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Abstract: In recent years, the usage of wearable systems in healthcare has gained much attention,
as they can be easily worn by the subject and provide a continuous source of data required for the
tracking and diagnosis of multiple kinds of abnormalities or diseases in the human body. Wearable
systems can be made useful in improving a patient’s quality of life and at the same time reducing the
overall cost of caring for individuals including the elderly. In this survey paper, the recent research
in the development of intelligent wearable systems for the diagnosis of peripheral neuropathy is
discussed. The paper provides detailed information about recent techniques based on different
wearable sensors for the diagnosis of peripheral neuropathy including experimental protocols,
biomarkers, and other specifications and parameters such as the type of signals and data processing
methods, locations of sensors, the scales and tests used in the study, and the scope of the study. It
also highlights challenges that are still present in order to make wearable devices more effective in
the diagnosis of peripheral neuropathy in clinical settings.
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1. Introduction

One of the major causes of disability worldwide is peripheral neuropathy (PN). It is
described as the damage of peripheral nerves that includes both sensory and motor nerves,
which can cause severe motor impairments, and 2.4% of the total world population suffers
due to the prevalence of peripheral neuropathy [1]. There are various causes of this disease;
however, the most affected ones are those people who have a prolonged history of diabetes.
Almost half of diabetic patients develop neuropathy at some stage of diabetes [2]. Other
causes of peripheral neuropathy include chemotherapy-induced peripheral neuropathy
(CIPN) [3], nerve compression, injury, alcohol use, hereditary diseases, toxin exposure, and
vitamin deficiencies [4]. Globally, USD 375 billion were spent in 2010 for the treatment
of peripheral neuropathy in diabetic patients, and it is expected to reach USD 490 billion
by 2030 [5]. The impact of peripheral neuropathy on healthcare costs and quality of life
due to pain, gait instability, foot ulceration, amputation, and injury due to risk of fall
demand an effective strategy or method for the diagnosis and treatment of the disease
as early as possible [6]. Peripheral neuropathy has become the most common neurologic
condition that is faced by physicians in almost all medical specialties. The main challenge
for physicians is to effectively screen an asymptomatic patient for peripheral neuropathy
since the symptoms of peripheral neuropathy are not prominent in its early stages, which
makes it difficult to diagnose by physicians and requires careful and expert analysis for
the diagnosis process [7,8]. Peripheral neuropathy is the main reason for foot ulceration
and amputation in diabetes patients [9]. For this purpose, nerve conduction studies (NCS)
along with electromyography (EMG) are the most widely and effectively used tool for the
screening of peripheral neuropathy; however, these techniques are time-consuming, costly,
and labor intensive, and it is also not practical to use NCS/EMG in clinical settings [10].
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In recent years, rapid advancement in the field of information and communication
techniques has enabled us to model, design, and produce compact mobile devices with
efficient processing capabilities and battery life [11]. The physical sizes of wearable devices
have significantly reduced due to modern fabrication techniques, such as microelectrome-
chanical (MEM) techniques, which play a very important role in the improved productivity,
and the high accuracy and sensitivity of wearable devices [12]. The concept of wearable
technology was first introduced by a mathematics professor “Edward O Thorp” in the
early 1960s to predict roulette wheels [13]. Wearable devices are designed with specific
electronic functions, and they come in various materials depending upon their use [14].
Due to their feasibility and low cost, applications of wearable devices are growing rapidly
in many research areas such as healthcare [15], education [16], sports medicine [17], mil-
itary purposes [18,19], and social networking [20]. In Ref. [21], different applications of
wearable sensors in consumer sports are discussed. Wearable devices are also commercially
available for healthcare purposes, such as different commercially available devices from
different brands for measuring step counts and heart rates that are compared in [22] with
respect to their accuracy. Wearable devices have proven to be reliable in some applications
such as step counts and distance measuring. However, further investigation, research,
and improved algorithms are needed to make wearable devices more accurate for clinical
diagnosis and to explore more applications in the healthcare field [23,24].

This survey paper summarizes the state-of-the-art research work that has been carried
out for the diagnosis of peripheral neuropathy using wearable devices that may assist
physicians and help maintain the health of patients who are suffering from peripheral
neuropathy. This research article has the following aims: (i) presenting recent research
techniques based on wearable devices for the diagnosis of peripheral neuropathy, and
(ii) highlighting the research gaps and open challenges in the diagnosis of peripheral
neuropathy. The main purpose of this survey paper is to present the effectiveness of
wearable technology in the diagnosis of peripheral neuropathy, to address the issues that
are still present in using wearable devices for the diagnosis of peripheral neuropathy, and
to highlight the gap that needs to be addressed in the future in order to make wearable
devices more suitable for the diagnosis of peripheral neuropathy. The following questions
are answered in this paper:

1. What research has been carried out towards developing systems based on wearable
devices for the diagnosis of peripheral neuropathy?

2. Which types of wearable devices are the most suitable or commonly used for the
diagnosis of peripheral neuropathy?

3. How can wearable technology assist physicians and contribute to improving the
health of patients having peripheral neuropathy or at risk of developing peripheral
neuropathy?

4. What are the challenges that wearable devices are facing in the diagnosis of peripheral
neuropathy?

These questions led us to identify the role of wearable devices in the diagnosis of
peripheral neuropathy and to highlight the potential future work that is needed to make
wearable devices more accurate and commercially available for the diagnosis of peripheral
neuropathy in clinical settings. This paper is organized as follows: Section 2 discusses the
criteria for the selection of research papers; Section 3 describes the recent research work
in the field of wearable devices for the diagnosis of peripheral neuropathy using only the
same type of wearable sensors; Section 4 describes the systems based on multiple types
of sensors in order to diagnose PN; Section 5 discusses the research gaps in the field of
wearable technology for the diagnosis of peripheral neuropathy; and Section 6 concludes
the paper.

2. Methodology

The selection of papers was carried out in three steps: (i) initial search in different digi-
tal libraries to identify relevant research papers based on their title and abstract; (ii) filtering
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out of papers based on defined criteria; and (iii) selection of most appropriate research
papers. First, an extensive search was carried out to find research papers that were based on
noninvasive techniques for the diagnosis of peripheral neuropathy using wearable technolo-
gies on IEEE Xplorer, Science Direct, the ACM digital library, and Google Scholar. These
databases were selected, as they possess a collection of indexed publications, journals, and
conference proceedings that include wearable technology in healthcare. Research papers
that were included from each database were published between the years 2013 and 2023.
The following terms were used to search research articles in these databases: peripheral
neuropathy and wearable systems/devices/sensors combined in different ways with the
words non-invasive, screening, diagnosis, intelligent, automated, and machine learning.
The initial search list after removing duplicates included 33 papers from IEEE Xplorer,
12 papers from Science Direct, 10 papers from the ACM digital library, and 21 papers from
Google Scholar.

