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Abstract: The Ising model is defined by an objective function using a quadratic formula of qubit
variables. The problem of an Ising model aims to determine the qubit values of the variables that
minimize the objective function, and many optimization problems can be reduced to this problem. In
this paper, we focus on optimization problems related to permutations, where the goal is to find the
optimal permutation out of the n! possible permutations of n elements. To represent these problems
as Ising models, a commonly employed approach is to use a kernel that applies one-hot encoding to
find any one of the n! permutations as the optimal solution. However, this kernel contains a large
number of quadratic terms and high absolute coefficient values. The main contribution of this paper
is the introduction of a novel permutation encoding technique called the dual-matrix domain wall,
which significantly reduces the number of quadratic terms and the maximum absolute coefficient
values in the kernel. Surprisingly, our dual-matrix domain-wall encoding reduces the quadratic term
count and maximum absolute coefficient values from n3 − n2 and 2n− 4 to 6n2 − 12n + 4 and 2,
respectively. We also demonstrate the applicability of our encoding technique to partial permutations
and Quadratic Unconstrained Binary Optimization (QUBO) models. Furthermore, we discuss a
family of permutation problems that can be efficiently implemented using Ising/QUBO models with
our dual-matrix domain-wall encoding.

Keywords: quantum computing; combinatorial optimization; traveling salesman problem; graph
isomorphism problem

1. Introduction

A Binary Quadratic Model (BQM) [1] is defined by an objective function that includes a
quadratic formula with multiple variables. The problem associated with a BQM is to find
the values of these variables that minimize the resulting value of the quadratic formula. A
BQM is referred to as a Quadratic Unconstrained Binary Optimization (QUBO) [2] model when
the variables are restricted to binary values, i.e., they can only take bit (or binary) values in
{0, 1}. On the other hand, if the variables can only take qubit (or spin) values in {−1,+1},
the model is called an Ising model. It is worth noting that QUBO and Ising models can be
converted into each other interchangeably [1,3].

Since optimization problems such as the traveling salesman problem; scheduling prob-
lems; and various graph problems, including max cut, maximum independent set, and graph
isomorphism, can be transformed into QUBO/Ising models [4], there has been significant
research dedicated to finding efficient algorithms, hardware, and systems to solve them.
However, solving optimization problems for QUBO/Ising models is known to be NP-hard.
This means that unless P = NP, it is not possible to design a polynomial time algorithm
using classical computers with digital circuit devices of polynomial size. In the quest for solu-
tions, researchers have explored the potential of ideal quantum annealers based on quantum
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mechanics, which could potentially find optimal solutions for large Ising models within a
reasonable time frame [5]. Unfortunately, the current quantum annealers available are not yet
powerful enough to tackle such problems effectively. The number of qubits is limited, and
the presence of undesirable flux noise significantly reduces the probability of finding optimal
solutions [6]. Hence, as an alternative to an ideal quantum annealer, BQM solvers on various
non-quantum computing platforms, such as ASICs [7,8], FPGAs [9–12], GPUs [13–16], and
optimal fibers [17,18], have been proposed. Further, D-Wave Systems released a hybrid BQM
solver [19] that uses both a classical computer and a quantum annealer to find solutions for
large BQMs with up to 1,000,000-node complete graphs.

In this paper, our primary focus is on the size and resolution of QUBO/Ising models,
which are represented by the quadratic term count and the maximum absolute value of
the coefficients, respectively. These metrics serve as important indicators for assessing
the models. While it is not always the case, QUBO/Ising models with smaller sizes
and resolutions are generally considered more desirable. This is particularly true when
considering the limitations of quantum annealers, which have restricted size and resolution
capabilities. Therefore, it becomes crucial to ensure that the Ising models embedded in
quantum annealers possess small sizes and low resolutions. Additionally, even when these
models are processed by classical digital computers, the required memory size to store
QUBO/Ising models is proportional to the quadratic term count, and a higher resolution
requires a larger word size of memory. With this perspective in mind, this paper places
significant emphasis on the size and resolution of QUBO/Ising models. We provide precise
evaluations of these metrics, offering valuable insights into their characteristics.

QUBO/Ising models that are converted from permutation-based combinatorial opti-
mization problems for n elements should have a kernel capable of generating any one of the
n! possible permutations as the optimal solution. To achieve this, a common approach is to
use the one-hot encoding of permutations, which involves a bit/qubit matrix of size n× n.
In this encoding, each row i (0 ≤ i ≤ n− 1) of the matrix represents the i-th number as a
one-hot vector, where exactly one element is set to 1/+1, and its position corresponds to the
number it represents. The reader should refer to Figure 1, which illustrates a 4× 4 matrix
representing the permutation [1, 3, 2, 0]. In order to generate any one of these matrices as
the optimal solution, QUBO/Ising models require kernels that have optimal solutions if
and only if each row and each column contains exactly one 1/+1. For instance, QUBO
models utilizing this kernel have been proposed for addressing Hamiltonian cycle/path
problems and the graph isomorphism problem, as demonstrated in [4]. Similarly, models
for the traveling salesman problem (TSP) and the quadratic assignment problem (QAP)
were introduced in [20,21]. However, these kernels typically involve n3 − n2 quadratic
terms. Additionally, the kernel of the Ising model features a non-constant large coefficient
of 2n− 4. Recently, a permutation generation technique using domain-wall encoding has
been introduced [22]. This technique employs a matrix of size n× (n− 1), where each row i
(0 ≤ i ≤ n− 1) stores the i-th number as a domain-wall vector [23–25]. By utilizing this tech-
nique, the number of quadratic terms is reduced to 1

2 n3 − 3
2 n, which is half the number of

quadratic terms in QUBO/Ising kernels obtained through conventional one-hot encoding.
This technique still involves a cubic number of quadratic terms. Moreover, QUBO/Ising
models using this domain-wall encoding require coefficients with large absolute values,
namely 2n− 3/n− 1, respectively.

The main contribution of this paper is to introduce a novel permutation encoding
technique called the dual-matrix domain wall, which uses two matrices A and B to store
dual permutations. This new technique can significantly reduce the number of quadratic
terms and the maximum absolute coefficient values in the resulting Ising kernel. The
QUBO/Ising kernel obtained by this technique has only 6n2 − 12n + 4 quadratic terms.
Also, the maximum absolute value of the coefficients of the Ising kernel is just 2.
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Figure 1. Representation of a permutation [1, 3, 2, 0] by a 4× 4 matrix with one-hot vectors and a
4× 3 matrix with domain-wall vectors

We also discuss partial-permutation generation by QUBO/Ising kernels, which is a
sequence of m numbers selected from n numbers 0, 1, . . ., n− 1 without repetition. It is not
difficult to apply one-hot encoding to generate a partial permutation [26,27]. For partial-
permutation generation, one uses an m × n matrix such that each i-row (0 ≤ i ≤ n− 1)
stores the i-th selected number as a one-hot vector. QUBO/Ising kernels that use one-hot
encoding to generate any such matrices need 1

2 m2n+ 1
2 mn2−mn quadratic terms. We show

that we can apply the dual-matrix domain-wall technique for partial-permutation genera-
tion, and the resulting QUBO/Ising models have only 6mn− 6m− 6n + 4 quadratic terms.

Moreover, we introduce a generic problem called the particle placement problem
(PPP), which aims to optimize the placement of m particles in n locations (m ≤ n) with
no collision. In other words, the problem is to find an optimal permutation of m numbers
selected from n numbers. In this study, we demonstrate that the PPP can be efficiently
reduced to a QUBO/Ising model using permutation-generating kernels. Additionally, we
establish that several permutation-based combinatorial optimization problems, such as the
quadratic assignment problem (QAP), the traveling salesman problem (TSP), the sub-graph
isomorphism problem, and the maximum weight matching problem, can also be reduced
to the PPP. Thus, these problems can be converted to equivalent QUBO/Ising models using
permutation-generating kernels.

Finally, we conducted an evaluation of the cells required to embed Ising kernels on a
D-Wave quantum annealer, specifically the Advantage 4.1. The objective was twofold: first,
to assess the feasibility of utilizing the dual-matrix domain-wall technique on presently
accessible quantum annealers, and second, to examine the influence of the number of
quadratic terms in Ising models on the cell requirements.

This paper is organized as follows. In Section 2, we begin by providing a formal
definition of QUBO and Ising models. We also establish the relationship between quantum
annealers and Ising models. Additionally, we explore different encoding techniques such
as one-hot, zero-one-hot, and domain-wall encoding for representing numbers in QUBO
and Ising models. Section 3 reviews the conventional one-hot encoding technique used
to represent permutations of n numbers. Furthermore, we introduce the all-different
domain-wall encoding technique, which effectively reduces the number of quadratic terms
by half [22]. However, both of these techniques require a cubic number of quadratic
terms. In Section 4, we present a novel encoding technique called dual-matrix domain-wall
encoding. This technique enables the generation of permutations using a QUBO/Ising kernel
with only a quadratic number of quadratic terms. Section 5 generalizes the concept of
permutations to partial permutations, which represent a partial permutation of m numbers
selected from a set of n numbers without repetition. We demonstrate how QUBO/Ising
kernels can generate partial permutations using both the conventional one-hot encoding
technique and our dual-matrix domain-wall encoding technique. In Section 6, we extend
the dual-matrix domain-wall technique by incorporating a matrix called a one-hot matrix
that stores a partial permutation as a one-hot encoding. We introduce the particle placement
problem (PPP) in Section 7, highlighting its ability to reduce many permutation-based
combinatorial optimization problems. We evaluate the number of quadratic terms in the
resulting QUBO/Ising models obtained through reduction via the PPP for each problem.
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Section 8 presents an analysis of the number of cells required to embed Ising kernels for
generating permutations in a D-Wave quantum annealer. Finally, Section 9 concludes
our work.

