feasible for AI solutions
via dynamic reconfigurability of the CNN.

However, as pointed out in [16], the research on Edge Computing (EC) to reduce
the amount of data transmission and energy consumption in EO applications is still in its
infancy. As a response to this demand, preliminary research activities have been directed
toward the exploration of onboard intelligence for EO applications based on optical sen-
sors. In particular, the ability to run Machine Learning (ML) algorithms with EO-oriented
platforms has been demonstrated by SmallSat missions with optical payloads such as
ϕsat missions, using off-the-shelf ultra-low-power AI-optimized chips [18]. As of today,
it is noteworthy that fewer efforts have been dedicated to SAR sensors in comparison to
optical sensors. This is also well recognized by the European Space Agency (ESA), which
has recently launched several initiatives (e.g., the onboard intelligence for SAR missions
invitation to tender) in which it is recognized that, despite the immense potential of SAR, it
remains an under-explored domain in terms of onboard intelligence implementation. One
of the main reasons identified by ESA is the complexities arising from onboard SAR data’s
inherent characteristics with unfocused SAR raw data, including its complex interactions
with the Earth’s surface, that present challenges (but also opportunities) for integrating
intelligent decision-making processes directly into SAR-equipped spacecraft. For these rea-
sons, approaches based on detection applied directly to raw data may represent a possible
solution that requires more investigation. More specifically, the accuracy and computational
cost of these approaches are both of extreme interest as they are not sufficiently addressed
in the literature. In this regard, the present work analyzes the ship detection accuracy
that can be achieved by using a Convolutional Neural Network directly applied to SAR
raw data.

Recent studies have indicated that CNN might outperform human performance in
a variety of fields [20,21]. As described in a dedicated recent survey [22], CNNs have
also received increasing attention from researchers in target detection with SAR images
and have evolved rapidly, achieving interesting results in many application fields. More
specifically, in [22] traditional detection algorithms are classified into three categories
(based on structural features, gray features, and texture features) and are compared with
CNN-based algorithms, highlighting the interesting advantages of deep learning, mainly
consisting in the capability to (i) achieve high classification accuracy, (ii) accurately ex-
tract high-level features, and (iii) provide strong robustness and adaptability to complex
environments. However, all the traditional and CNN-based approaches analyzed in [22]
and the references therein introduce a preliminary pre-processing stage that involves, at
least, the focusing step and possibly despeckle filtering. The (traditional or CNN-based)
detection stage is then applied after the pre-processing stage. It is also interesting to note
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that both focusing and despeckling are effectively spatial filtering operations (space-variant
or space-invariant, depending on the chosen algorithm) and, therefore, can ultimately be
mathematically described using the convolution operation. Considering that CNN is a
typical deep learning model that uses convolution operations and non-linear mapping
to effectively extract target features, there exists a need to further investigate approaches
that could integrate pre-processing and the detection stage into a single CNN algorithm,
thus working directly on raw data. More specifically, our study attempts to eliminate any
pre-processing by training a CNN to directly recognize ships on raw data. We only focused
on the feasibility of detection, while computational cost is not within the scope of this
work, even though the possibility to skip some pre-processing steps intrinsically opens
new scenarios to substantially shorten processing and delivery times.

In this analysis, it must also be considered that, in recent years, the visual attention
mechanism used by humans to deal with complex visual signals (selecting relevant infor-
mation and filtering out irrelevant information) has gained attention in the fields of object
detection and image quality assessment [23,24]. In [25], a novel SAR image target detection
method based on a visual attention model is proposed with performance that, in simulation
tests, shows good capability and robustness compared to traditional algorithms such as
Constant False Alarm Rate (CFAR). However, these encouraging results are obtained on
focused SAR images where the target response is concentrated in a well-confined pixel area.
On the contrary, in raw images, the radar target response is spread over several thousands
of pixels, and very often, it is not detectable by the human eye (as illustrated later in this
paper), thus leading us to avoid testing this approach in this work and leaving it for future
research activities.

Another important aspect of this work concerns training data sets that, as well known,
are critical to the development of machine learning algorithms [26,27]. In this regard,
the efficacy of the final machine-learning-powered solution for a specific application is
ultimately determined by the quality and amount of the training data. In particular,
as detailed in [28], a major challenge in using CNNs in the SAR domain is the availability
of large (and realistic) data sets with annotated SAR data, thus introducing overfitting
risk. This is particularly true for training data sets based on raw data. As a result of the
above challenges, the scientific literature proposes transfer learning techniques focused
on the transfer of knowledge from a secondary related domain, where labeled data are
easy and inexpensive to obtain. For example, refs. [29,30] give details concerning transfer
learning based on optical images. Alternatively, the use of SAR simulators can also be a
valid approach, as detailed in [31], where it is shown that a simulated SAR data set can be
transferred successfully to a real SAR data scenario.

Four possible approaches are then available to produce, in the present work, a suitable
training data set for raw-data-based ship detection: (i) the use of real data extracted from
SAR images, (ii) the use of optical-based transfer learning, (iii) the use of an SAR data
simulator, and (iv) the use of a hybrid approach (real and synthesized data combined
together). All of these approaches have advantages and disadvantages. The approach
based on the use of real data allows the training of the CNN in conditions similar to those
of the operational service, but data generation is, in general, a time-consuming activity.
The use of transfer learning and SAR simulators allows the quick production of a very
large number of training data but may produce unrealistic data. The hybrid approach can
represent a compromise between the two previous approaches, but it can also represent a
complication related to the lack of harmonization between real and simulated data.