In the next step, the authors reviewed the potentially relevant research papers based
on the following criteria: (1) the technique used in the study should be completely non-
invasive; (2) only wearable devices/sensors are used for data collection; (3) data acquisition
method is provided; (4) physical prototype of the model exists; (5) studies based on
wearable systems for the treatment or prediction of risk of falling in already diagnosed
peripheral neuropathy patients are not included; and (6) only the literature published in
English is included. Finally, 15 research articles were chosen which were purely focused
on the diagnosis of peripheral neuropathy using wearable sensors. Among these, four
articles focus on gait kinematics using inertial sensors for the diagnosis of PN; three
research papers are based on the diagnosis of peripheral neuropathy through the analysis
of foot plantar pressure; three studies are related to the diagnosis of peripheral neuropathy
using electrocardiography (ECG) data; and five research studies are based on the use of
multiple wearable sensors for the detection of peripheral neuropathy. In this paper, systems
proposed by researchers for the analysis of PN are divided into two broad categories,
which include single-type wearable sensor-based platforms and multiple-type wearable
sensor-based platforms. Research platforms based on single-type sensors are subdivided
into the following three categories: the first category includes the diagnosis of PN by
studying human gait using inertial sensors; the second category includes foot plantar
pressure-based systems; and the third category focuses on the analysis of the ECG signal in
order to diagnose the damage of nerves responsible for proper heart functioning.

3. Intelligent Wearable Systems Using Single-Sensor Type for Diagnosis of
Peripheral Neuropathy

The automated diagnosis of peripheral neuropathy (PN) has been performed in many
studies [8,25–34] where only a single sensor or technique is used for the data acquisition
purpose. These techniques are based on analyzing foot plantar pressure or gait analysis,
vibration- and sensitivity-based confocal microscopic image processing, thermal image
processing, ultrasound scanner, and nerve conduction studies (NCS) or electromyography
(EMG). However, in order to diagnose peripheral neuropathy, a continuous source of data
is necessary to diagnose and track the progression of PN. Image-based approaches can
provide a feasible way of detecting PN. In a number of research studies [35–38], a subject’s
gait is analyzed using cameras, but, due to the camera’s limited field of view, it cannot
provide continuous data which can result in missed data points [39]. Similarly, other non-
wearable techniques such as vibration- or perception-based methods and thermal images
provide suitable ways for the detection of PN, but these types of methods are not suitable
for long-term data collection which is vital for the diagnosis and progression of PN [40].
For this purpose, wearable sensors are the most suitable way to collect continuous data,
as wearable devices are designed in such a way that they can be easily worn by patients
and attached to the human body directly [41]. They also provide a way to collect and store
patient activity data for later use [42].



Technologies 2023, 11, 163 4 of 19

In this paper, the research techniques for the diagnosis of peripheral neuropathy using
a single-type wearable sensor are divided into three categories depending on the type of
sensor, the placement of the sensor, and obtained biomarkers or feature points.

3.1. Wearable Inertial Sensor-Based Intelligent Systems for the Diagnosis of PN

Wearable inertial sensors are mostly used for activity recognition tasks such as human
gait or postural positions with potential applications in healthcare and well-being, as
they offer reliable and accurate methods for studying human motion [43]. There are
different configurations of inertial sensors that can be used for recording and analyzing
human gait for the purpose of diagnosis. In most cases, inertial sensors are attached to
the leg, foot, or waist of the human body [44]. The most commonly used sensor in most
studies is an accelerometer in order to study human motion [45]. The combination of an
accelerometer and gyroscope or inertial measurement unit has also recently been used by
many researchers [46–49] for studying human motion for different applications.

Chen and Shanshan [50] use a wearable inertial sensor, i.e., accelerometer for the
early screening of peripheral neuropathy in diabetic patients and evaluate how much
valuable information can be added by the wearable inertial sensor in the screening process
of peripheral neuropathy. In this study, the authors focus on developing a wearable system
based on inertial sensors that distinguish the gait of diabetic patients with and without
peripheral neuropathy. The diagnosis of PN is based on the degradation in gait which
results in a slower gait, limited knee and ankle mobility, and shorter steps. The experimental
study was performed on 106 participants (aged 38 to 83 years old—54 female and 52 male);
among those, 30 were diagnosed as confirmed diabetic peripheral neuropathic patients, and
76 healthy individuals were included. The study was approved by the Ethics Committee
of Shanghai Ninth People’s Hospital, China. The ground truth in this study was taken
from the results of NCS studies and physicians’ diagnoses. For data collection, an ear-worn
3three-axis accelerometer was used to capture movements in lateral, forward, and vertical
directions at a sampling rate of 100 Hz. During walking trials, each participant had to walk
10 m for three rounds while capturing motion data.

The data were transmitted wirelessly to a tablet in real time. To obtain the gait feature,
vertical acceleration was used to segment gait cycles. To identify heel-strike events, a
customized peak detection algorithm was used by delineating each gait cycle from a heel-
strike event to the instant before the next heel-strike event. The gait features that were used
in this research include heel-strike events, toe-off events, variance, skewness, and kurtosis
of the gait signal. Other features like the maximum amplitude of the gait signal, cadence
per minute, and gait speed during the 10-m walk test were also included for analysis.

After data processing, five categories of logistic regression models (Model A to
Model E) were used to predict the presence of peripheral neuropathy using different
databases having different feature points. The first model, i.e., Model A, only used the
total score from the Michigan neuropathy screening instrument (MNSI) history; the second
model was based on physical examination of motor and sensory functions using nerve
conduction studies (NCS). Model C used both the data from MNSI history and NCS studies.
The fourth model, Model D, only used data from an ear-worn accelerometer, and the last
model, Model E, was based on the combination of MNSI history and gait features from
the inertial sensor. Age and gender were also used as feature points in all five proposed
models. The main reason for creating different models was to quantitatively measure the
contribution of wearable sensors to the early screening of PN. In order to compare the
performance of the proposed models, the authors applied the likelihood ratio (LR) test to
find the best possible gait features for the diagnosis of PN. Significant increased LR test
stats show that the new feature or biomarker enhances the performance of the models and
improves model fit statistically. To examine overfitting, the Brier score was calculated by
observing the difference between the true probability and observed probability. The results
of this study show that three gait features can play a great role in distinguishing abnormal
walking in PN patients. These features include the skewness of lateral acceleration, the
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maximum amplitude of lateral acceleration, and the range normalized maximum ampli-
tude of lateral acceleration. The overall results show that these three gait features can be
used to diagnose PN, as they reveal that gait patterns in DPN patients are less extreme
and exhibit less sway in the lateral direction. Additionally, step length and gait speed are
relatively higher in PN patients compared to healthy individuals. Among all five proposed
models in this research, Model E, which consists of inertial data as well as MNSI history,
outperformed all other proposed models and suggests that valuable information can be
added by wearable sensors in the screening of PN in order to make the diagnosis process
more accurate and diagnose the disease in time.