2. Preliminaries

The main objective of this section is to introduce the concepts of QUBO and Ising
models, as well as the fundamental aspects of their design. To begin with, we provide a
formal definition of Ising and QUBO models. Subsequently, we establish the connections
between Ising models and quantum annealers, offering valuable insights to the reader.
Lastly, we showcase the applications of QUBO and Ising models in generating one-hot,
zero-one-hot, and domain-wall vectors.

2.1. QUBO and Ising Models

A Binary Quadratic Model (BQM) [1] is defined as an objective function with a quadratic
formula involving multiple variables. The goal of a BQM is to determine the variable values
that minimize the resulting value of the quadratic formula.

A model is referred to as a Quadratic Unconstrained Binary Optimization (QUBO)
model [2] if the variables can take bit (or binary) values of 0 or 1. Specifically, let X = (xi)
(0 ≤ i ≤ n− 1) represent an n-bit vector of binary variables. A QUBO model with X can
be defined using an upper triangular weight matrix W = (Wi,j) (0 ≤ i ≤ j ≤ n− 1). The
objective of the QUBO problem is to find the binary values of X that minimize the energy
E(X), which is defined by the following quadratic formula:

E(X) =
n−1

∑
i=0

n−1

∑
j=i+1

Wi,jxixj +
n−1

∑
i=0

Wi,ixi + C, (1)

=
n−1

∑
i=0

n−1

∑
j=i

Wi,jxixj + C. (2)

Here, C is a constant called the offset. Note that Equations (1) and (2) are equivalent
because x2

i = xi always holds. While most papers use the energy E(X) in Equation (2) with
no offset C, this paper adopts the energy E(X) defined by Equation (1) to distinguish linear
and quadratic terms with coefficients Wi,i (0 ≤ i ≤ n− 1) and Wi,j (0 ≤ i < j ≤ n− 1),
respectively.

A BQM is called an Ising model if variables take qubit (or spin) values of −1 or +1. An
Ising model with an n-qubit vector S = (si) (0 ≤ i ≤ n− 1) is defined by quadratic term
coefficients J = (Ji,j) (0 ≤ i < j ≤ n− 1) called interactions and linear term coefficients
h = (hi) (0 ≤ i ≤ n− 1) called biases. The Ising problem aims to find the qubit values of S
that minimize the Hamiltonian H(S), which is defined by the following quadratic formula:

H(S) =
n−2

∑
i=0

n−1

∑
j=i+1

Ji,jsisj +
n−1

∑
i=0

hisi + C. (3)

We make the assumption that all coefficients in the linear and quadratic terms of
QUBO/Ising models are integers, unless otherwise specified. Using integers with large
absolute values can lead to discrete values below the effective resolution, so it is important
to keep the maximum absolute value of all coefficients as small as possible. To achieve this,
we design QUBO/Ising models that have no common factor in all coefficients. This allows
us to reduce the coefficients by dividing the common factor without affecting the optimal
solutions. It is worth mentioning that the offset C does not influence the optimal solution
and can be disregarded. Consequently, it can take a non-integer value.

We define the number of non-zero elements in Wi,i/hi (0 ≤ i ≤ n− 1) as the linear term
count and that in Wi,j/Ji,j (0 ≤ i < j ≤ n− 1) as the quadratic term count of a QUBO/Ising
model. Generally, having smaller term counts is advantageous as it helps reduce the
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hardware resource usage of quantum computers when solving problems of QUBO/Ising
models. In particular, the quadratic term count has a significant impact on the hardware
resource usage of quantum annealers when solving Ising problems. By minimizing the
quadratic term counts, we can effectively reduce the amount of resources needed for
implementing and solving QUBO/Ising models on quantum hardware. This optimization
is essential for improving the efficiency and performance of quantum computing systems.

It is easy to see that QUBO and Ising models can be equivalently converted to each
other [3]. Both QUBO and Ising models, excluding the offset C, can be represented as
weighted undirected graphs with n nodes 0, 1, . . . , n− 1 such that Wi,i/hi is the weight
of node i and Wi,j/Ji,j is the weight of edge (i, j) of the graph. Figure 2 shows a graph
corresponding to a QUBO model with the the following energy:

E(X) = 2x0x1 − x0x3 − 2x0x4 − x1x2 + x1x5 + 3x2x5 − 2x3x4 − 2x4x5

− 2x0 − x1 + 2x2 + 4x5 (4)

The figure also illustrates the equivalent Ising model with the following Hamiltonian:

H(S) = 2s0s1 − s0s3 − 2s0s4 − s1s2 + s1s5 + 3s2s5 − 2s3s4 − 2s4s5

− 5s0 + 6s2 − 3s3 − 6s4 + 10s5 (5)

We omit terms with zero coefficients in the formulas and edges with zero weights
in the graphs. As QUBO and Ising models are represented as graphs, we use graph
theory terminologies such as the degree of a node (i.e., the number of edges connecting
to a node) and the diameter (i.e., the largest shortest path over all pairs of nodes). The
QUBO and Ising models have optimal solutions X = [1, 0, 0, 1, 1, 0] with energy E(X) = −7
and S = [+1,−1,−1,+1,+1,−1] with Hamiltonian H(S) = −32, respectively. These
models are equivalent, because 4E(X) = H(S) + 4 always holds for all X and S satisfying
si = 2xi − 1 for all i (0 ≤ i ≤ n− 1).

0

3

1

4

(1) QUBO model

2
12

4

2

5

2

1 2 1 3

2 2

1
0

3

1

4

(2) Ising model

5
12

10

2

5

6

1 2 1 3

2 2
3 6

Figure 2. Equivalent QUBO and Ising models.

As many optimization problems can be reduced to QUBO/Ising models [4], there has
been a significant effort by researchers to find effective algorithms, hardware, and systems
to solve them. Digital computers and devices can directly operate 0/1 bits, and users/de-
velopers can handle them more easily than −1/+1 qubits. As a result, QUBO models are
more frequently used than Ising models, and QUBO solvers have been developed by many
researchers. On the other hand, quantum annealers based on quantum mechanics can
directly operate −1/+1 qubits in Ising models. Therefore, for solving QUBO problems
on quantum annealers, they are converted to equivalent Ising models. By this preprocess-
ing step, quantum annealers can be used as QUBO solvers. However, to maximize the
performance of QUBO solvers, we may design Ising models without using QUBO–Ising
conversion.

When a QUBO/Ising model for solving a specific permutation-based combinatorial
optimization problem is designed, this involves creating a sub-model that generates any
one of all possible permutations as the optimal solution. This sub-model is referred to
as the QUBO/Ising kernel. The main focus of this paper is the design of QUBO/Ising
kernels for generating permutations. For instance, we will present QUBO/Ising kernels
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for generating an n× n-matrix that stores one-hot vectors representing a permutation, as
shown in Figure 1.

2.2. Quantum Annealers and Ising Models

D-Wave Systems developed a quantum annealer called D-Wave 2000Q [28], which
was based on quantum mechanics. It served as a solver for Ising models using a 2048-node
Chimera graph. Subsequently, D-Wave Systems released a more advanced quantum
annealer known as D-Wave Advantage [29], which was capable of handling Ising models
with a larger 5760-node Pegasus graph [30]. Specifically, the D-Wave Advantage quantum
annealer comprises 5760 cells interconnected according to the topology of a 5760-node
Pegasus graph. The cell biases and interaction strengths are programmable, allowing for
the acquisition of optimal or approximate solutions to the corresponding Ising models
through quantum annealing.

While a quantum annealer is designed to solve Ising models with a specific graph
topology, it is possible to solve Ising models with different topologies through a process
known as minor embedding. Minor embedding involves mapping the problem graph
(with a different topology) onto the physical graph of the quantum annealer, effectively
embedding the problem into the hardware. This allows the quantum annealer to solve
Ising models that may not directly match its native graph topology. Minor embedding is a
technique used to leverage the capabilities of quantum annealers for a broader range of
Ising models. We explain the idea of minor embedding using Figure 3. Suppose that we
need to solve an Ising problem with the six-node graph in Figure 2 on a quantum annealer
with an eight-cell grid topology, as shown in Figure 3. We arrange node 0 (or qubit s0) in
Figure 2 to two cells 0 (or qubit s0) and 0′ (or qubit s0′ ) in Figure 3. We add a quadratic
term −Ps0s0′ so that optimal solutions satisfy s0 = s0′ , where P is a constant number large
enough to guarantee it. By virtue of this embedding, s0 in Figure 2 can be simulated by s0
and s0′ combined in Figure 3. The reader should have no difficulty in confirming that the
Ising model in Figure 2 can be solved by the quantum annealer in Figure 3.

0
3

0′
4

−3 2−𝑃 1
5−1 1 3

−2 −2−3 5
2
5′ 6

−2
−2

−𝑃−6 5

−1

Figure 3. Example of minor embedding for the Ising model of Figure 2 to the quantum annealer.