In our work, we mainly wanted to give priority to the ability to have physical control
of data set generation at the expense of the complexity of the SAR scenes; therefore, we
adopted a simplified simulation approach. This choice will provide a quantitative analysis
of the applicability of a simple simulation tool in real application scenarios. The proposed
simulator produces a set of complex matrices simulating SAR raw data acquired in a
marine environment with the presence of ships. The synthetic data set was then used to
train and evaluate a state-of-the-art CNN. More specifically, the simulator developed is
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based on the parameters of the ERS SAR mission, which is a well-documented system [32]
and, therefore, lends itself to the simulation of data sets in realistic conditions. As already
stated, the simulation approach is based on a low level of complexity aimed at developing
a fast and automatic simulator. The adequacy of this choice was subsequently verified by
evaluating the CNN performance with real data extracted from ERS images. The scientific
literature provides many applications of ERS data to the maritime context [33,34], and this
allows the easy identification of case studies to be used for the test of the proposed CNN in
real scenarios.

2. Materials and Methods

As described in the previous section, this study is aimed at the implementation of a
CNN-based approach capable of detecting ships directly on SAR raw data. This required
two main steps:

- The implementation of an SAR simulator of raw data in a maritime environment;
- The configuration and training of the selected CNN by using the training data sets

generated with the SAR simulator.

As already stated, the implementation of the simulator followed an approach based on a
low level of complexity aimed at developing a fast and automatic simulator. More accurate
approaches based on, for example, advanced physical models have been discarded due to
the large number of external parameters to consider and their complex interaction. This
would implicate a challenging activity with the implementation of a complex simulator
that may lead to the generation of training data sets based on data extraction from real
images, which is not the strategy that we wished to adopt in our work. As a result, we
simplified the simulation of the sea and ship raw data set according to the block scheme
presented in Figure 3. Details for each block are addressed in the next subsections.

Figure 3. Simulator scheme.

2.1. SAR Parameters

As already mentioned, the real and simulated data are based on the ERS-1 and ERS-2
satellites. Although these satellites no longer operate, they together represent, even still
today, one of the most successful satellite SAR missions. The ERS-1 satellite was launched
in 1991, followed by ERS-2 in 1995. The two ESA satellites, at the time, represented the most
technologically advanced Earth-observing spacecraft that had ever been manufactured in
Europe and were able to collect data for more than fifteen years, thus generating a very wide
data set suitable for both land and sea applications with a very extensive bibliography [35].

The main ERS parameters are listed in Table 1. The values are derived from parameters
defined in the ERS handbook [32]. The ERS operating frequency falls in the C band that,
according to IEEE designation, spans from 4.0 to 8.0 GHz, which is a typical operating
band for Earth Observation radar systems. Additional parameters that depend on the
specific acquisition time, such as the radar’s altitude and velocity, can be extracted from the
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auxiliary files associated with each image. For our simulator, we used the average values
indicated in Table 2.

Table 1. ERS parameters.

Name Symbol Value

Carrier frequency f0 5.3 GHz

Signal bandwidth BW 15.55 MHz

Pulse width TR 37.10 µs

Chirp rate fR 2.0889 × 1011 Hz/s

Pulse repetition frequency PRF 1.68 kHz

Sampling frequency fs 18.96 GHz

Radar aperture WA 10 m

Look angle θ 23◦

Transmitter peak power Ppeak 4.8 kW

Table 2. ERS flight parameters.

Name Symbol Value

Velocity vsat 7.12 km/s

Radar altitude Hsat 785 km

2.2. Ship Simulation

The SAR response of a ship depends on many factors, such as the material, shape,
dimensions, and orientation of the ship toward the radar acquisition system. For this
reason, we propose an approach aimed at implementing a minimal level of complexity
in the simulation of a ship’s response, choosing the single-point model. The SAR signal
model used for the implementation of the simulated data set is based on the acquisition
geometry depicted in Figure 4.

Figure 4. SAR acquisition geometry.
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The SAR sensor travels along a flight path (known as the azimuth direction) such
that the antenna phase center, at a given instant τ, has a three-dimensional spatial location
denoted by:

rA = [xA(τ), yA(τ), zA(τ)] (1)

In this acquisition geometry, a generic stationary (or slowly moving) point target
located in the scene has the following coordinates:

rT = [xT , yT , zT ] (2)

The distance from the antenna phase center to the target, known as range, is denoted by:

dAT(τ) =
√
(xA(τ)− xT)2 + (yA(τ)− yT)2 + (zA(τ)− zT)2 (3)

At periodic intervals (given by the inverse of the pulse repetition frequency), the radar
antenna transmits a pulse, known as chirp and defined by the following equation:

sT(t) = AT · rect(
t

TR
) · exp(j(2π f0t + 2π fRt2)) (4)

where AT is the amplitude of the transmitted signal, TR is the duration of the chirp signal,
f0 is the carrier frequency, fR is the chirp rate, and t is the time axis centered in the generic
instant τP when the transmission occurs.