Cohen et al. [51] proposed a framework for the diagnosis of peripheral neuropathy
based on an inertial measurement unit (IMU) and tandem walking test. The main focus of
this study was to determine whether the tandem walking test can be performed successfully
for the screening of peripheral neuropathy. In the experimental study, both healthy subjects
and subjects with peripheral neuropathy were recruited. All subjects could walk without
any gait aid. The experiment included 21 subjects with PN (13 males, 8 females—age
60 ± 12.4 years) (mean ± SD) including small fiber, large fiber, or mixed large and small
fiber neuropathy, and 61 healthy subjects (31 males, 30 females—age 49.6 ± 16.0 years).
This study was approved by the Institutional Review Board for Human Subjects Research
of Baylor College of Medicine, Houston, TX, USA. The ground truth was provided by a
medical expert using electromyography (EMG). At the time of the walking trials, subjects
wore only socks for hygiene purposes. The walking task consists of a 10-step walk on the
industrial carpeting in two different phases. In the first phase, the subjects were asked
to walk with their eyes open; in the second phase, the subjects were asked to perform
the walking task with their eyes closed. The IMU sensor was mounted on the torso
of each subject in order to collect gait data. From the raw sensor data, mean square
values of resultant acceleration, angular velocity about the roll axis, angular velocity about
the pitch axis, and angular velocity about the yaw axis were measured. To calculate the
differences in the dependent measures, multilevel statistical techniques were used including
separate models fitted to each dependent variable. Receiver operating characteristic (ROC)
measures were taken into consideration for the statistical analysis of the sensor signal.
Chi-square distribution was used to determine changes in eye open/closed conditions
between pathological and non-pathological subjects. The experimental results in this study
show that it is more likely for PN subjects to take significantly more consecutive steps with
eyes open than eyes closed, while healthy individuals took more consecutive steps than
PN subjects in both eyes open and closed conditions. The motion data analysis results
indicated that PN subjects have higher angular velocity about the roll axis, angular velocity
about the pitch axis, and angular velocity about the yaw axis. The results also showed that
PN subjects show greater instability compared to healthy persons while performing the
tandem task with their eyes closed.

Esser et al. [52] used a single IMU to analyze gait in order to diagnose peripheral
neuropathy in diabetic patients. The main aim of the study was to analyze human gait
using an IMU sensor during a 10-m walk test. The IMU was mounted on the lower back,
and data from the accelerometer and gyroscope were recorded at the sampling rate of
100 Hz for further processing. By using the collected data, spatiotemporal gait parameters
were extracted from the sensor data. The extracted parameters included step time, cadence,
stride length, and walking speed. The data analysis for each group in order to find group
differences was performed using the chi-square statistical method. This method compares
the distribution of categorical variables in a sample with the distribution of categorical
variables in another sample. For statistical analysis, this study uses ROC curves by means
of the area under the curve (AUC). The experimental set-up included 17 participants
(14 males, 3 females) with DPN, and 42 healthy participants (30 males, 12 females) aged
around 63.2 ± 9.2 years. There was no difference in age, gender ratio, height, or BMI
between groups. The participants were recruited from the Oxford Centre for Diabetes,
Endocrinology and Metabolism at the Oxford University Hospitals NHS Foundation Trust
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(Oxford, UK), and the study had approval from the National Research Ethics Committee
(NRES: 11/SC/0218). The PN patients were confirmed using a monofilament test carried
out by a specialist diabetes podiatrist. The obtained results in this study indicate that
significant differences were found for all spatiotemporal parameters between PN patients
and healthy subjects except for stride length. However, walking speed differed significantly
in unhealthy and control subjects compared to any other gait-related parameters, while
producing the largest discriminatory power (AUC = 0.975).

Wang et al. [53] proposed a framework for the diagnosis of peripheral neuropathy and
other neurological disorders using two IMU sensors ((InvenSense MPU-6050) in order to
analyze human gait. The two IMUs were used to measure five key kinematic and three
spatiotemporal gait parameters that can help in distinguishing the type of neurological
disorder. These parameters capture the kinematics of the ankle’s linear motion and shank
rotation, as dysfunction of lower-limb segments and joints would impact the motion of the
ankle and shank. The IMUs were mounted on the ankle of each shank in the sagittal plane
on the lateral side. The data were collected at a sampling frequency of 100 Hz. The study
included 8 patients with PN (3 males, 5 females—age 49 + 8), 13 patients with post-stroke
(PS) (9 males, 4 females—age 61 ± 15 years), 15 patients with Parkinson’s disease (PD)
(9 males, 6 females—age 76 ± 7 years), and 13 healthy subjects (HC) (7 males, 6 females—
age 49 ± 20 years). Additionally, information about subjects’ heights and weights was
provided in [53]. The study was approved by the Medical Ethics Committee of the School of
Medicine at Zhejiang University, China. As can be observed, the data between each group
are not balanced based on age or female/male ratio. In walking trials, the participants were
asked to walk at a convenient speed for more than 12 m on a flat surface. From the IMU
data, eight features were extracted based on detected gait phases and calculated motion
trajectories i.e., stride length (SL), gait cycle duration (GD), percentage swing phase (PSP),
max ankle velocity (MV), max ankle height (MH), ankle horizontal displacement (MHD),
range of shank motion (RS), and kinematic asymmetry (KS). Using extracted features, a
support vector machine (SVM) classifier was used to distinguish among four classes. The
algorithm for training and validation of the proposed system was carried out in MATLAB.
The classification accuracy achieved was 93.9% in this case. In this study, the authors used
separate SVM classifiers for each of the four classes. In this way, four SVM classifiers
were trained to distinguish data points of one class of subject from another class. During
the training process, linear kernel function and sequential minimal optimization (SMO)
method were used.