More than two cells in the quantum annealer may be arranged to simulate a node
of the Ising model. D-Wave Systems calls a set of cells arranged to form a qubit a chain,
and the value of P the chain strength [31]. To obtain an optimal or approximate solution of
an Ising model by the D-Wave Advantage quantum annealer, one needs to find its minor
embedding in a 5760-node Pegasus graph. If an Ising model is a dense graph with a large
degree, the chains will be large. For example, if an Ising model is a complete graph, only
177 nodes can be embedded in the D-Wave Advantage quantum annealer [29]. Hence, the
size of an Ising model that can be solved by the D-Wave Advantage quantum annealer
is limited. In particular, the quadratic term count of an Ising model impacts the resource
usage of cells. Thus, it is quite important to minimize the quadratic term count when one
designs Ising models.

The D-Wave Advantage quantum annealer [29] can take real numbers for the interac-
tion Ji,j and bias hi of Ising models. The ranges of Ji,j and hi are limited to [−1.0,+1.0] and
[−4.0,+4.0], respectively. Although they take any real number in these ranges, they are
operated as analog values, and the effective resolution is limited. The resolution is only five
to six bits, and two values with a difference less than 1

26 = 0.015 may not be distinguished
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due to the flux noise. Recall that we assume the interaction Ji,j and bias hi of Ising models
are integers. When we load such Ising models onto the D-Wave Advantage quantum
annealer, these integer values are automatically reduced to fit in the ranges [−1.0,+1.0]
and [−4.0,+4.0]. For example, if Ji,j takes integers in the range [−100,+100], then they
will be divided by 100 to fit in the range [−1.0,+1.0], and the required resolution 0.01 is
smaller than the effective resolution of the D-Wave Advantage quantum annealer. Hence,
optimal solutions of the Ising model cannot be expected. Since the resolution is limited, the
maximum absolute values of interactions and biases of Ising models should be as small as
possible to obtain optimal solutions with a higher probability by quantum annealers.

QUBO/Ising models with larger diameters may be solvable using a heuristic algorithm
in parallel. They may be split into many disjoint sub-models, and parallel divide-and-
conquer techniques can be applied to such models. Heuristic algorithms to improve the
solutions of sub-models can be executed in parallel, and better approximate solutions can
be obtained more quickly. On the other hand, smaller-diameter models cannot be split into
many disjoint sub-models, and it is difficult to apply parallel heuristic techniques. Thus,
larger-diameter models are preferable to solve the problems in parallel.

2.3. QUBO/Ising Models for One-Hot/Zero-One-Hot/Domain-Wall Vectors

One-hot encoding has often been used to represent integers in QUBO and Ising models.
A k-bit/qubit vector is a one-hot vector if it has exactly one 1/+1, and the remaining k− 1
bits/qubits take 0/−1. It represents an integer i (0 ≤ i ≤ k − 1) if and only if the i-th
bit/qubit is 1/+1. For technical reasons, we introduce the zero-one-hot vector, which can
take a bit/qubit vector with all 0/−1s in addition to one-hot vectors. Such vectors with all
0/−1s represent a special value ϕ associated with “undefined” or “N/A”. Table 1 shows
four-bit/qubit one-hot/zero-one-hot vectors with corresponding integers or ϕ.

Table 1. One-hot/zero-one-hot/domain-wall vectors with k = 4 bits.

One-Hot Zero-One-Hot Domain-Wall
Bits Qubits Bits Qubits Bits Qubits

0 [1, 0, 0, 0] [+1,−1,−1,−1] 0 [1, 0, 0, 0] [+1,−1,−1,−1] 0 [0, 0, 0, 0] [−1,−1,−1,−1]
1 [0, 1, 0, 0] [−1,+1,−1,−1] 1 [0, 1, 0, 0] [−1,+1,−1,−1] 1 [1, 0, 0, 0] [+1,−1,−1,−1]
2 [0, 0, 1, 0] [−1,−1,+1,−1] 2 [0, 0, 1, 0] [−1,−1,+1,−1] 2 [1, 1, 0, 0] [+1,+1,−1,−1]
3 [0, 0, 0, 1] [−1,−1,−1,+1] 3 [0, 0, 0, 1] [−1,−1,−1,+1] 3 [1, 1, 1, 0] [+1,+1,+1,−1]

ϕ [0, 0, 0, 0] [−1,−1,−1,−1] 4 [1, 1, 1, 1] [+1,+1,+1,+1]

Domain-wall encoding [22–25] has also been used to represent integers. A k-bit/qubit
vector is a domain-wall vector if it consists of consecutive 1/+1s following consecutive
0/−1s. It represents the integer i (0 ≤ i ≤ k) if it contains i consecutive 1s. Therefore, it can
represent k + 1 integers ranging from 0 to k. Table 1 illustrates four-bit/qubit domain-wall
vectors that represent integers from 0 to 4.

This sub-section presents QUBO/Ising models for one-hot/zero-one-hot/domain-wall
vectors, aimed at helping the reader understand the fundamental concepts of using these
models to represent numbers. These models are designed to achieve their optimal value if
and only if the vectors X/S are one-hot/zero-one-hot/domain-wall vectors.

We will first design a QUBO model with k-bit variable X = (xi) (0 ≤ i ≤ k− 1) that
takes the minimum value of 0 if and only if it stores a k-bit one-hot vector. It is clear that
X is a one-hot vector if and only if the sum of all bits is 1. Based on this property, we can
design a QUBO model with an energy function E1(X) as follows:

E1(X) =

(
1−

k−1

∑
i=0

xi

)2

= 2
k−1

∑
i=1

xi−1xi −
k−1

∑
i=0

xi + 1. (6)

It is evident that E1(X) takes the minimum value of 0 if and only if X is a one-hot
vector. Additionally, we can design a QUBO model that takes the minimum value if and
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only if it stores a k-bit zero-one-hot vector. A k-bit vector X is a zero-one-hot vector if and
only if the sum of all bits is either 0 or 1. Thus, the energy E01(X) defined below takes the
minimum value of 0 if X is a zero-one-hot vector.

E01(X) =
1
2

k−1

∑
i=0

xi

(
1−

k−1

∑
i=0

xi

)
=

k−1

∑
i=1

xi−1xi. (7)

QUBO models with E01(X) for zero-one-hot vectors have no linear terms, making
them simpler than those with E1(X) for one-hot vectors. Since all quadratic terms in the
expanded summation are 2, E01(X) has a coefficient of 1

2 . Our objective is to minimize the
integer coefficients of both linear and quadratic terms. Consequently, we will employ such
coefficients whenever possible throughout the remainder of this paper.

Similarly, we can design Ising models with H1(S) and H01(S) for a k-qubit variable
S = (si) (0 ≤ i ≤ k− 1) storing one-hot and zero-one-hot vectors, respectively. A k-qubit

variable S stores a one-hot vector if and only if
k−1
∑

i=0
si = 1 · (+1) + (k− 1) · (−1) = −(k− 2).

Thus, the following H1(S) takes the minimum value of 0 if and only if S is a one-hot vector:

H1(S) =
1
2

(
(k− 2) +

k−1

∑
i=0

si

)2

=
k−1

∑
i=1

si−1si + (k− 2)
k−1

∑
i=0

si +
1
2

k2 − 3
2

k + 2. (8)

Clearly, H1(S) takes the minimum value of 0 if and only if S is a one-hot vector.
Additionally, S stores a zero-one-hot vector if and only if it has zero or one +1. Thus,
the following Ising model with H01(S) takes the minimum value of 0 if and only if S is a
zero-one-hot vector, which means that the sum of all qubits is −k or −(k− 2):

H01(S) =
1
2

(
k +

k−1

∑
i=0

si

)(
(k− 2) +

k−1

∑
i=0

si

)
=

k−1

∑
i=1

si−1si + (k− 2)
k−1

∑
i=0

si +
1
2

k2 − 1
2

k. (9)

We will now design a QUBO model for a k-bit variable X = (xi) (0 ≤ i ≤ k− 1) that
stores a domain-wall vector. For technical reasons, we assume the existence of fixed guard
bits x−1 = 1 and xk = 0 for X. With these guard bits, if X stores a domain-wall vector, then
xi−1 − xi 6= 0 (0 ≤ i ≤ k) holds for exactly one i. Otherwise, it holds for more than two i.
Based on this fact, we have the following QUBO model:

Ed(X) =
1
2

n−1

∑
i=0

(xi−1 − xi)
2 = −

k−1

∑
i=1

xi−1xi +
k−1

∑
i=1

xi +
1
2

. (10)

The energy function Ed(X) takes the minimum value of 1
2 if and only if (xi−1− xi)

2 = 1
for exactly one i and X stores a domain-wall vector. Similarly, we can design an Ising model
for a k-qubit variable S = (si) (0 ≤ i ≤ k− 1) that stores a domain-wall vector using the
same approach. We also assume the existence of fixed guard qubits s−1 = +1 and sk = −1.
The following Ising model with Hd(S) takes the minimum value of 2 if and only if S stores
a domain-wall vector and (si−1 − si)

2 = 4 for exactly one i:

Hd(S) =
1
2

k

∑
i=0

(si−1 − si)
2 = −

k−1

∑
i=1

si−1si − s0 + sk−1 + (k + 1) (11)

Table 2 summarizes the features of QUBO/Ising models with k-bit/qubit one-hot/zero-
one-hot/domain-wall vectors. We utilized SymPy [32], a Python library for symbolic math-
ematics, to expand the mathematical formulas and derive the features of the QUBO/Ising
models presented throughout this paper. We observe that QUBO/Ising models for one-hot
vectors are fully connected and consist of 1

2 k2 − 1
2 k quadratic terms. In contrast, models

for domain-wall vectors have only k− 1 quadratic terms. Furthermore, the linear term
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coefficients of Ising models for one-hot and zero-one-hot vectors are k− 2 and k− 1, respec-
tively. On the other hand, those for domain-wall vectors have only two linear terms with
coefficients −1 and +1, respectively.