The point target on the ground receives this signal and produces a so-called echo,
which is a delayed and rescaled version of the transmitted signal, as defined by the follow-
ing equation:

sR(t) = AR · exp(jϕ) · sT(t −
2dAT(τ)

c
) (5)

where c is the speed of light, AR is the magnitude of the received signal and is different
from AT since it takes into account the energy loss during propagation and reflection, and ϕ
represents the phase change that may result from the target scattering processing. The time
delay of 2 dAT (τ)/c takes into account the two-way propagation from antenna to target.

The received signal is demodulated in order to remove the carrier frequency:

sRdem(t) = sR(t) · exp(−j2π f0t) (6)

Finally , the received demodulated signal is sampled (at tn = n/ fs) and quantized in
order to obtain a discrete-domain signal. The sampling frequency used in the ERS mission
produces Nrg = 704 range samples for the chirp signal. It can be observed that the antenna
footprint allows the collection of several echoes from the same target in different τP instants.
In particular, for the ERS case, we used a realistic value of Naz = 1600 echoes. As a result,
a single-point generates an overall ERS impulse response that takes about 700 samples in
the range direction and about 1600 samples in the azimuth direction:

Iimpulse(m, n); m = 1, . . . , Naz; n = 1, . . . , Nrg (7)

where m and n are the matrix coordinates of the azimuth and range directions, respectively.
As illustrated in the simulation of Figure 5, despite the single-point simplification, it

must be noted that the relevant raw data generated are a complex matrix, wherein rows
represent azimuth samples and columns represent range samples, with azimuth being the
flight direction of the satellite and range being the look direction (distance) of the SAR
sensor. Although this is a considerable simplification, it has proven to be extremely useful
for verifying whether the training of the selected CNN in such conditions is still valid
enough to subsequently operate with real data.
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Figure 5. Real part of the ERS impulse response of a one-point modeled ship centered in the image.

Once the single-point impulse response is available, Iimpulse(m,n), it is possible to
generate raw data images with a generic position of the ship by simply adding a range and
an azimuth shift by means of the following equation:

Iship(m, n) = Iimpulse(m − az_sh, n − rg_sh) (8)

where the parameters az_sh and rg_sh are the applied shifts according to the block diagram
of Figure 3.

It is interesting to note that the typical SAR focusing step is in charge of collecting all the
echoes and ideally compressing their energy in a single pixel located at coordinates az_sh
and rg_sh. This is obtained by means of several techniques proposed in the literature [6–9]
that efficiently implement a 2D convolution with a matched filter Hmatched, thus obtaining a
focused SLC image:

ISLC(m, n) = Iship(m, n)⊛ Hmatched(m, n) (9)

2.3. Sea Simulation

A realistic marine simulation is a difficult goal to attain. Many factors must be
considered, including weather, wind, sea state, marine currents, biological spots, and oil
slicks. For this work, we propose a simplified approach based on a statistical model of the
sea directly derived from the distribution of the values of the raw data.

As outlined in [36], either in the high-resolution or low-resolution case, with the ideal
hypothesis of a sea background having a constant radar cross section and the central limit
theorem, both the real and imaginary parts are Gaussian-distributed. Although more
complex modeling can be proposed, the analysis carried out on a number of different
crops of ERS-1/2 raw complex data (see Figure 6) shows that it is acceptable to model
both the real and the imaginary parts with a truncated Gaussian distribution according
to the following equation:

ssea(x) =
1√

2πσ2
· exp(−1

2
· ( x − µ

σ
)2); x ∈ [Xmin, Xmax] (10)

The four variables used to characterize the truncated Gaussian distribution are the
mean (µ), the standard deviation (σ), and the truncation limits (Xmin and Xmax). In particu-
lar, for our simulation, the following were employed:
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- µ was set to 0;
- σ was varied in order to generate different rough sea conditions, i.e., different levels of

the sea signal with respect to the ship signal, thus obtaining different Signal-to-Clutter
Ratio (SCR) values;

- The truncation limits were set according to the quantization of the real and imaginary
parts performed by the 5-bit analog-to-digital converter of the ERS acquisition system.
This allows the quantized data to take integer values in the range of −16 (Xmin = −24)
to +15 (Xmax = +24 − 1).

(a) (b)
Figure 6. Gaussian-fitted real part (a) and imaginary part (b). The histogram shows the distribution
of values extracted from crops of ERS raw data, and the red line is the fitted distribution.

The simulation is simply implemented by initializing an empty matrix with complex
values by using random values generated via the truncated Gaussian distribution (here
indicated with Xsea). This matrix represents the raw data generated from the sea return:

Isea(m, n) = Xsea_real(m, n) + i · Xsea_imag(m, n) (11)

where i is the imaginary operator and Xsea_real (m,n) and Xsea_imag (m,n) are real matrices
randomly generated with the truncated Gaussian distribution.

2.4. Training Data Set Generation

In accordance with the block scheme illustrated in Figure 3, once a pair of sea and
ship simulations are produced, these two contributions are summed into a single complex
matrix that represents the simulated noisy raw data image:

Iraw(m, n) = Iship(m, n) + Isea(m, n) (12)

In this way, we introduce full control of both the reference image (the ship radar
response, Iship) and clutter (the sea radar response, Isea), with the possibility of conducting
parameter sensitivity tests in terms of noise intensity and ship extension and position,
as detailed later in this paper. This approach allowed us to perform an exhaustive sensitivity
analysis, thus avoiding (at least in this study) working with blind quality assessment
approaches that are very common in the literature [37–39].