3.2. Pressure Sensor-Based Intelligent Wearable System for Diagnosis of PN

Foot plantar pressure is the distribution of the pressure field that acts between the
foot and the surface [54]. It plays a very important role in the diagnosis of peripheral
neuropathy. As in most cases, due to the damage of foot nerves which is common in
diabetic patients, the patient cannot feel the right amount of plantar pressure required to
walk smoothly. Due to nerve damage, the sensitivity of the foot decreases. Hence, patients
having peripheral neuropathy in the lower limb will always exert more pressure than the
healthy person while walking [55]. This makes it important for diabetic patients to have
regular check-ups, as symptoms of PN will appear in later stages of the disease where it is
not possible to recover the organ, and it may result in amputation of the foot [56]. By using
a wearable pressure sensor, the early diagnosis of PN can be made possible, as wearable
systems can be used in clinical settings as well as remotely [57]. Further, it is difficult for
doctors to examine patients by simply observing the gait of the patients. Wearable sensors
can provide an objective measurement and detailed knowledge about the physiology of
the patient which is necessary to keep people’s lives healthy [58]. There are a variety of
pressure measurement systems available; however, they are broadly classified into two
types: (1) platform systems and (2) in-shoe systems. This section of the paper summarizes
the research related to recording and analyzing foot plantar pressure for the diagnosis of
peripheral neuropathy.
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Cao et al. [59] proposed a method for the diagnosis of PN based on foot plantar
pressure distribution. The main aim of the study was to analyze foot plantar pressure
changes while measuring foot plantar pressure distribution in order to prevent ulcers
in elderly diabetic people. The study further investigates the role of plantar pressure in
elderly diabetic patients with and without PN and compares pressure distribution between
healthy subjects and diabetic patients with and without peripheral neuropathy. This study
includes foot plantar pressure data from 19 diabetic patients with peripheral neuropathy
(DPN) (10 males, 9 females—age 65.7 ± 2.4 years), 17 diabetic patients without peripheral
neuropathy (D) (9 males, 8 females—age 65.2 ± 6.8 years), and 20 healthy subjects (H)
(11 males, 9 females—age 65.2 ± 5.4 years). Patients were recruited from Tianjin Medical
University Chu Hsien-I Memorial Hospital in China. All subjects agreed to participate and
signed informed consent after being fully informed of the study’s procedure. The data
were collected by using an insole wireless plantar pressure monitoring system designed by
Medilogic, USA, at a sampling frequency of 300 Hz. The sensor can provide continuous
data up to 10 m. The sensor was placed between the sole and the socks. The experimental
protocol consisted of 10 m of walking trials at a speed suitable and comfortable for the
subject. From plantar pressure data, the authors divided the plantar area into seven regions
based on anatomical structure.

After collecting the plantar pressure data, the changes in peak pressures in segmented
areas were analyzed while the subject was performing the walking task. In this study,
the peak pressure was taken as the highest pressure in each segmented area during one
gait cycle. A value of pressure higher than 200 KPa was considered high pressure. In
this study, two insole pressure sensors were used to record pressure distribution in both
feet. From sensor data, average pressure values of the right and left foot were calculated
for each segment area in order to find statistical differences in each subject. The value
of peak pressures in normal and DPN patients were investigated, clearly showing that
DPN patients tend to have higher pressure in every segmented area of the foot compared
to healthy or diabetic subjects without DPN. However, no differences were found in the
peak pressure of healthy subjects and diabetic patients without PN. Results showed that
the most sensitive areas related to the change in foot plantar pressure include the inner
forefoot and medial forefoot region. Additionally, the peak pressure of the forefoot region
in DPN patients is much higher compared to the peak pressure in the rear foot region. The
overall study suggests that a significant increase in plantar pressure at the forefoot region
was observed in DPN patients in the standing position, while healthy individuals in the
standing position put more pressure on the rear foot.

Corpin et al. [60] proposed a model for the prediction of DPN by analyzing foot
plantar pressure data. The Tekscan Medical Sensor 3000E hardware and Tekscan F-Scan
7.50 Research Software were used to collect the plantar pressure distribution of healthy
subjects and DPN patients and to train different machine learning classifiers to distinguish
between pathological and non-pathological subjects. The data collection step included
36 normal and diabetic volunteers and both female and male volunteers; however, the
ratio between female and male volunteers was not provided. The volunteers’ ages were
between 49 and 56 years. The study was approved by the Ethics Committee under the
supervision of the University of Santo Tomas Hospital (USTH), Manila, Philippines. The
ground truth about the diagnosed case was obtained by using the Michigan Screening
Instrument-questionnaire (MNSI-q). Nerve conduction velocity studies (NCV) were also
conducted on each subject in order to find the ground truth. This research aims to classify
among three classes: (1) healthy individuals (N); (2) individuals with diabetes but without
peripheral neuropathy (DM); and (3) diabetic patients with peripheral neuropathy (DPN).
Both male and female volunteers were included in these experimental trials. During
walking trials, each subject had to walk 7 m in a straight line. Each subject had to perform
the same walking trial eight times in order to obtain a sizable dataset. The subjects were
asked to walk in their normal style during the trial. The Tekscan Medical Sensor 3000E
hardware consists of 960 individual pressure sensing points to collect dynamic plantar
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pressure data. The overall system was based on an in-shoe pressure measurement system.
The output of each sensor point was divided into 256 increments to make the visualization
better. The software divided the foot into 13 different regions by mapping the pressure
data to accurately form the outline of the foot.

The parameters that were calculated by the software included peak pressure (PP), the
instant of maximum force (IMxF), the instant of peak pressure (IPP), pressure–time integral
(PTI), force–time integral (FTI), length of contact (LC), and contact area (CA). The data were
then analyzed statistically using one-way ANOVA. Two different datasets were created for
each leg separately, as some features were significantly different between the left and right
foot. Principle component analysis (PCA) was also used to determine potential features
and to remove those features that contributed less to the learning process by reducing the
dimension of the dataset. From 208 features, PCA reduces the dimension of the dataset to
only 29 new features that can successfully represent the overall data, i.e., 95%. Different
machine learning classifiers such as SVM, random forest, multilayer perceptron (MLP),
K-nearest neighbor (KNN), and Gaussian process (GP) were trained and tested in order to
distinguish between three given classes. The k-fold cross-validation algorithm was also
used to validate the system’s performance. The results of this research showed that the
parametric difference between the right and left foot is an indication of asymmetric plantar
pressure distribution. Hence, separate datasets were used to compare parameters from
both feet. The results also stated that instant maximum force time (IMxFT) and contact area
(CA) on the right foot exhibit multiple significance in different regions. However, if there is
a significant difference in the contact area between the left and right foot, it indicates the
presence of DPN. For classification purposes, among the five classifiers, the SVM classifier
outperforms other classifiers, with the highest accuracy of 91.91%.