Table 2. QUBO/Ising models for k-bit/qubit one-hot/domain-wall vectors.

Encoding Type One-Hot Zero-One-Hot Domain-Wall

QUBO models
Quadratic formula E1(X) E01(X) Ed(X)
Linear term count k 0 k− 1
Linear term coefficients −1 - +1
Quadratic term count 1

2 k2 − 1
2 k 1

2 k2 − 1
2 k k− 1

Quadratic term coefficients +2 +1 −1
Diameter 1 1 k− 1
Offset 1 0 1

2
Optimal energy 0 0 1

2

Ising models
Quadratic formula H1(S) H01(S) Hd(S)
Linear term count k k 2
Linear term coefficients k− 2 k− 1 −1, +1
Quadratic term count 1

2 k2 − 1
2 k 1

2 k2 − 1
2 k k− 1

Quadratic term coefficients +1 +1 −1
Diameter 1 1 k− 1
Offset 1

2 k2 − 3
2 k + 2 1

2 k2 − 1
2 k k + 1

Optimal Hamiltonian 0 0 2

3. QUBO/Ising Model Kernels for Generating Permutation Involving a Cubic Number
of Quadratic Terms

A permutation of n numbers can be defined by a bijection π : {0, 1, . . . , n − 1} →
{0, 1, . . . , n− 1}, where the list [π(0), π(1), . . . , π(n− 1)] represents one of the n! possible
permutations. This section initially describes a conventional permutation encoding method
that employs one-hot vectors. This approach is widely used for solving permutation-based
combinatorial optimization problems, not just in QUBO/Ising models but also in mixed-
integer programming. We then explain a permutation encoding method using domain-wall
vectors, which was introduced in [22] and reduces the number of quadratic terms by half.

3.1. Conventional Permutation Encoding by One-Hot Vectors

A permutation π is commonly represented by an n× n matrix of variables, where
each row i (0 ≤ i ≤ n− 1) stores π(i) as a one-hot vector. This representation ensures that
each row of the matrix is a one-hot vector. We will design n2-bit QUBO/Ising kernels with
X = (xi,j)/S = (si,j) (0 ≤ i, j ≤ n− 1), which can generate permutations as the optimal
solutions. For this purpose, we apply E1(X)/H1(S) to all rows and columns to guarantee
that they are one-hot vectors as follows:

Enn
1 (X) =

1
2

n−1

∑
i=0

(
1−

n−1

∑
j=0

xi,j

)2

+
1
2

n−1

∑
j=0

(
1−

n−1

∑
i=0

xi,j

)2

(12)

Hnn
1 (S) =

1
2

n−1

∑
i=0

(
(n− 2) +

n−1

∑
j=0

si,j

)2

+
1
2

n−1

∑
j=0

(
(n− 2) +

n−1

∑
i=0

si,j

)2

(13)

We can obtain the quadratic formulas for QUBO and Ising models by expanding
Enn

1 (X) and Hnn
1 (S), respectively. Both formulas take the minimum value of 0 if and only

if every row and every column is a one-hot vector. The features of QUBO/Ising models
obtained by expanding Enn

1 (X)/Hnn
1 (S) can be found in Table 3. It is important to note that
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both models have n3 − n2 quadratic terms, and the Ising model also includes linear terms
with a coefficient of 2n− 4.

Table 3. QUBO/Ising kernels for generating a permutation of n numbers.

Domain-Wall
Encoding Type One-Hot All-Different Dual-Matrix Extended

Bit/qubit count n2 n2 − n 2n2 − 2n 3n2 − 2n

QUBO models
Quadratic formula Enn

1 (X) Enn
a (X) Enn

d (A, B) Enn
e (A, B, X)

Linear term count n2 n2 − 2n 2n2 − 4n 3n2 − 6n + 2
Linear term coefficients −1 −(2n− 3),−(2n− 6), . . . ,−2 +2 −1,+1,+2
Quadratic term count n3 − n2 1

2 n3 − 3
2 n 6n2 − 12n + 4 6n2 − 8n

Quadratic term coefficients +1 −1,+2 −2,−1,+1 −2,−1,+1
Diameter 2 n− 1 2n− 3 2n
Offset n 1

3 n3 − 1
2 n2 − 2n 2n− 1 2n

Optimal energy 0 1
2 n n n

Ising models
Quadratic formula Hnn

1 (S) Hnn
a (S) Hnn

d (A, B) Hnn
e (A, B, S)

Linear term count n2 n2 + n(n mod 2)− 2n 4n n2 + 4n− 4
Linear term coefficients 2n− 4 −(n− 1),−(n− 4), . . . ,+(n− 1) −2,+2 −2,+1,+2
Quadratic term count n3 − n2 1

2 n3 − 3
2 n 6n2 − 12n + 4 6n2 − 8n

Quadratic term coefficients +1 −1,+1 −2,−1,+1 −2,−1,+1
Diameter 2 n− 1 2n− 3 2n
Offset n3 − 3n2 + 4n 1

6 n3 + n2 − 1
6 n 4n2 − 4 6n2 − 4n

Optimal Hamiltonian 0 2n 4n 4n

3.2. Permutation Encoding by All-Different Domain-Wall Encoding

We will now introduce the all-different domain-wall technique, which was presented
in [22] and can be used to generate permutations with domain-wall vectors. This technique
utilizes a matrix X = (xi,j) of size n× (n− 1), where each row i (0 ≤ i ≤ n− 1) stores the
domain-wall vector representing π(i) for a permutation π. Figure 1 illustrates an example
with n = 4. It is important to note that a matrix X, where each row contains a domain-wall
vector, represents a permutation if and only if all the domain-wall vectors are distinct. The
all-different domain-wall technique leverages this property to design a QUBO kernel for
generating a permutation, as follows:

Enn
a (X) =

1
2

n−1

∑
i=0

n−1

∑
j=0

(xi,j−1 − xi,j)
2 +

n−2

∑
j=0

(
(n− j− 1)−

n−1

∑
i=0

xi,j

)2

(14)

Here, fixed guard bits xi,−1 = 1 and xi,n−1 = 0 for all i (0 ≤ i ≤ n − 1) are used.
The first summation term takes the minimum value of 1

2 n if and only if every row is a
domain-wall vector. Also, the the second summation term takes the minimum value of 0 if
and only if the number of 1s in each column j (0 ≤ j ≤ n− 1) is n− j− 1. If this is the case,
all rows of X store distinct domain-wall vectors. Therefore, X is a permutation if and only
if it is an optimal solution that satisfies Enn

a (X) = 1
2 n.

We can apply the same technique for designing an Ising kernel with an n× (n− 1)
matrix S = (si,j) that generates a permutation as a domain-wall vector. If all rows in S store
distinct domain-wall vectors, then the number of +1s in each column j (0 ≤ j ≤ n− 1) is
(n− j− 1), and the sum of all elements in it is (n− j− 1)(+1) + (j + 1) · (−1) = n− 2j− 2.
Based on this fact, we can design a desired Ising model as follows:
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Hnn
a (X) =

1
2

n−1

∑
i=0

n−1

∑
j=0

(si,j−1 − si,j)
2 +

1
2

n−2

∑
j=0

(
(n− 2j− 2)−

n−1

∑
i=0

si,j

)2

(15)

Here, si,−1 = +1 and si,n−1 = −1 for all i (0 ≤ i ≤ n− 1). The first summation term
takes the minimum value of 1

2 · 4n = 2n if and only if every row is a domain-wall vector.
Also, the second summation term takes 0 if and only if the number of +1s in each column
j (0 ≤ j ≤ n− 1) is n− j− 1. If this is the case, all rows of S store distinct domain-wall
vectors. Therefore, S stores domain-wall vectors representing a permutation if and only if
it is an optimal solution that satisfies Hnn

a (X) = 2n.
Table 3 presents the features of QUBO and Ising models derived from the expansion

of mathematical expressions Enn
a (X) and Hnn

a (S). The number of quadratic terms in these
models is halved compared to conventional one-hot encoding. However, these models
include linear terms with significantly large absolute values. The maximum absolute values
for the QUBO and Ising models are 2n− 3 and n− 1, respectively.

4. QUBO/Ising Kernels with a Quadratic Number of Quadratic Terms Based on Our
Dual-Matrix Domain-Wall Technique

Our new permutation encoding technique utilizes the inverse permutation. For
a permutation π of n numbers, let π−1 denote the inverse, such that π−1(π(i)) = i
for all i (0 ≤ i ≤ n − 1). We refer to the permutations [π(0), π(1), . . . , π(n − 1)] and
[π−1(0), π−1(1), . . . , π−1(n− 1)] as dual permutations.

Recall that in conventional one-hot encoding, each row i (0 ≤ i ≤ n− 1) of an n× n
matrix stores π(i) as a one-hot vector, as illustrated in Figure 1. It is easy to confirm
that each column j (0 ≤ j ≤ n− 1) also stores a one-hot vector representing the inverse
π−1(j). Therefore, the row one-hot vectors and column one-hot vectors represent dual
permutations. Figure 1 shows an example of a 4× 4 matrix storing the row permutation
[1, 3, 2, 0] and the column permutation [3, 0, 2, 1], which are dual permutations. Our dual-
matrix domain-wall technique was inspired by this fact. It employs two matrices: matrix
A = (ai,j) (0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 2) of size n × (n − 1) and matrix B = (bi,j)
(0 ≤ i ≤ n− 2 and 0 ≤ j ≤ n− 1) of size (n− 1)× n. These matrices are used to store dual
permutations, where the rows of A represent a permutation and the columns of B represent
its inverse permutation. For a clearer understanding, the reader should refer to Figure 4,
which provides an example for n = 4 using a 4× 3 matrix A and a 3× 4 matrix B.