After this stage, the simulator activates two branches aimed at the generation of the
training data set and computing image quality. It must be noted that high-quality training
data are important for the successful use of intelligent systems. Various survey works are
available in the literature regarding the estimation of the quality of an image, known as
Image Quality Assessment (IQA) [40,41]. In the specific case of this work, it was decided to
take as a reference the Signal-to-Clutter Ratio (SCR), which is a specific parameter used in
the SAR field, largely employed in the field of ship detection [42]. It is useful in our work
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to verify whether the raw data generated in the simulation are capable of producing an
SAR response with the presence of an intensity peak in a noisy background.

To this aim, it was inserted in the block diagram of Figure 3, a branch dedicated
to focusing the simulated raw data and the subsequent calculation of the SCR. More
specifically, the first step generates the intensity image, obtained by focusing the raw data
and computing the magnitude of the result:

Iint(m, n) = |Iraw(m, n)⊛ Hmatched(m, n)| (13)

Subsequently, the SCR is computed according to Formula (14).

SCR = 10log10(
Pship

N
) (14)

where Pship is the peak intensity of the ship return, while N is the average intensity of the
sea around the ship. These two parameters are computed on the intensity image Iint.

There is an alternative to this expression, where Pship is calculated as the average
power of all the pixels belonging to the ship. This second version, however, is susceptible
to estimation errors on real data since it is not possible to know precisely the extent of the
ship in the image. This second expression is very common in the scientific literature; we
will refer to it with the notation SCRAV in this paper.

In parallel, a second branch of the block diagram extracts a crop of the simulated
raw data image that contributes to populating the training data set. For this study, we
looked at the effects of different cropping dimensions on raw data. Following several
tests, we determined that the best performance dimension was 100 × 100 samples, which
is significantly shorter than the impulse response. A possible explanation is that, in
this way, we can concentrate the crop on the peak response, which typically contains
significant energy of ship radar return, and guide the selected CNN to learn to identify
this part of the signal, which is less disturbed by the background noise generated by the
sea response.

Furthermore, the selection of a small crop introduces two other advantages. First, it
must be considered that the CNN we will examine in the next sections of the paper is a
classification network; this means that it does not specify where the ship is in the scene,
but whether it is present or not. The use of small crops is, therefore, recommendable in
order to reduce uncertainty about the ship’s position. Second, a smaller crop requires
less training and classification times. To make the simulation closer to realistic conditions,
the ship position is not centered in the crop; it is moved from the center with a random
shift of ±12.5 pixels in the range and azimuth directions (az_sh and rg_sh parameters are
shown in Figure 3). The goal of this shift is to improve ship detection performance even
when the ship peak is not exactly centered in the crop.

2.5. Convolutional Neural Network

The goal of the Neural Network is to categorize the raw data crops into two classes:
Ship and NoShip. Due to the fact that input raw data are a complex matrix, the selected
CNN was configured to work with two separate real channels representing the real and
imaginary parts of the input data, respectively (see Figure 7). In a preliminary analysis,
we also attempted to work with only a single real channel selected among the real part,
imaginary part, amplitude, and phase of the input complex data, but none of them
provided satisfying results. Therefore, the use of both real and imaginary channels was
the final choice for the present work, and only the results concerning this choice will
be presented.

Since the main objective of the present work is to prove the feasibility of ship detection
on SAR raw data by means of a CNN approach and not to test different machine learning
algorithms, it was necessary to choose an algorithm with a high probability of success in the
proposed experiment. To this aim, we evaluated the performance of a deep neural residual
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network known as “ResNet” [43] that can be considered a state-of-the-art Convolutional
Neural Network. CNNs are a class of deep learning models designed to process and extract
features from visual data, such as images and videos. These networks employ convolutional
layers to detect local patterns and hierarchical structures, followed by pooling layers to
reduce spatial dimensions and increase computational efficiency. The fully connected layers
at the end of the CNN interpret the learned features to perform classification or regression
tasks. Deep convolutional neural networks, during the learning phase, use kernels that
are normally randomly initialized and, in the subsequent phases of convolutions and
max pooling, the kernels able to extract the information necessary to justify the class of
belonging of the input crop are retained, while the others are discarded.

(a) (b)
Figure 7. Real part (a) and imaginary part (b) of a simulated ship and sea raw data crop.

The network working on a generic case of the absence of the ship (null hypothesis)
works only on sea images. Such images are obtained as described in [11]. No pattern is
recurrent in the learning phase, so the network chooses the most similar patterns from the
background noise for each crop in the training set corresponding to the null hypothesis;
such kernels are not present on all training image sets, so the decision process is chosen
on this basis for the null hypothesis. If a ship is present in the image, a specific pattern
appears to be present in the input data and is recurrent on all the crops in the training set
of the detected hypothesis; thus, max pooling extracts the kernels able to detect this kind of
pattern. The convolutional neural network is useful in our application as many crops can
contain patterns only in a small part of the image while the rest may be affected by different
patterns that do not correspond to the class the network is learning to recognize. Such other
patterns are discarded in the max pooling phase. This process is able to perform pattern
recognition, enhancing the searched patterns while reducing the effects of background
noise that may shade the presence of the pattern to a human eye.