Wang et al. [61] proposed a wireless footwear system to monitor diabetic foot ulcers
due to peripheral neuropathy in diabetic patients. The system consists of an insole pressure
sensor array that captures pressure changes during walking and transfers data via Bluetooth
to a mobile phone in real time. So, the proposed methodology offers the continuous
monitoring of plantar pressure using an insole flexible pressure system. A composite
piezoresistive flexible sensor was developed to fulfill long-term monitoring requirements.
The construction of the sensor was composed of carbon black and silicon rubber. The
functioning of the sensor was validated by a custom pressure testing platform, which
consists of a keyboard testing machine, a pressure testing machine, and a desktop computer.
The data of 5 healthy subjects (HC) (4 males, 1 female—age 48.5 ± 3.5 years), 5 diabetic
patients without PN (D) (2 males, 3 females—age 55.8 ± 5.6 years), and 5 DPN patients
(2 males, 3 females—age 59.00 ± 10.71 years) were recorded by the proposed pressure
measurement system. All subjects were able to walk without any gait aids. The study
was approved by the Research Ethics Committee of the Body Data Science Engineering
Center of Guangdong Province and the First Affiliated Hospital of Jinan University of
Guangdong Province in China. In the walking trial, subjects were asked to walk 20 m along
the corridor and stairs for one minute at their regular speed. The data were captured at a
sampling frequency of 20 Hz with a 12-bit sampling resolution. The application interface
for smartphones was also designed to allow users to visualize the pressure distribution in
real time. The final database consists of 2403 samples, including 779 samples from the HC
group, 736 from the D group, and 888 samples recorded for DPN patients. From the raw
sensor data, peak plantar pressure (PPP), the pressure–time integral (PTI), the maximum
pressure gradient (MaxPG), the minimum pressure gradient (MinPG), the full width at
half maximum (FWHM), the forefoot-to-rearfoot plantar pressure ratio (F/R), and the
symmetry index (SI) were extracted for the database feature points. The feature points used
in this study were calculated using the method given by Botros et al. [62]. Five different
machine learning classifiers, support vector machine (SVM), K-nearest neighbors (KNN),
RF (random forest), GBDT (gradient-boosted decision trees), and AdaBoost classifiers were
trained, and they tested the performance of the proposed system. A 10-fold cross-validation
was also used to validate the ML models. The overall average accuracy of all five classifiers
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used was 85%, with the highest accuracy of 94.7% in the case of the random forest (RF)
classifier. It should be noted that the sample size of the participants (five per class) is a
small number, and further evaluation is needed with a higher number of participants.

3.3. ECG-Based Intelligent Wearable Systems for Diagnosis of PN

According to [63], almost one-third of acute myocardial infarction patients have
diabetes, which is one of the leading causes of peripheral neuropathy. The damage to
these peripheral nerves that regulate the heart mechanism is called cardiac autonomic
neuropathy (CAN) [64]. Electrocardiography (ECG) is a quick and non-invasive procedure
for the early detection of CAN, which is caused by the damage of those peripheral nerves
that are responsible for the proper functioning of the heart. This section of the paper focuses
on the diagnosis of CAN by analyzing ECG signals.

In Ref. [65], an ECG-based platform for the diagnosis of peripheral neuropathy was
proposed. The diagnosis was based on the fact that uncontrolled high glucose levels in
diabetic patients cause cardiovascular diseases because they affect heart rate variability
(HRV). This study is focused on analyzing HRV parameters in DPN patients so that normal
and abnormal ECG can be distinguished. The HRV analysis has the capability to recognize
variations in the autonomic nervous system (ANS), which is responsible for keeping the
heart functioning properly [66]. The data collection method involved the recording of an
ECG for all participants for 24 h using a four-channel Holter machine. Twenty subjects
were enrolled for the data collection task. All 20 subjects (10 males and 10 females with a
mean age of 55.7 years old) were type-II diabetes mellitus patients and were all 40 years
old or above. Of the 20 subjects, 10 subjects were confirmed diagnosed with DPN using
nerve conduction studies (NCS). The study was approved by the ethical committee of
Bangladesh University of Health Sciences. The ECG data were collected at a 200 Hz
sampling rate and then the signal was processed in order to remove any possible noise.
The ECG signal was then processed in order to extract nine feature points related to HRV
to distinguish between DPN-positive and DPN-negative groups. Both time-domain and
frequency-domain parameters of the ECG signal were extracted for classification purposes.
The Wilcoxon rank-sum test [67] was used to find statistical significance between these
two classes. The obtained results showed the feasibility of ECG data for the purpose of
diagnosing peripheral neuropathy related to the heart.

In Ref. [68], Jelinek et al. also used HRV attributes of the ECG signal in order to
distinguish between the DPN group and the healthy control group. This study proposed
a new classification technique for diagnosis purposes and compared the performance of
other machine learning (ML) classifiers with the proposed one. The authors utilized their
prior collected dataset called Diab Health [69] and selected a subset of 21 patients with
severe diabetic neuropathy. However, no information was provided on how the subset was
selected. The main aim of the study was to investigate the contribution of HRV parameters
in an automated disease classification task. A multi-level clustering technique was used
to improve diagnostic accuracy. The data collection procedure included 20 min of ECG
recording in a supine position for all participants. The ECG signals were recorded at a
sampling frequency of 400 Hz with a lead II configuration [70]. The ground truth for CAN
patients was acquired from Ewing battery criteria [71]. The results of this study indicate
the significance of HRV parameters for the diagnosis of cardiovascular diseases and the
proposed graph-based machine learning classification algorithm (GBML) performed better
compared to other conventional clustering techniques. The performances of ML algorithms
were based on sensitivity and specificity, which are common metrics for ML algorithms [72].
The best sensitivity of 0.98 and the best specificity of 0.89 were achieved in the case of the
GBML clustering technique.

Sharanya and Sridhar [73] proposed a system for the diagnosis of CAN that is based
on a convolutional neural network (CNN) for prediction purposes. The aim of this study
was to classify CAN-positive and CAN-negative subjects by analyzing ECG signals. In the
experimental trials, 13 male and 6 female subjects participated. Among them, 9 subjects
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were confirmed positive for CAN, and 10 were healthy subjects, labeled as CAN-negative
class. No information on the age of the participants or approval of the study from an
institutional review board or an ethical committee was provided. The ECG signals were
acquired at a sampling frequency of 400 Hz in lead II configuration for 20 min. After
acquiring the ECG signal, the signal was processed to remove possible noise, and then
feature points such as RR-intervals, etc., were extracted from the clean ECG signal. Using
the extracted features, a CNN model was trained to distinguish between normal ECG and
abnormal ECG, representing the presence of CAN. The overall results show that CNN can
take care of analyzing the complexity of the ECG attributes for the early diagnosis of CAN.
The overall accuracy for the diagnosis of CAN achieved in this study is 95.42%. Research
work discussed in this paper for the diagnosis purpose using a single wearable sensor is
summarized in Table 1.

Table 1. Summary of the wearable systems for detecting peripheral neuropathy (PN) using a single-
type sensor. H: healthy; DPN: diabetic PN; CAN: cardiac autonomic neuropathy; PD: Parkinson’s
disease; ACC: accelerometer; IMU: inertial measurement unit; N/A: not available.