For domain-wall encoding, fixed guard bits/qubits are attached to the leftmost and
rightmost columns of matrix A, as well as the top and bottom rows of matrix B, as illustrated
in Figure 4. Specifically, we set ai,−1 = 1/ + 1 and ai,n−1 = 0/− 1 for all i (0 ≤ i ≤ n− 1),
and b−1,j = 1/+ 1 and bn−1,j = 0/− 1 for all j (0 ≤ i ≤ n− 1) for QUBO/Ising models. Our
goal is to design QUBO/Ising models that have optimal solutions satisfying the following
three conditions:

Row domain-wall condition: Each row of matrix A stores a domain-wall vector.
Column domain-wall condition: Each column of matrix B stores a domain-wall

vector.
Dual-permutation condition: The row permutation of matrix A and the column

permutation of matrix B are dual to each other.
An optimal solution of the designed QUBO/Ising models corresponds to any one of

the possible n! permutations.
We begin by introducing the dual-matrix domain-wall technique for QUBO models.

We define matrices ∆A = (∆ai,j) and ∆B = (∆bi,j) of size n × n (0 ≤ i, j ≤ n − 1) by
computing the differences in each row of matrix A and each column of matrix B as follows:

∆ai,j = ai,j−1 − ai,j and ∆bi,j = bi−1,j − bi,j. (16)
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Figure 4 illustrates examples of ∆A and ∆B with n = 4. The QUBO kernel for
generating a permutation using the dual-matrix domain-wall technique is defined by the
following expression, denoted as Enn

d (A, B):

Enn
d (A, B) =

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆ai,j)
2 +

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆bi,j)
2 +

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆ai,j − ∆bi,j)
2 (17)

𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 ,

𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 ,

𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 ,

𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 ,

𝑏 , 𝑏 , 𝑏 , 𝑏 ,

𝑏 , 𝑏 , 𝑏 , 𝑏 ,

𝑏 , 𝑏 , 𝑏 , 𝑏 ,

𝑏 , 𝑏 , 𝑏 , 𝑏 ,

𝑏 , 𝑏 , 𝑏 , 𝑏 ,

1 1 0 0 0

1 1 1 1 0

1 1 1 0 0

1 0 0 0 0

1 1 1 1

1 0 1 1

1 0 1 0

1 0 0 0

0 0 0 0

𝑎 , 𝑎 ,

𝑏 , 𝑏 ,

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

∆𝑎 , 𝑎 , 𝑎 ,

∆𝑏 , 𝑏 , 𝑏 ,

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

𝐴

𝐵

𝐴

𝐵

∆𝐴

∆𝐵

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

𝑎 ,

𝑏 ,

0 2 0 0

0 0 0 2

0 0 2 0

2 0 0 0

0 2 0 0

0 0 0 2

0 0 2 0

2 0 0 0

𝐴

𝐵

(1) QUBO model (2) Ising model

∆𝑎 , 𝑎 , 𝑎 ,∆𝐴

∆𝑏 , 𝑏 , 𝑏 ,∆𝐵

Figure 4. The dual-matrix domain-wall technique for representing permutations of n = 4 numbers
on an Ising model.

The first summation term takes the minimum value of 1
2 n if and only if the row domain-

wall condition is satisfied. Similarly, the second summation term takes the minimum
value of 1

2 n if and only if the column domain-wall condition is satisfied. Lastly, the third
summation term takes the minimum value of 0 if and only if ∆ai,j = ∆bi,j for all i and
j. In essence, this condition signifies the satisfaction of the dual-permutation condition.
It is important to note that these three summation terms can all reach their minimum
values simultaneously. Consequently, the energy function Enn

d (A, B) reaches its minimum
value of n if and only if matrices A and B store dual permutations, satisfying all three
conditions: the row domain-wall condition, the column domain-wall condition, and the
dual-permutation condition.

For the Ising model, we can use the exact same mathematical expression as the QUBO
model, resulting in the Hamiltonian function Hnn

d (A, B):

Hnn
d (A, B) =

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆ai,j)
2 +

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆bi,j)
2 +

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆ai,j − ∆bi,j)
2 (18)

Both the first and second summation terms take the minimum value of 2n if and only
if both the row and column domain-wall conditions are satisfied. The third summation
term takes the minimum value of 0 if and only if the dual-permutation condition is satisfied.
Since these three summation terms can take the minimum values at the same time, the
Hamiltonian function Hnn

d (A, B) takes the minimum value of 4n if and only if matrices A
and B store dual permutations. It is worth noting that although Enn

d (A, B) and Hnn
d (A, B)

have the same mathematical expressions, their expansions differ. The energy function
Enn

d (A, B) represents the QUBO model and takes the minimum value of n when all three
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conditions (row domain-wall, column domain-wall, and dual-permutation) are met. On
the other hand, the Hamiltonian function Hnn

d (A, B) corresponds to the Ising model and
achieves the minimum value of 4n when matrices A and B satisfy the dual-permutation
condition along with the row and column domain-wall conditions. These QUBO/Ising
models can be used as kernels for solving permutation-based combinational optimization
problems as QUBO/Ising models.

The features of QUBO/Ising models obtained using our dual-matrix domain-wall
encoding technique are presented in Table 3. It is evident from the table that these models
consist of only 6n2 − 12n + 4 quadratic terms. In contrast, models designed using the
conventional one-hot encoding approach contain n3 − n2 quadratic terms, while models
created using the all-different domain-wall encoding method have 1

2 n3 − 3
2 n quadratic

terms. Thus, our dual-matrix domain-wall technique significantly reduces the number of
quadratic terms in the models.

Moreover, our encoding technique also leads to a reduction in the linear term coeffi-
cients in the Ising models. In Ising models obtained using conventional one-hot encoding
and all-different domain-wall encoding, the linear terms have coefficients of 2n− 4 and
n− 1, respectively. However, Ising models obtained through dual-matrix domain-wall
encoding feature linear terms with a coefficient of 2.

5. QUBO/Ising Kernels for Partial Permutations

For two positive integers satisfying m ≤ n, a partial permutation refers to a sequence
of m numbers selected from a set 0, 1, . . . , n− 1 of n numbers without repetition. A per-
mutation is a special case of a partial permutation where m = n. In this section, we
primarily focus on the case where m < n. However, we can also consider a permutation
of n numbers by substituting m with n. A partial permutation can be represented by an
injection π : {0, 1, . . . , m− 1} → {0, 1, . . . , n− 1}, where π(i) denotes the i-th element in
the partial permutation [π(0), π(1), . . . , π(m− 1)]. The total number of possible partial
permutations is given by n!/(n−m)!. An inverse of a partial permutation π is a surjection
p : {0, 1, . . . , n− 1} → {0, 1, . . . , m− 1} that satisfies p(π(i)) = i for all i (0 ≤ i ≤ m− 1). It
should be noted that p(j) can take any value when π−1(j) is undefined, meaning that there
is no i satisfying π(i) = j. We refer to such π and p as dual permutations.

This section first demonstrates partial-permutation encoding using one-hot vectors.
Subsequently, we illustrate the application of the dual-matrix domain-wall technique to
generate partial permutations. It is important to note that the all-different domain-wall
technique cannot be applied in this case. Unlike permutation generation, the column-wise
sums of the domain-wall encoding for a partial permutation are not fixed.

5.1. Partial-Permutation Encoding by One-Hot Vectors

We can construct QUBO/Ising kernels to generate partial permutations using zero-
one-hot vectors. For this purpose, we utilize an m × n matrix (m < n) of bits/qubits.
Each row i (0 ≤ i ≤ m− 1) in the matrix represents π(i) as a one-hot vector, while each
column j (0 ≤ j ≤ n − 1) represents π−1(j) as a zero-one-hot vector. Here, we write
π−1(j) = ϕ if there is no i satisfying π(i) = j. Figure 5 illustrates an example of a 3× 5
matrix that represents a partial permutation. In this example, the rows correspond to the
partial permutation [π(0), π(1), π(2)] = [3, 0, 1] selected from the set {0, 1, 2, 3, 4}, and the
columns represent the inverse [π−1(0), π−1(1), π−1(2), π−1(3), π−1(4)] = [1, 2, ϕ, 0, ϕ].

We can design the QUBO/Ising kernels Emn
1 (X)/Hmn

1 (S) generating a partial permu-
tation as follows:

Emn
1 (X) =

1
2

m−1

∑
i=0

(
1−

n−1

∑
j=0

xi,j

)2

+
1
2

n−1

∑
j=0

n−1

∑
i=0

xi,j

(
1−

m−1

∑
i=0

xi,j

)
(19)

Hmn
1 (S) =

1
2

m−1

∑
i=0

(
(n− 2) +

n−1

∑
j=0

si,j

)2

+
1
2

n−1

∑
j=0

(
m +

m−1

∑
i=0

si,j

)(
(m− 2) +

m−1

∑
i=0

si,j

)
(20)
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The first summation term in each expression takes the minimum value of 0 when every
row is a one-hot vector. Similarly, the second summation term is evaluated as 0 when every
column is a zero-one-hot vector. Consequently, the optimal solutions of Emn

1 (X)/Hmn
1 (S)

represent dual permutations.