ResNets use so-called residual blocks that implement shortcut connections in the
network architecture [43]. The stack of convolution layers within each residual block only
needs to learn a residual term that refines the input of the residual block toward the desired
output. This makes the ResNet easier to train because the shortcut connections enable
the direct propagation of information and gradients across multiple layers of the network,
leading to better gradient flow and the convergence properties of the network during
calibration. This ensures high flexibility for this CNN and increases the potential to under-
stand more complex features. The ResNet used in this work was created and trained on
Matlab. The command used to create its structure is resnetLayers(inputSize, numClasses),
which creates a 2D residual network with an image input size specified by inputSize and a
number of classes specified by numClasses. More specifically:

- inputSize is a 3-element vector in the form (height, width, depth), where depth is
the number of channels. In our case, inputSize is set to [100, 100, 2], considering
that the input image crops have a size of 100 × 100 pixels in the form of real and
imaginary parts.
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- numClasses is an integer greater than 1. In our case, numClasses is set to 2, considering
the need to detect Ship and NoShip classes.

The architecture parameters of the ResNet are presented in Table 3.

Table 3. ResNet architecture parameters.

Name Description Value

Initial filter size Filter size in first convolutional layer. (Height, weight) = (7, 7)

Initial num filters

Number of filters in the first
convolutional layer. The number of
initial filters determines the number
of channels (feature maps) in the
output of the first convolutional
layer in the residual network.

64

Initial stride Stride in the first convolutional layer. (Height, weight) = (2, 2)

Initial pooling layer First pooling layer before the initial
residual block. Max pooling

Residual block type
Specifies the location of the batch
normalization layer in the standard
and downsampling residual blocks.

Before the addition layer in the
residual blocks.

Bottleneck type

Uses bottleneck residual blocks that
perform downsampling in the first
convolutional layer of the
downsampling residual blocks,
using a stride of 2. A bottleneck
residual block consists of three
convolutional layers: a 1-by-1 layer
for downsampling the channel
dimension, a 3-by-3 convolutional
layer, and a 1-by-1 layer for
upsampling the channel dimension.

Enabled

Stack depth

Number of residual blocks in each
stack, specified as a vector of
positive integers. Specifies the
number of filters in the
convolutional layers of each stack
using the Num Filters argument.

(3, 4, 6, 3)

Num filters Number of filters in convolutional
layers of each stack. (64, 128, 256, 512)

Normalization Subtracts the mean. The mean is
calculated at training time. Enabled

2.6. Data Set and Training

The training parameters of the ResNet are presented in Table 4.

Table 4. ResNet training parameters.

Parameter Value

Number of hidden units 177

Epochs 30

Iterations per epoch 600

Solver Adam

Learning rate 2 × 10−4

Mini batch size 16
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The data set is composed of 12,000 simulations. Half of the data set’s 12,000 total crops
include ships, whereas the other half only includes a sea simulation. We generated a total of
6000 ship crops by flipping 2000 ship simulations vertically and horizontally. These crops
have an SCR between 42 and 56 dB. In this first phase, we chose to train the ResNet with
a high SCR to assist it in learning the essential features of a bright object’s radar impulse
response. A total of 80% percent of the data set is utilized for training, while the remaining
crops are equally divided between validation, which is performed periodically during
training, and testing, which is performed at the conclusion of the training. The data set
specifications are summarized in Table 5.

Table 5. ResNet data set parameters

Parameter Value

Ship simulations 2000 crops

Ship augmented data simulations 4000 crops

Total ship simulations 6000 crops

Sea simulations 6000 crops

Total simulations 12,000 crops

Simulations used for training 80%

Simulations used for validation 10%

Simulations used for test 10%

SCR range 42–56 dB

Under these conditions, the ResNet managed to achieve high accuracy during the
training phase with the simulated raw data, with several iterations exceeding 95% and up
to 100% accuracy, as illustrated in Figure 8.

After the training phase, the test data set composed of 1200 crops (600 ships and
600 sea crops) was used to check the final performance of the ResNet. This test phase was
aimed to assess the performance of the ResNet with an independent set of simulated data
not used in the training phase. All crops were correctly classified, reaching an overall
accuracy of 100%. However, to provide a realistic and quantitative performance of the
ResNet, further test phases were needed that also involved real data, as detailed in the
following section.

Figure 8. Training accuracy boxplot for each epoch.
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3. Results

Our goal was to assess the ResNet performance by using both real and simulated
ERS raw data. In this way, we were able to simultaneously evaluate the quality of our
simulation model, as well as the performance of the trained ResNet in real scenarios.

3.1. Test with Single-Point Ship Simulated Data

This test phase was aimed to assess the ResNet performance with another independent
set of simulated data not used in the previous training and test phases. A single-point
model for ship simulation was adopted with different conditions of SCR values and
range/azimuth shifts. This gave us important insights into ResNet’s robustness and
sensitivity to a wide range of conditions. More specifically, we investigated the detection
performance as a function of SCR and shift values by further simulating 29 ship crops with
an SCR varying from 15 to 45 dB. Starting from these simulations, we generated 2349 crops
by applying a combination of 81 progressive azimuth and range shifts to the ship position
with respect to the center of the crop. The size of the simulated crops is 100 × 100 samples
in accordance with the training data set, while the range of ship positions was extended to
±80 samples and then more than 6 times higher than the ±12.5 range used in the training
phase. This was conducted as a preliminary attempt to test the performance of the network
beyond the limits it was trained with.