References No. of
Participants

Distribution of
Participants

No. of Sensors and
Placement

Data Collection
Procedure Methodology Results

Chen and
Shanshan [50] 106 PN: 30

H: 76 3-axis ACC Single ear-worn
ACC 10-m walking test

Gait analysis using logistic
regression models for training

and testing

Cohen
et al. [51] 72 PN: 21

H: 61 IMU Single
torso-mounted IMU

Tandem walking
test

ROC and Chi-square methods were
used to evaluate the gait data.

Esser et al. [52] 56 PN:14
H: 42 IMU

Single IMU
attached to lower

back

Standard 10-m
walking test

Chi-square distribution using IMU
Sensor data for classification.

Statistical analysis was conducted
using ROC.

Wang et al. [53] 49

PN: 9
Stroke: 13

PD: 14
H: 13

IMUs
Two IMUs were
attached to the

ankle of each shank
12-m walking trail

The gait parameters were extracted
using method [74] based on

wavelet analysis.

Cao et al. [59] 56
DPN: 19

Diabetic: 17
H: 20

Insole wireless
plantar pressure

monitoring system
designed by
Medilogic

The sensor was
placed on one foot
between the soles
and socks of the

participants

10-m walking test
recorded at 300 Hz

sampling

Peak pressure was recorded in each
case by dividing the foot into seven
segments and then comparing the

pressure distribution of each region
in each of the two classes

Corpin and
Ryan Rey

A. [60]
36 N/A Tekscan Medical

Sensor 3000E

Single Tekscan
Medical sensor

placed on the right
foot only.

7 m walking in a
straight line and

repeat the
procedure eight

times

In-shoe pressure monitoring system
was used. The Tekscan software
provides a number of gait and

pressure parameters that can be
used as features for ML algorithms

Wang et al. [61] 20 DPN: 5
H: 5

Insole piezoresistive
pressure sensor

array

Two insole pressure
sensors that each
contained eight

pressure measuring
points were placed

on both feet.

20-m walking test

Using the proposed insole system,
the pressure data were collected

from each sensing point, and peak
pressures were recorded to create a
database of healthy and unhealthy

subjects. Five different classification
algorithms were then trained for the

diagnosis, and the model was
validated by using k-fold validation.

Morshed
et al. [65] 20 DPN: 10

H: 10 Holter device

Four-channel
(RA-LA, LA-LL,

LL-RA, and Vx-RL)
Holter device

24-h ECG recording
at 200 Hz

HRV parameters were extracted
from ECG data using a method in

[75]. Both time-domain and
frequency-domain features of the

ECG signal were used in the
diagnosis of PN.

Jelinek
et al. [68] 21 DPN: 21 ECG ECG sensor with

lead II configuration

20-min ECG
recording in spine

position

Using HRV attributes of the ECG
signal, a new multi-level clustering

technique was proposed and
implemented to distinguish between

two classes.

Sharanya, S.
and P.A.

Sridhar [73]
19 CAN: 9

H: 10 ECG ECG sensor with
lead II configuration

20-min ECG
recording

A CNN network was used to
distinguish between PN and healthy

subjects. A 20-min-long ECG was
recorded for each subject.
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4. Intelligent Wearable Multisensory Systems for Diagnosis of PN

Due to their multiple benefits over conventional devices, wearable sensors have gained
tremendous interest in the clinical and medical fields [76]. The main features of wearable
sensors are their size and flexibility. Due to their small size, multiple wearable sensors
can be worn by the subject without feeling bulky. This provides continuous real-time data
and simultaneously offers a way to collect data from multiple body parts [77]. This section
describes the research work that is based on multiple sensors attached to different locations
on the human body in order to diagnose peripheral neuropathy.

Sejdic et al. [78] used accelerometer data to model the human gait by extracting gait
parameters from the raw accelerometer signal and showed the effectiveness of gait analysis
by extracting clinically valuable information from a three-axis accelerometer signal for the
diagnosis of peripheral neuropathy (PN) and Parkinson’s disease (PD). The accelerometer
was attached to the torso of the human subjects. The placement of the sensor was at the
torso due to the sensitivity of torso dynamics to age and disease-related gait changes.
The main purpose of the study was to comprehensively examine multiple gait features
provided by the accelerometer signal in multiple domains across healthy and unhealthy
subjects. The features from time, frequency, and time–frequency domain were extracted
in order to distinguish among three considered groups, i.e., subjects with PN or PD or
healthy subjects. The experimental procedure included a walking trial of subjects aged
65 years or above on a custom computer-controlled treadmill. Among the participants,
there were 14 healthy subjects, 11 subjects with peripheral neuropathy, and 10 subjects
with Parkinson’s disease. The authors did not provide information about the gender of the
participants. The study was approved by the Institutional Review Board at the University
of Pittsburgh, USA. Dynamic and static reflective biomarkers were also placed on the bony
landmarks in order to measure heel and toe trajectory data for stride segmentation using
a 3D optical motion capture system (made by Natural Point, Inc., Corvallis, OR, USA). A
three-axis accelerometer (MMA7260Q, Freescale Semiconductor, Austin, TX, USA) was
firmly attached over the L3 segment of the lumbar spine to measure linear acceleration
along vertical, anterior-posterior, and medial-lateral axes. In each waking trial, the data
were recorded at 100 Hz for 3 min after the subject reached the optimal or preferable speed.
From the toe and heel trajectory data, strides were calculated by using 3D optical motion
capture system data. The system used coordinates of the heel and the toe markers in the
direction of progression in order to calculate the actual instantaneous speed and strides, a
method proposed by Fusco, N. and Cretual, A. [79]. From the stride data, gait speed, mean
stride intervals, and coefficient of variations were calculated. From the acceleration signal,
statistical features such as standard deviation, skewness, and kurtosis were calculated.
Different frequency domain parameters were also extracted, such as cross-entropy, centroid
frequency, bandwidth, wavelet bands, and wavelet entropy. The overall results showed that
a person with peripheral neuropathy walks more slowly compared to healthy individuals.
The features extracted from the acceleration signal proved to be quite suitable for detecting
peripheral neuropathy and other neurological disorders.

Khandakar et al. [80] proposed a technique to diagnose foot ulcers in diabetic patients
caused by peripheral neuropathy due to excessive amounts of glucose in the blood. The
main technique in their study was based on monitoring temperature and pressure changes
in the diabetic foot in order to detect any chances of a foot ulcer due to PN. Smart insole
pressure sensor (force-sensitive resistor) and temperature sensors (flexible thermistor) were
used to record data from both feet. The proposed system provides portable and wireless
transmission of pressure and temperature sensor data and can be used for long-term
monitoring of the foot. Each insole sensor for each foot contains sixteen force-resistive
pressure sensors and eight temperature sensors. In the walking experiment, each subject
was asked to perform a 20 m walk six times, and data were collected at the sampling
frequency of 40 Hz. The total number of participants was 12, aged between 20 and 59 years
and included both female and male participants; however, the gender ratio was not defined.
The local ethical committee of Qatar University approved the study. After that, each gait
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cycle was segmented in order to obtain the mean and standard deviation of the segmented
gait cycles. The overall results show that the proposed system combined with ML provides
a low-cost solution to diagnose or monitor diabetic foot ulcers due to PN. It also offers
a way to transmit pressure and temperature data wirelessly at a low cost and with an
appropriate number of sensors.