1 2 𝜑 0 𝜑

3 0 0 0 1 0

0 1 0 0 0 0

1 0 1 0 0 0

(1) QUBO model (2) Ising model

1 2 𝜑 0 𝜑

3 1 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1 1

Figure 5. 3 × 5 matrix representing a partial permutation selecting 3 from 5 using one-hot and
zero-one-hot vectors.

We should note that previous works such as [26,27] have already presented QUBO
models for partial permutation using zero-one-hot vectors. However, the mathematical
expressions used in these works differ. In [26], a slack variable yi (0 ≤ i ≤ n − 1) was

introduced for each column i, and the expression
n−1
∑

j=0

(
1− yi −

m−1
∑

i=0
xi,j

)2

was utilized to

ensure that each column represented a zero-one-hot vector. Similarly, in [27], the expres-

sion
n−1
∑

j=0

(
1
2 −

m−1
∑

i=0
xi,j

)2

was employed for the same purpose. In contrast, our proposed

mathematical expression
n−1
∑

i=0
xi,j

(
1−

m−1
∑

i=0
xi,j

)
for zero-one-hot vectors is more intuitive

and simpler as it does not yield any linear terms.

5.2. Partial-Permutation Encoding by Our Dual-Matrix Domain-Wall Encoding Technique

We utilize two matrices, namely A = (ai,j) (0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 2) of size
m× (n− 1) with bit/qubit variables and B = (bi,j) (0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1) of
size (m− 1)× n. These matrices are employed for our dual-matrix domain-wall technique
and represent partial permutations. For an illustration, refer to Figure 6, which shows
example matrices A and B with dimensions m = 3 and n = 5, respectively. Similarly to
dual-matrix domain-wall encoding for permutations, we include fixed guard bits/qubits
in the leftmost and rightmost columns of A, as well as the top and bottom rows of B, as
depicted in Figure 6. By applying Equation (16), we can derive two matrices ∆A = (∆ai,j)
and ∆B = (∆bi,j) (0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1).

To satisfy the three conditions, we make modifications to the mathematical expressions
Enn

d (A, B) and Hnn
d (A, B) for the QUBO and Ising kernels that generate permutations. These

modifications ensure that the row domain-wall condition, column domain-wall condition,
and dual-permutation condition are met by the two matrices A and B with sizes m× (n− 1)
and (m− 1)× n, respectively. The adjusted expressions are as follows:

Emn
d (A, B) =

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆ai,j)
2 +

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆bi,j)
2 +

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆ai,j − ∆bi,j)
2 (21)

Hmn
d (A, B) =

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆ai,j)
2 +

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆bi,j)
2 +

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆ai,j − ∆bi,j)
2 (22)

We proceed to demonstrate that Emn
d (A, B) attains its minimum value of n−m if and

only if ∆A represents a partial permutation. The first summation term takes the minimum
value of 1

2 m when all rows of matrix A are domain-wall vectors, satisfying the row domain-
wall condition. Similarly, the second summation terms will reach the minimum values of
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1
2 n if the column domain-wall condition is satisfied. Suppose that the row domain-wall
condition and the column domain-wall condition are satisfied. Since the numbers of 1s in
∆A and ∆B are m and n, respectively, the third summation term takes the minimum value
of 1

2 (n−m) if the dual-permutation condition is satisfied. Hence, Emn
d (A, B) takes the value

1
2 m + 1

2 n + 1
2 (n−m) = n if the three conditions are satisfied. Unfortunately, this does not

imply that Emn
d (A, B) takes the minimum value of n if and only if the three conditions are

satisfied. The third summation term can be smaller than 1
2 (n− m), say 0, if the row or

column domain-wall condition is not satisfied. Hence, we need to prove that Emn
d (A, B)

is larger than n if at least one of the three conditions is not satisfied. More specifically, we
prove the following lemma:

1 1 1 1 0 0

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 1 1

1 1 0/1 0 0/1

0 1 0/1 0 0/1

0 0 0 0 0

𝑎 ,

𝑏 ,

𝐴

𝐵

1 +1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

𝑎 ,

𝑏 ,

𝐴

𝐵

0 0 0 2 0

2 0 0 0 0

0 2 0 0 0

(1) QUBO model (2) Ising model

0 0 0/1 1 0/1

1 0 0/1 0 0/1

0 1 0/1 0 0/1

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 2 2 2

2 0 2 0 2

0 2 2 0 2

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

∆𝑎 , 𝑎 , 𝑎 ,∆𝐴

∆𝑏 , 𝑏 , 𝑏 ,∆𝐵

∆𝑎 , 𝑎 , 𝑎 ,∆𝐴

∆𝑏 , 𝑏 , 𝑏 ,∆𝐵

Figure 6. Dual-matrix domain-wall encoding presenting a partial permutation selecting 3 from 5
using domain-wall vectors.

Lemma 1. Emn
d (A, B) is larger than n if A and B do not satisfy at least one of the row domain-wall,

column domain-wall, and dual-permutation conditions.

Proof. Suppose that the row and column domain-wall conditions are satisfied and the
numbers of 1s in ∆A and ∆B are m and n, respectively. We can observe that the third sum-
mation term of Emn

d (A, B) exceeds 1
2 (n−m) when ∆A and ∆B are not dual. Consequently,

we can determine that Emn
d (A, B) > 1

2 m + 1
2 n + 1

2 (n−m) = n.
Next, let us consider the case in which the row and/or column domain-wall conditions

are not fulfilled. If a row of A is not a domain-wall vector, the numbers of 1/−1s in ∆A
are (1 + k)/k for some k ≥ 1. For example, if a row of A is 11001011, the corresponding
row of ∆A would be 0010(−1)1(−1)100, containing three 1s and two −1s. Based on this
observation, we can assign non-negative integers kA and kB such that the numbers of 1/−1s
in ∆A and ∆B are (m + kA)/kA and (n + kB)/kB, respectively. It follows that ∆A and ∆B
have m + 2kA and n + 2kB non-zero elements, respectively. Since we assume that the row
and/or column domain-wall conditions are not satisfied, at least one of kA and kB must be
greater than or equal to 1. Clearly, the first and second summation terms take values of
1
2 m + kA and 1

2 n + kB, respectively. The third summation term must be at least∣∣∣∣(1
2

m +
1
2

kA)− (
1
2

n +
1
2

kB)

∣∣∣∣+ ∣∣∣∣12 kA −
1
2

kB

∣∣∣∣. (23)

We can now analyze the value of Emn
d (A, B) in the following cases:

Case 1: ( 1
2 m + 1

2 kA) ≤ ( 1
2 n + 1

2 kB)

The lower bound of Emn
d (A, B) can be evaluated by the sum of the three summation

terms as follows:
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Emn
d (A, B) ≥ (

1
2

m + kA) + (
1
2

n + kB) +

(
(

1
2

n +
1
2

kB)− (
1
2

m +
1
2

kA)

)
= n +

1
2

kA +
3
2

kB > n. (24)

Case 2: ( 1
2 m + 1

2 kA) > ( 1
2 n + 1

2 kB)

Similarly, Emn
d (A, B) can be evaluated by the sum of the first and second summation

terms as follows:

Emn
d (A, B) > (

1
2

m + kA) + (
1
2

n + kB) > (
1
2

n +
1
2

kB) + (
1
2

n + kB) > n. (25)

Thus, this completes the proof of the lemma.

Since we have shown that Emn
d (A, B) = n if the three conditions are satisfied, this

lemma implies the following theorem:

Theorem 1. Emn
d (A, B) takes the minimum value of n if and only if A and B satisfy the row

domain-wall, column domain-wall, and dual-permutation conditions are satisfied.

Next, we will evaluate the value of Hmn
d (A, B) when the three conditions are satisfied.

The first summation term and second summation term take minimum values of 2m and
2n, respectively, if and only if the row and column domain-wall conditions are satisfied.
Additionally, if the dual-permutation condition is satisfied, the third summation term
takes a value of 2(n−m). Hence, Hmn

d (A, B) is equal to 2m + 2n + 2(n−m) = 4n if the
row domain-wall, column domain-wall, and dual-permutation conditions are all satisfied.
Similarly, we can prove that Hmn

d (A, B) is larger than 4n if at least one of the three conditions
is not satisfied. Thus, we can state the following theorem:

Theorem 2. Hmn
d (A, B) takes the minimum value of 4n if and only if A and B satisfy the row

domain-wall, column domain-wall, and dual-permutation conditions.

This theorem establishes the condition for Hmn
d (A, B) to attain its minimum value

and confirms that it occurs when the row domain-wall, column domain-wall, and dual-
permutation conditions are satisfied.

The readers should refer to Table 4, which provides the features of kernels Emn
d (A, B)

and Hmn
d (A, B). It can be observed that the number of quadratic terms in these models is

given by 6mn− 4m− 4n. They utilize only a quadratic number of quadratic terms, whereas
kernels Emn

1 (A, B) and Hmn
1 (A, B) require a cubic number of quadratic terms. Additionally,

the maximum absolute value of the linear term coefficients in Hmn
d (A, B) is only 2, while

Hmn
1 (A, B) requires large coefficients of m + n− 3.

Table 4. QUBO/Ising kernels for generating a partial permutation selecting m numbers from n numbers.