Under these conditions, we evaluated the ResNet’s classification result for each crop.
The classification accuracy can be analyzed by means of the scatter plot presented in
Figure 9. It can be observed that the ResNet begins to detect the ship class with SCR > 33 dB.
With higher SCR values, it is also able to tolerate a shift distance of <50 pixels with respect
to the center of the crop.

Figure 9. Accuracy of the ResNet with one-point ship simulated crops with different combinations of
SCR and shifts from the crop center.

We also investigated the impact of the shift direction. Due to the different shapes
of the impulse response along the azimuth and range directions, a different performance
is expected when a ship shift is applied separately along these two axes. To this aim,
scatter plots in Figures 10 and 11 illustrate the classification accuracy when the shift to the
ship position is applied in one direction only, with a zero shift in the other direction. The
analysis of both plots shows that the proposed ResNet is more robust to azimuth shifts.
This different performance will be further investigated in future works.

Finally, the performance related to false ship detection was evaluated. To this aim,
1000 crops containing only the SAR response of the sea were simulated with the same
size as ship crops. The ResNet was able to correctly classify all the simulated crops, thus
obtaining 100% accuracy in the detection of the sea class.
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Figure 10. Classification accuracy as a function of SCR and shifts applied to simulated data along the
azimuth direction only.

Figure 11. Classification accuracy as a function of SCR and shifts applied to simulated data along the
range direction only.

3.2. Test with Multi-Point Ship Simulated Data

The results obtained using the ResNet, in the case of single-point simulations, allowed
us to confirm the ResNet’s ability to detect the presence of a ship using raw data. At
first glance, the performance obtained in terms of the SCR may not appear particularly
challenging. However, it should be considered that the resolution of the ERS data is equal
to 5 m × 20 m, which means that the single-point response refers to very small vessels
for which the literature is still exploring various solutions. Among the most promising
approaches, we mention the use of multi-polarization sensors, which are not the subject of
this analysis since the ERS mission operated exclusively in VV polarization. In this regard,
in [42], it is noted that in the case of small ships, the combined use of multiple polarizations
leads to a detection capacity in the range between 38% (with the GNF method) and 85%
(with the ΛM method). In particular, the ΛM method achieves the best performance with an
SCR of 18.3 dB. However, the performances achieved by it do not correspond to single-point
ships but always involve a limited extension of pixels, which can favor the application of
SCR enhancement before detection.

As observed, an analysis was, therefore, necessary to evaluate the impact of the exten-
sion of the ship on the performance of the detection algorithm. There are two contrasting
aspects concerning this observation. First of all, it can be immediately observed that in
the presence of several pixels associated with a ship, interference between the various
responses is expected. This is confirmed via the graph illustrated in Figure 12, in which it is
evident that by increasing the number of pixels associated with a ship, there is a consequent
drop in the SCR value.
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Figure 12. SCR measured with an increasing number of points used to simulate radar response of
ships with different extensions. Each box shows the statistics of 100 tests with the same ship extension
but with a random point position in each resolution cell.

However, the availability of more pixels per ship enables the generation of multiple
echoes returned by the ship and, consequently, a greater overall energy received by the
radar system.

In order to investigate how these two contrasting aspects impact the performance of
the ResNet, several simulations were performed with ships having dimensions of 3 × 3,
7 × 7, 10 × 10, 14 × 14, and 33 × 33 pixels, corresponding to ground extensions of 15 × 60,
35 × 140, 50 × 200, 70 × 280, and 165 × 660 m2. From an implementation point of view, it
was sufficient to iterate the single-point simulator in different positions and sum the results
in order to generate a multi-point ship radar response. Not all dimensions are realistic for a
ship, but they have been taken into account to provide a sufficiently comprehensive picture
of the ResNet’s performance in the case of a multi-point model.

It is observed that although the ResNet was trained with a single-point model, it was
able to produce optimal performance when simulated ships have a size of 7 × 7 pixels.
Under these conditions, it can be observed that the ResNet begins to correctly detect the
ship class with SCR > 24 dB. With higher SCR values, it is also able to tolerate a shift distance
of <60 pixels with respect to the center of the crop. This performance is well beyond the
limits measured with a single-point ship simulation (resulting in an SCR > 33 dB and a
maximum shift distance of <50 pixels). According to Figure 13, it can be inferred that
the 7 × 7-pixel size is a sort of sweet spot for ERS-based simulations. Beyond this size,
the ResNet performance begins to decrease, probably due to the presence of pixels with
a considerable inter-distance that introduces a strong deviation from the expected single-
point ship impulse response used to train the ResNet.

(a) 3 × 3-pixel simulated ship (b) 7 × 7-pixel simulated ship
Figure 13. Cont.



Technologies 2023, 11, 178 17 of 23

(c) 10 × 10-pixel simulated ship (d) 14 × 14-pixel simulated ship

(e) 33 × 33-pixel simulated ship
Figure 13. Classification accuracy as a function of SCR and shift in the ship position (multi-point ship
simulated data).