Another similar approach for the diagnosis of peripheral neuropathy in the foot or
foot ulcers was given by [81], which was also based on measuring foot temperature and
pressure in order to find the presence of PN. However, the proposed system is IoT-based
open source. The study was based on the fact that DPN patients usually lose sensations in
their feet during walking and standing due to damage to peripheral nerves and have higher
foot temperatures than healthy individuals. The proposed systems offer cloud access to
real-time pressure and temperature data. The severity of DPN was measured by analyzing
higher pressure and higher temperature values over multiple positions on the foot. The
system consisted of a flat FlexiForce pressure sensor embedded in a shoe sole, and a couple
of DHT11 temperature sensors were attached to record pressure distribution. The overall
hardware set-up for data collection during walking trials and pressure and temperature
values used in this research was based on a theoretical analysis of the foot representing
different levels of severity of the disease. The proposed research showed how cloud-based
monitoring of DPN patients can help diabetes patients stay healthy by avoiding ulcer that
are caused by PN. The system can monitor patients for a very long time and is capable of
sending alert warnings if the data show some abnormal signs or patterns.

Sempere-Bigorra et al. [82] also presented a technique to monitor and diagnose diabetic
foot ulcers due to PN using a wearable inertial sensor. A single IMU in the lumbar region
was used to model the gait; however, this research used additional data acquisition and
diagnostic methods such as sensory and vibration tests to diagnose PN. Hence, the scope
of this research falls into the multisensory system category. Spatiotemporal gait parameters
were extracted from the IMU signal and the superficial sensitivity and vibration test.
Superficial sensitivity was performed using nociception tests [83], and deep sensitivity was
examined using vibration tests [84]. The similarities between gait parameters and each
sensory test were analyzed using a logistic regression model to find the presence of PN in
the subjects. In the walking experiment, each subject was asked to walk 15 m back and
forth at their normal speed. A total of 85 subjects (46 males and 39 females) participated
in the experiment. All participants were aged between 20 and 87 years with a mean
value of 68.1 ± 1.3 years. The study was approved by the University of Bologna Ethics
Committee for Human Research in Italy. The IMU used in this research was manufactured
by Wiva Science and is capable of transmitting data wirelessly via Bluetooth. For data
distribution analysis, the Kolmogorov–Smirnov test was used [85], which showed non-
normal distribution among data from different tests. Logistic regression analysis of the
data showed that the inertial data and other clinical parameters can be used to successfully
diagnose PN, as they are associated with lower sensitivity which shows the signs of PN in
its early stages. The main outcome of the study was to measure the relationship between
sensitivity impairment and feasible gait parameters. The observed relationship showed
that it can be used in non-laboratory settings for the diagnosis of peripheral neuropathy
and that IMUs provide valuable information in the diagnosis process.

Z. Veličković et al. [86] presented an approach for the early detection of PN caused
by systemic autoimmune rheumatic diseases (SARDs). The authors focused on the use of
wearable sensors along with machine learning as a screening tool for the diagnosis of PN
related to SARDs. In the experimental study, both healthy and SARD patients participated.
The total number of participants was 23 (9 males and 14 females), among which there
were 11 SARD patients, and the rest were healthy subjects. The experiment consisted of
recordings of different types of data. First, nerve conduction study (NCS) results were
obtained for each subject. The results of the NCS studies provided the conduction velocity
of motor and sensory fibers. In the second stage, four IMUs attached to both legs and
arms were used to model the motion of subjects while performing six different types of
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exercises with eyes closed and open. The raw IMU data were sent to a tablet through
Bluetooth, which sent it to the central server through Wi-Fi for feature extraction such as
acceleration and power. The proposed system used a binary machine learning classifier for
the detection of the presence or non-presence of PN-related SARD. The performance of the
proposed model showed fine sensitivity and specificity. The results of the study highlight
the potential of using wearable technology for the accurate diagnosis of diseases related to
peripheral neuropathy.

Table 2 shows the summary of research work using multiple sensors.

Table 2. Summary of the wearable systems for detecting peripheral neuropathy (PN) using multisen-
sory systems.

References No. of
Participants

Distribution of
Participants

No. of Sensors
and Placement

Data Collection
Procedure Methodology Results

Sejdic et al. [78] 35
DPN: 11
PD: 10
H: 14

Accelerometer
(ACC) and

3D optical motion
capture system

(Natural Point, Inc.,
Corvallis, OR, USA)

Single ACC
attached at the torso 3 m walking test

Accelerometer and 3D optical
system captured the gait data at

100 Hz. Different
spatiotemporal and frequency

domain features were extracted.

Khandakar
et al. [80] 12 N/A

Force-sensitive
resistors and

temperature sensors
based on thermistor

Two in-shoe wireless
pressure and
temperature

monitoring systems
using 16 FSR and

8 temperature
sensors for each foot.

20 m walking test at a
sampling rate of 40 Hz

NodeMCU and multiplexer
were used to send all the data

wirelessly to the main
computer.

Kukreja et al.
[79,81] N/A N/A

FlexForce Sensor
and two DHT11

temperature sensors

In-shoe flexi
pressure sensor was
placed in the sole of

the shoe, and two
temperature sensors

were aligned
parallel to the instep

and sole.

The data were collected
from the participant

wirelessly using
NodeMCU and in-shoe

sensors

Threshold values for the
discrimination between healthy
and PN patients were evaluated

and used to diagnose PN

Sempere-
Bigorra

et al. [82]

DPN: 8
Diabetic: 77

IMU, vibration test,
and sensitivity test

IMU attached to a
lumbar area on the
L5 spinal segment

The gait data were
collected by using an
IMU sensor, and data

from other tests such as
vibratory and sensitivity
tests were also collected

The data were analyzed in
order to find a correlation

between these data. Logistic
regression was then used to
find the similarities between

different groups.

Z. Veličković
et al. [86]

PN: 11
Healthy: 12 NCS and four IMUs

NCS electrodes
were placed at the
chest, and IMUs
were attached to
each leg and arm

First, NCS data were
collected for all

participants, and then six
different exercises were

performed to record and
process IMU data

The obtained results show that
wearable devices can be made
useful in the diagnosis of PN.
The overall results showed

good specificity and sensitivity.