Domain-Wall
Encoding Type One-Hot Dual-Matrix Extended

Bit/qubit count mn 2mn−m− n 3mn−m− n

QUBO models
Quadratic formula Emn

1 (A, B) Emn
d (A, B) Emn

e (A, B, X)
Linear term count mn 2mn− 2m− 2n 3mn− 3m− 2n + 1
Linear term coefficients −1 +2 −1,+1,+2,+3
Quadratic term count 1

2 m2n + 1
2 mn2 −mn 6mn− 6m− 6n + 4 6mn− 4m− 4n

Quadratic term coefficients +1,+2 −2,−1,+1 −3,−2,−1,+1,+2
Diameter 2 m + n− 3 m + n
Offset m m + n− 1 3

2 m + 1
2 n

Optimal energy 0 n 1
2 m + 1

2 n
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Table 4. Cont.

Domain-Wall
Encoding Type One-Hot Dual-Matrix Extended

Ising models
Quadratic formula Hmn

1 (A, B) Hmn
d (A, B) Hmn

e (A, B, S)
Linear term count mn 2m + 2n mn + 2m + 2n
Linear term coefficients m + n− 3 −2,+2 −3,−1,+1,+2,+3,+4
Quadratic term count 1

2 m2n + 1
2 mn2 −mn 6mn− 6m− 6n + 4 6mn− 4m− 4n

Quadratic term coefficients +1 −2,−1,+1 −3,−2,−1,+1,+2
Diameter 2 m + n− 3 m + n
Offset 1

2 m2n + 1
2 mn2 − 2mn + 2m 4mn− 4 8mn− 4m− 2n

Optimal Hamiltonian 0 4n 2m + 2n

6. Dual-Matrix Domain-Wall Technique Extended with a One-Hot Matrix

When the QUBO kernels designed by the dual-matrix domain-wall technique are
involved in QUBO models for solving permutation-based combinatorial optimization
problems, ∆A = (∆ai,j) is used to compute the objective function of the optimization
problems. For example, when checking if both π(i) = j and π(i′) = j′ are satisfied, a
quadratic term ∆ai,j∆ai′ ,j′ is employed. However, since ∆ai,js are not variables, they are
expanded using the variable ai,js as shown below:

∆ai,j∆ai′ ,j′ = (ai,j−1 − ai,j)(ai′ ,j′−1 − ai′ ,j′)

= ai,j−1ai′ ,j′−1 − ai,j−1ai′ ,j′ − ai,jai′ ,j′−1 + ai,jai′ ,j′ , (26)

Since a single quadratic term ∆ai,j∆ai′ ,j′ is expanded to the four quadratic terms
involving the variable ai,js, the resulting QUBO model obtained through reduction contains
numerous quadratic terms. To mitigate this issue, we introduce a matrix X = (xi,j) with
n× n-bit variables, which satisfies X = ∆A, into our QUBO kernel. Similarly, a one-hot
matrix S = (si,j) with n× n-qubit variables is added to the Ising kernel. The matrix ensures
that si,j = ∆ai,j − 1 for all i and j, because each ∆ai,j takes 0 or 2. Since these matrices X and
S store a permutation as a one-hot encoding, we refer to them as one-hot matrices.

To extend our dual-matrix domain-wall technique for one-hot matrices, we introduce
an additional condition along with the row domain-wall condition, column domain-wall
condition, and dual-permutation condition. This new condition is defined as follows:

One-hot permutation condition. Each row of matrix X/S represents the permutation
corresponding to matrix A in the form of a one-hot vector.

We begin by designing a QUBO model that satisfies these four conditions. The
mathematical expression for this model is as follows:

Enn
e (A, B, X) =

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆ai,j)
2 +

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆bi,j)
2

+
1
2

n−1

∑
i=0

n−1

∑
j=0

(xi,j − ∆ai,j)
2 +

1
2

n−1

∑
i=0

n−1

∑
j=0

(xi,j − ∆bi,j)
2 (27)

Similarly to the previous model, the first and second summation terms achieve the
minimum value of n

2 when the row and column domain-wall conditions are satisfied,
respectively. The third and fourth summation terms reach the minimum value of 0 if both
the dual-permutation condition and the one-hot permutation condition are met. Therefore,
matrix X stores a permutation if and only if Enn

e (A, B, X) reaches its minimum value of n.
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The same technique can also be applied to the Ising model. In this case, we introduce
matrix S = (si,j) of size n× n, where si,j + 1 = ∆ai,j holds for all i and j. The Ising model
Hnn

e (A, B, S) can be designed as follows:

Hnn
e (A, B, S) =

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆ai,j)
2 +

1
2

n−1

∑
i=0

n−1

∑
j=0

(∆bi,j)
2

+
1
2

n−1

∑
i=0

n−1

∑
j=0

((si,j + 1)− ∆ai,j)
2 +

1
2

n−1

∑
i=0

n−1

∑
j=0

((si,j + 1)− ∆bi,j)
2 (28)

Similarly to the QUBO model, the four conditions are satisfied, and matrix S stores a
one-hot encoding of a permutation if and only if Hnn

e (A, B, S) reaches its minimum value of
4n. Optimal solutions of Hnn

e (A, B, S) correspond to a one-hot encoding stored in matrix S.
The features of QUBO/Ising models obtained by expanding Enn

e (A, B, X) and Hnn
e (A, B, S)

are presented in Table 3.
We further apply the same technique for a partial permutation. However, a straightfor-

ward modification of Enn
e (A, B, X)/Hnn

e (A, B, S) to fit them to a partial permutation may
not generate QUBO/Ising models correctly. The optimal solutions of such QUBO/Ising
models may not satisfy the four conditions. We modify their fourth summation term and
obtain the following QUBO model Emn

e (A, B, X):

Emn
e (A, B, X) =

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆ai,j)
2 +

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆bi,j)
2

+
m−1

∑
i=0

n−1

∑
j=0

(xi,j − ∆ai,j)
2 +

m−1

∑
i=0

n−1

∑
j=0

xi,j(1− ∆bi,j) (29)

Note that the third and fourth summation terms do not have a coefficient of 1
2 , because

the terms in the expanded formula will have a non-integer coefficient if they have a
coefficient of 1

2 . The first and second summation terms take minimum values of 1
2 m and

1
2 n, respectively, if and only if the row and column domain-wall conditions are satisfied.
The third summation term takes the minimum value of 0 if X and ∆A are equal. The fourth
summation term takes the minimum value of 0 if xi,j = 0 or ∆bi,j = 1 holds for all i and j.
Thus, Emn

e (A, B, X) = 1
2 m + 1

2 n if the four conditions are satisfied. We present the following
lemma to prove that the “if” in the previous statement is “if and only if”:

Lemma 2. Emn
e (A, B, X) is larger than 1

2 (m + n) if matrices A, B, and X do not satisfy at least one
of the row domain-wall, column domain-wall, dual-permutation, and one-hot permutation conditions.

Proof. For any A, B, and X, the first, second, third, and fourth summation terms in
Emn

e (A, B, X) are at least 1
2 m, 1

2 n, 0, and 0, respectively. If the row/column domain-wall
conditions are not satisfied, the first and second summation terms are larger than 1

2 m and
1
2 n, respectively. Hence, if the row and/or the column domain-wall conditions are not
satisfied, Emn

e (A, B, X) > 1
2 (m + n).

Suppose that the row and column domain-wall conditions are satisfied. Clearly,
matrices A and B have m and n 1s, respectively, and all the other elements are 0. Thus,
the first and second summation terms take minimum values of 1

2 m and 1
2 n, respectively.

If the dual-permutation condition is not satisfied, that is, ∆A and ∆B are not dual, then
there exist i and j such that ∆ai,j = 1 and ∆bi,j = 0. For such an i and j, either (xi,j − ∆ai,j)

2

or xi,j · (1− ∆bi,j) must be 1. Thus, at least one of the third or fourth summation terms is
larger than 0. If the one-hot permutation condition is not satisfied, then X and ∆A are not
equal, and the third summation term is larger than 0. Thus, Emn

e (A, B, X) > 1
2 m + 1

2 n holds.
This completes the proof of Lemma 2.

Since we have proved that Emn
e (A, B) = 1

2 m + 1
2 n if the four conditions are satisfied,

we can state the following theorem:
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Theorem 3. Emn
e (A, B, X) takes the minimum value of 1

2 m + 1
2 n if and only if A and B satisfy

the row domain-wall, column domain-wall, dual-permutation, and one-hot permutation conditions.

We can extend the Ising model for a partial permutation to have a one-hot matrix S in
the same way as follows:

Hmn
e (A, B, S) =

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆ai,j)
2 +

1
2

m−1

∑
i=0

n−1

∑
j=0

(∆bi,j)
2

+
m−1

∑
i=0

n−1

∑
j=0

((si,j + 1)− ∆ai,j)
2 +

m−1

∑
i=0

n−1

∑
j=0

(si,j + 1) · (2− ∆bi,j) (30)

If the four conditions are satisfied, then the first, second, third, and fourth summation
terms take the values 2m, 2n, 0, and 0, respectively. Thus, Hmn

e (A, B, S) = 2m + 2n holds
when the four conditions are satisfied. Similarly, we can prove that Hmn

e (A, B) is larger
than 2m + 2n if at least one of the four conditions is not satisfied. Thus, we can state the
following theorem:

Theorem 4. Hmn
e (A, B, S) takes the minimum value of 2m + 2n if and only if A, B, and S satisfy

the row domain-wall, column domain-wall, dual-permutation, and one-hot permutation conditions.