3.3. Test with ERS Data

Finally, we conducted a thorough test of ResNet’s accuracy in ship classification using
real ERS data. The first analysis consisted of verifying whether the performance measured
on simulated data can be replicated on real data. To this aim, seven crops were extracted
from ERS images corresponding to ships exhibiting an SCR between 24.8 dB and 40.1 dB.
We applied to each crop progressive shifts to ship positions spanning ±80 samples along
the azimuth and range directions. The results are illustrated in the scatter plot of Figure 14,
where it is also indicated the size in pixels of each ship in order to analyze the impact of this
parameter on the ResNet detection accuracy. In particular, it is observed that the ResNet
begins to operate correctly starting from an SCR equal to 26 dB.

Figure 14. Classification accuracy as a function of SCR and shift in the ship position (real data). Ship
size is indicated in parentheses next to the SCR value.
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It is possible to compare these performances with previous works available in the
literature. To this aim, it was necessary to estimate the SCR values by computing the
Pship parameter as the average power of all the pixels belonging to the ship, obtaining the
correspondences indicated in the Table 6.

Table 6. SCR measured on real cases by computing the two alternative expressions of (14).

SCR (dB) SCRAV (dB)

24.8 8.2

26.0 10.3

30.8 23.6

34.0 23.4

37.3 32.3

37.8 20.3

40.1 37.6

It is observed that the use of the average power in Expression (14) significantly reduces
the estimated SCR values. In particular, it is observed that the network begins to work
correctly starting from an SCRAV of 10.3 dB. This is in agreement with the results reported
in [44], where it is observed that the CFAR algorithm reaches a detection capability of 29.6%
with an SCRAV of 5.7 dB and of 81.6% with an SCRAV of 10.9 dB.

The performances of the ResNet with real data also exhibit several points of good
agreement with those measured in the simulation phase by means of the scatter plots of
Figure 13. More specifically, we observed the following:

- The ship with an SCR equal to 24.8 dB (having a size of 56 pixels) was not correctly
detected via the ResNet. This is in good agreement with the performance measured
with the 7 × 7-pixel ship simulation.

- The ship with an SCR equal to 30.8 dB (having a size of 110 pixels) was correctly
detected via the ResNet with shifts lower than 40–45 pixels. This is in good agreement
with the performance measured with the 10 × 10-pixel ship simulation.

- The ship with an SCR equal to 34.0 dB (having a size of 240 pixels) was correctly de-
tected via the ResNet with shifts lower than 40 pixels. This is in acceptable agreement
with the performance measured with the 14 × 14-pixel ship simulation.

- Even with the real data, there is some evidence of a potential sweet spot in the optimal
ship size. In the case of the simulated data set, a 7 × 7-pixel sweet spot was identified.
The reduced set of real data did not allow us to perform an exact estimation of the
sweet spot; however, there are some practical considerations that lead us to infer that it
should be positioned close to the one identified in the simulation phase. In particular,
the following can be observed: (1) the ship with a size of 110 pixels and an SCR equal
to 30.8 dB achieves the ResNet classification performances of the ship with an SCR
equal to 34 dB, which has a larger size (240 pixels); (2) the two ships with similar
SCR values (37.3 dB and 37.8 dB) exhibit very different performances, showing that
the ship with a smaller size (100 pixels) has better performance than the ship with a
400-pixel size.

This confirms that our multi-point ship simulation methodology accurately represents the
main characteristics of real ships and their interactions with clutter. Furthermore, this
successful test with real data also confirms the validity of our single-point ship simulation
approach for generating the simulated data, and it proves suitable for making the ResNet
operative on real data.

However, the test with real data reveals some deviations in ResNet performance
compared to that obtained with simulated data. In particular, it is not well understood why
the real ship with an SCR equal to 26 dB exhibits better performances than those measured
with simulated data. Future works will allow us to identify these anomalies.
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Further analyses were instead conducted regarding the behavior of the ResNet with
real data as a function of the direction of the shifts applied to the position of the ship with
respect to the center of the crop. More specifically, Figures 15–17 show crops of ERS images
extracted from three ships with different SCR values. For each crop, a graphic indication is
provided on the shifts applied in the azimuth and range directions and the outcome of the
classification corresponding to each shift. It is interesting to note the following:

- The detection accuracy associated with shifts applied along the azimuth direction is
better than that relating to shifts along the range direction, and this is in agreement
with what has already been observed in the simulation;

- The impulse response of the ship is visually recognizable only in the raw data associ-
ated with the third case (SCR, 40.1 dB), while with lower SCR values, this response
is not visible, although the ResNet still demonstrates the capability to recognize the
presence of the ship. Furthermore, this motivated why visual attention techniques
were not considered in the first feasibility analysis.

(a)
(b) (c)

Figure 15. Ship with SCR = 24.8 dB. (a) The real part of raw data; (b) each blue point represents the
center of the crop that is correctly detected via the ResNet (the relevant crop is colored green); (c) the
SLC amplitude.

(a)
(b) (c)

Figure 16. Ship with SCR = 30.8 dB. (a) The real part of raw data; (b) each blue point represents the
center of the crop that is correctly detected via the ResNet (the relevant crop is colored green); (c) the
SLC amplitude.

(a)
(b) (c)

Figure 17. Ship with SCR = 40.1 dB. (a) The real part of raw data; (b) each blue point represents the
center of the crop that is correctly detected via the ResNet (the relevant crop is colored green); (c) the
SLC amplitude.
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Finally, similarly to what was performed in the simulation, the performance related
to false ship detection was evaluated. To this aim, 3712 crops containing only the SAR
response of the sea were extracted from ERS images. The ResNet returned only 40 false
positives for an overall accuracy of 98.9%. A visual analysis of the input data associated
with these wrongly classified crops did not allow us to identify any interesting clues that
could motivate the wrong choices made via the ResNet (see Figure 18). This prevented
us from making changes in our tool for the simulation of sea crop data sets in order to
improve the sea classification performance of the ResNet.