5. Discussion

In peripheral neuropathy, the gait of the patient is affected mostly due to pain, numb-
ness, etc. Hence, all the studies given in this paper, except for the ones based on ECG, are
based on the analysis of the human gait and foot plantar pressure for the diagnosis of PN
in lower region muscles. Research studies [50–52] include the usage of a single inertial
sensor placed at different body locations, such as the ear or leg in order to model the human
gait. Each study had its own experimental protocol and extracted information that was
relevant to the diagnosis. These studies show that an IMU or accelerometer may play an
important role in the early diagnosis of PN, which is very crucial for human well-being.
Research studies such as [53] show that the human gait can be modeled more accurately
with the use of two inertial sensors attached to both legs. These studies also show how
important the placement and number of sensors are to model gait exactly for such a task.
Another important parameter in the diagnosis of PN is foot plantar pressure. To measure
foot plantar pressure, mostly in-shoe-based systems are used. Research studies [59–61]
discussed in this paper are all based on in-shoe pressure-measuring systems. However,
these studies show the importance of measuring foot plantar pressure with the correct
number of pressure points and locations. The gait parameters obtained from the in-shoe
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systems in all research studies were different, which shows the importance of recorded
features for capturing gait using foot plantar pressure.

The research studies on the diagnosis of cardiac autonomic peripheral neuropathy
(CAN) are also included along with gait analysis-based systems. The reason for this is that
a strong connection or relationship can be modeled between the gait and ECG of the patient
since the ECG patterns change during a walk. These patterns will differ in healthy persons
compared to patients having PN at lower legs or CAN. The discussed research in this paper
on the diagnosis of CAN is mostly based on analyzing heart rate variability which gives
proper measures to diagnose CAN. The main difference in CAN-related studies is the use
of different classifiers for the classification of disease.

It is also important to note that there is no universal protocol for data collection for
PN. Therefore, each study defined its own experimental protocol for PN detection based
on widely used methods by physicians. Therefore, the studies cannot be easily compared,
as their protocols, heterogeneity in subjects, and data collection process were different.
Additionally, since different sensors or sensor types are used in each study, there are
differences in data, such as frequency, sample rate, range, and others, which contribute to
the challenge of developing a benchmark dataset for PN detection.

6. Open Challenges and Conclusions

Recently, the usage of wearable devices has been increasing in many fields including
healthcare. The prevalence of diabetes across the world contributes the most to causing
peripheral neuropathy. Due to the increasing number of people suffering from peripheral
neuropathy, there is a need to implement efficient methods based on modern technology
and machine learning. In this section, the open challenges are summarized.

Readiness of wearable technology: Wearable devices can play a vital role in the
diagnosis of many diseases, as they can be worn easily, multiple sensors can be used
simultaneously, and continuous sources of data from the patient can be recorded for the
investigations [87]. However, wearable systems are currently not that mature when it
comes to the diagnosis of neurological diseases in clinical settings such as peripheral
neuropathy [88]. There are a few commercially available wearable devices for healthcare
purposes, but none of the wearable device systems has been used successfully for the
accurate and early diagnosis of PN in clinical settings.

Easy-to-use systems for doctors and/or patients: Wearable sensor systems that are
discussed in this paper are usually set up by engineers and researchers. To ensure that
these systems are widely used, they need to take into account how doctors and/or patients
(end-users) would use the systems. For example, a doctor should be able to set up the
system, connect with the sensors, and understand what the data show (e.g., through a
graphical user interface). Similarly, a patient should be able to wear the system at home and
send the data to their doctor if remote and/or continuous monitoring is needed. Improving
user experience is a critical factor for both patients and doctors.

Privacy concerns: Data privacy is an important issue when a system collects human
data. Modern wearable technology has enabled us to combine information technology such
as cloud medicine, big data, etc., to help monitor patients, but, at the same time, it also
poses security threats since the data can be hacked and misused. Furthermore, companies
can gather and trade data from smartphones or wearables to obtain potentially important
information about users for different purposes, which compromises user privacy [89].

Ethical Considerations: Wearable devices provide new and innovative ways to help in
the field of healthcare; however, certain ethical considerations are needed regarding the use
of wearables in healthcare especially for third-party consumer tech. Ethical considerations
should be clearly defined for how the data will be collected and what protocols have to be
followed for the respective purpose so that companies will not misuse the data for their
profits [90]. Additionally, data bias should also be addressed. In the papers presented in
this survey, it is clear that very few studies had balanced datasets based on age or gender.
For the US-based studies, race was not reported. Having datasets that are not distributed
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based on age, gender, race, etc., has the potential of creating ML models that are biased. AI
models may increase mistrust and health inequality [91]. Explainable AI has the potential
to address some of the biases [92,93]; however, it is important to have policies that would
enable unbiased datasets [91].

User Awareness: Due to the relatively new technology, most users do not know the
importance of the privacy of their data which are collected by wearable devices, especially
in healthcare applications. Users need to understand the risks associated with wearable
technology. In the future, this issue must be investigated extensively in order to ensure
user privacy [93].

Accuracy and Reusability: Accuracy is one the most important factors when it comes
to wearable systems for healthcare. If the accuracy of a wearable device is not sufficient,
then this may lead to an incorrect diagnosis since the collected data will miss important
vital signs. Another important factor is the reusability of the device. It is important to
design wearable systems in such a way that they can be used continuously, and data must
be collected with high precision. These two factors play a very important role in making
wearable devices more suitable for healthcare [94].

Placement and Optimal Number of Wearable Devices: The correct placement of the
wearable device on the human body is very necessary to collect accurate information about
the user. The placement of wearable sensors affects accuracy, capability, and user experience.
It is also important to use the right type of wearable device depending on the location of the
body at which the system will be worn and the nature of the data [95]. It is also crucial to
optimize the number of wearable devices that are needed and to define placement locations
that are easily accessible. If a system has several devices and is complex to be worn, the
physicians and/or the patients may be reluctant to use it. Recent work by Ha et al. [96]
conducted a study to determine the optimal position for a pair of electrocardiography
(ECG) and thermocouple (TC) sensors (for body temperature measurement) and a pair of
photoplethysmography (PPG) and TC sensors. Therefore, additional research is required
for the identification of optimal wearable devices, such as biosensors and motion sensors,
and their placement while maintaining a high level of accuracy of PN detection.

Wearable devices are required to be at a high technology readiness level [97], but legis-
lation and policy are also required to provide protections for human data [98]. Therefore,
it is clear that more research is needed in the field of wearable devices to address these
challenges so that they can be used effectively in healthcare [99], and policies are required
to protect patients and to ensure trustworthy and unbiased systems.
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