(a) (b)
Figure 18. Real (a) and imaginary (b) parts of a sea raw data crop incorrectly classified as a ship via
the ResNet.

Furthermore, this highlights the limitations of present simulation methodologies
in mimicking specific natural situations and the necessity for additional research and
breakthroughs in simulating complicated marine settings for superior ResNet training and
testing in ship detection applications. At the same time, this leads us to reconsider, in future
works, the possibility of adopting a hybrid data set, including, within the simulated data
set, real cases that the ResNet has not correctly classified.

4. Conclusions

In this study, we have proposed a complete framework aimed at the detection of ships
applied directly to SAR raw data by means of a ResNet. The following is a summary of
our findings:

- We have proposed a simple and automatic simulation method for generating the
training data set.

- The simulator produces sea/ship simulations of radar echoes integrated into complex
matrices that represent the simulated raw data set.

- Ships are simulated by means of a single-point model that can be easily extended to a
multi-point model.

- The sea is simulated by means of a statistical model of the sea directly derived from
the distribution of raw data values extracted from ERS mission.

- A state-of-the-art ResNet CNN was configured with the aim of categorizing 100 × 100-pixel
crops into two classes (Ship and NoShip).

- During the training phase, the ship position was moved randomly up to the 12.5 range
and azimuth samples with respect to the center of the crop. Under these simulation
conditions, the ResNet was able to achieve 100% overall accuracy with an SCR in the
range of 42–56 dB.

- More realistic conditions were investigated by (i) using a multi-point model for ship
simulation and (ii) ship shifts of up to 80 range and azimuth samples with respect to
the center of the crop. Under these simulation conditions, ships with a 7 × 7-pixel size
were identified as a sweet spot for ERS-based simulations. Under these conditions,
it can be observed that the ResNet begins to correctly detect the ship class with
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SCR > 24 dB with small shifts of the ship position. With higher SCR values, it is also
able to tolerate a shift distance of <60 pixels with respect to the center of the crop. This
performance is well beyond the limits measured with a single-point ship simulation
(resulting in an SCR >33 dB and a maximum shift distance of <50 pixels).

- We also investigated the impact of the shift direction. Due to the different shapes of
the impulse response along the azimuth and range directions, different performances
are expected for shifts applied to the azimuth and range directions. In particular,
the proposed ResNet exhibits more robustness to azimuth shifts.

- Final analyses were carried out with ERS real data. In particular, the ResNet begins
to work correctly with an SCRAV equal to 10.3 dB, which is in good agreement with
the performance reported in the scientific literature. There is also a good agreement
between the performance with simulated and real data. This confirms that our ship
simulation methodology accurately represents the main characteristics of real ships
and their interactions with clutter.

Starting from the results obtained, the following future investigations are foreseen:

- A further analysis of different ResNet performances in shifts applied along the azimuth
and range directions.

- A further analysis of the ResNet performance as a function of the number of pixels
(and their distribution) associated with the ship.

- Check whether the combined use of the amplitude and phase channels is a possible
better alternative to the use of the real and imaginary channels.

- Check if the configured network is operating under overfitting conditions, given the
higher performance obtained in the training phase.

- An analysis of the false positive classification of sea crops extracted from real ERS data.
- An analysis of the computational cost of the proposed ResNet.
- As proposed by one of the reviewers, it is also important to improve the breadth of

experiments by providing a well-explored experimental setting based on performance
comparisons with classic ML methods as well as VGG Very Deep Convolutional
Networks and Densely Connected Convolutional Networks.

Author Contributions: Conceptualization, A.M., C.G. and R.N.; methodology, A.M., G.C. and K.T.;
software, A.M., G.C., D.O.N., N.R. and K.T.; validation, C.G., G.C. and R.N.; resources, D.O.N.;
data curation, G.C., N.R. and K.T.; writing—original draft preparation, G.C.; writing—review and
editing, G.C. and R.N.; supervision, C.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Advanced Payload Data Processing for Autonomy & Decision
(APP4AD) project: contract with the Italian Space Agency (n. 2021-6-E.0), Codice Unico di Progetto
(CUP) (F95F21000020005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data set used to train the ResNet can be downloaded at http:
//www.gapsrl.eu/gapsrl/ricprog.php (accessed on 30 August 2023).

Conflicts of Interest: Giorgio Cascelli, Raffaele Nutricato, Khalid Tijani, Alberto Morea, Nicolò
Ricciardi, Davide Oscar Nitti are employed by the company Geophysical Applications Processing
G.A.P. s.r.l. The remaining author declares that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

http://www.gapsrl.eu/gapsrl/ricprog.php
http://www.gapsrl.eu/gapsrl/ricprog.php


Technologies 2023, 11, 178 22 of 23

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolutional Neural Network
EC Edge Computing
EO Earth Observation
ERS European Remote Sensing
ESA European Space Agency
MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
ResNet Residual Neural Network
SAR Synthetic Aperture Radar
SCR Signal-to-Clutter Ratio
SLC Single Look Complex
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