The reader should refer to Table 4, which provides the features of Emn
e (A, B, X) and

Hmn
e (A, B, S). It can be observed that the number of quadratic terms in these kernels is given

by 6mn − 4m − 4n, while Emn
d (A, B) and Hmn

d (A, B) have 6mn − 6m − 6n + 4 quadratic
terms. Therefore, the introduction of one-hot matrices results in a relatively small increment
in the quadratic term counts. This reduction in the number of quadratic terms highlights
the effectiveness of utilizing one-hot matrices X and S in the QUBO and Ising models for
partial permutations. By employing these techniques, we can significantly enhance the
efficiency of solving optimization problems associated with partial permutations.

7. Applications of QUBO/Ising Kernels for Generating Permutations in Combinatorial
Optimization Problems

In this section, we begin by introducing the Particle Placement Problem (PPP), which
serves as a fundamental problem that many permutation-based combinatorial optimization
problems can be reduced to with ease. We demonstrate that the PPP can be effectively
reduced to QUBO/Ising models with kernels for generating permutations. Furthermore,
we show that several permutation-based combinatorial optimization problems, such as
the quadratic assignment problem (QAP), traveling salesman problem (TSP), and the sub-
graph isomorphism problem, can be equivalently reduced to the PPP. Consequently, these
combinatorial optimization problems can be reduced to QUBO/Ising models through
the PPP.

7.1. The Particle Placement Problem (PPP)

Suppose we have m particles with IDs 0, 1, . . . , m− 1 and n positions with IDs 0, 1, . . . ,
n − 1, where m ≤ n is satisfied. Let us consider the PPP, which involves placing m
particles in n positions without conflicts. The particle placement is determined by injection
π : {0, 1, . . . , m− 1} → {0, 1, . . . , n− 1}, where each particle i (0 ≤ i ≤ m− 1) is placed in
position π(i). The problem aims to find an optimal placement π that minimizes the total
energy, which is defined by two types of energies as follows:

Potential Pi,j: the energy that occurs when particle i is placed in position j (0 ≤ i ≤
m− 1 and 0 ≤ j ≤ n− 1).

Interaction Ii,j,i′,j′ : the energy that occurs between two particles i and i′ when they
are placed in positions j and j′, respectively, where (i, j, i′, j′) ∈ Q(m, n).

Here, Q(m, n) is a set of all consistent quartets (i, j, i′, j′) satisfying 0 ≤ i < i′ ≤ m− 1,
0 ≤ j, j′ ≤ m− 1, and j 6= j′. Both potential Pi,j and interaction Ii,j,i′ ,j′ can be any integer,
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including negative values. The total energy of π is the sum of all potentials and interactions,
given by the equation

PPP(π) =
m−1

∑
i=0

Pi,π(i) +
m−2

∑
i=0

m−1

∑
i′=i+1

Ii,π(i),i′ ,π(i′) (31)

The particle placement problem (PPP) aims to find an optimal placement π with the
minimum PPP(π) among all possible particle placements.

We will demonstrate that the total energy of π can be computed using the corre-
sponding binary one-hot matrix, and we can reduce the PPP to a QUBO problem. In this
sub-section, we focus on the PPP with m particles and n locations, where m < n and π
represents a partial permutation. However, it is worth noting that the same technique can
be applied to the PPP with n particles and n locations, as it is relatively straightforward.

Suppose that an m× n-bit matrix X stores a partial permutation π as one-hot vectors.
In other words, xi,j = 1 holds if and only if π(i) = j. Let PPP(X) be a quadratic formula
defined as follows:

PPP(X) =
m−1

∑
i=0

n−1

∑
j=0

Pi,jxi,j +
Q(m,n)

∑
(i,j,i′ ,j′)

Ii,j,i′ ,j′xi,jxi′ ,j′ . (32)

Clearly, xi,j = 1 if and only if π(i) = j, and xi,jxi′ ,j′ = 1 if and only if π(i) = j and
π(i′) = j′. Thus, we have PPP(X) = PPP(π). Since PPP(X) is a quadratic formula of X,
we can design a QUBO model using a QUBO kernel Emn

1 (X) corresponding to the PPP
as follows:

EPPP
1 (X) = λEmn

1 (X) + PPP(X), (33)

where λ is a parameter large enough to prioritize Emn
1 (X) and guarantee that X is a one-hot

vector. By finding an n× n-bit matrix X that minimizes EPPP
1 (X), we can obtain the optimal

solution π of the PPP corresponding to such an X.
We can use the other QUBO kernels Emn

d (A, B) and Emn
e (A, B, X) instead of Emn

1 (X):

EPPP
d (A, B) = λEmn

d (A, B) + PPP(∆A) (34)

EPPP
e (A, B, X) = λEmn

e (A, B, X) + PPP(X) (35)

Similarly, by finding their optimal solutions, we can obtain the optimal solution π of
the PPP.

For an m × n-qubit matrix S = (si,j), let S′ = (s′i,j) denote the matrix of the same
size satisfying s′i,j = si,j + 1 for all i and j. Clearly, s′i,j = 0/2 if si,j = −1/+1, respec-
tively. Thus, for PPP(S′) computed by the mathematical expression in Equation (32),
PPP(S′) = 4PPP(π) is satisfied if S stores permutation π as one-hot vectors. Using this
fact, we can design Ising models for solving the PPP as follows:

HPPP
1 (S) = λHmn

1 (S) + PPP(S′) (36)

HPPP
d (A, B) = λHmn

d (A, B) + PPP(∆A) (37)

HPPP
e (A, B, S) = λHmn

e (A, B, S) + PPP(S′) (38)

It should be clear that the optimal solutions of these Ising models give the optimal
solutions of the PPP if λ is large enough to prioritize the Ising kernels for generating
partial permutations.

The PPP can have a total of mn potentials and 1
2 m2n2 − 1

2 m2n− 1
2 mn2 + 1

2 mn inter-
actions. When the PPP is converted to the equivalent QUBO/Ising models, non-zero
interactions may lead to quadratic terms. In essence, the total number of quadratic terms in
the QUBO/Ising models for solving the PPP is the sum of the number of terms produced
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by a kernel generating permutations and the number of quadratic terms for non-zero inter-
actions in the PPP. As demonstrated in this paper, our dual-matrix domain-wall technique
significantly reduces the count of quadratic terms. However, if the number of quadratic
terms derived from non-zero interactions in the PPP is much larger than that for the ker-
nel generating permutations, the advantage of our dual-matrix domain-wall technique
becomes limited. It is worth noting that both the conventional one-hot technique and the
all-different domain-wall technique require a cubic number of quadratic terms, whereas
our dual-matrix domain-wall technique only uses a quadratic number of quadratic terms.
If the PPP has full non-zero interactions, it would result in a number of quadratic terms that
is proportional to the fourth power. In such a scenario, the resulting QUBO/Ising models
would have a fourth power number of quadratic terms, and the reduction effect achieved
by the dual-matrix domain-wall technique for the kernel terms would be relatively small.
To evaluate the effect of the dual-matrix domain-wall technique on specific combinato-
rial optimization problems, we will present several examples and assess the number of
non-zero interactions in the PPP.

7.2. Combinatorial Optimization Problems That Can Be Reduced to the PPP

This subsection demonstrates that several combinatorial optimization problems, namely
the quadratic assignment problem (QAP), the traveling salesman problem (TSP), and the
sub-graph isomorphism problem, which are known to be NP-hard [33], can be effectively
reduced to the PPP. Consequently, the instances of these problems can be transformed into
equivalent QUBO/Ising models. Additionally, we illustrate that the maximum weight
matching problem can also be reduced to the PPP. While this problem is not NP-hard
and can be solved in polynomial time [34], there is currently no known efficient parallel
algorithm for general graphs [35]. Consequently, if a highly powerful QUBO/Ising solver
becomes available in the future, it could be advantageous to solve this problem by utilizing
the reduction to QUBO/Ising models.

7.2.1. The Quadratic Assignment Problem (QAP)

The quadratic assignment problem (QAP) [36] aims to find the optimal arrangement
π of n facilities to n positions. This problem involves two types of instance parameters:
flows and distances. Let fi,i′ and dj,j′ denote the flow from facility i to i′ (0 ≤ i, i′ ≤ n− 1)
and the distance from j to j′ (0 ≤ j, j′ ≤ n− 1), respectively. The objective of QAP is to find
a permutation π that minimizes the total logistics cost, defined by the following formula:

QAP(π) =
n−1

∑
i=0

n−1

∑
i′=0

fi,i′ · dπ(i),π(i′). (39)

To reduce this problem to the PPP, we set Ii,j,i′ ,j′ = fi,i′ · dj,j′ + fi′ ,i · dj′ ,j for all i, i′, j,
and j′ ((i, j, i′, j′) ∈ Q(n, n)) and set Pi,j = fi,i · dj,j for all i and j (0 ≤ i, j ≤ n− 1). Since
QAP(π) = PPP(π) holds for all permutation π, any QAP instance can be reduced to the
PPP. The reduced PPP has up to 1

2 n4 − n3 + 1
2 n2 non-zero interactions and n2 non-zero

potentials. If not all flows are non-zero, the number of non-zero interactions may be
reduced. Let k be the number of pairs of facilities i and i′ (0 ≤ i < i′ ≤ n− 1) such that at
least one of fi,i′ or fi′ ,i is non-zero. Clearly, k is at most 1

2 n2 − 1
2 n. In this case, the reduced

PPP has only 1
2 n2k− 1

2 nk non-zero interactions.

7.2.2. The Traveling Salesman Problem (TSP)

The traveling salesman problem (TSP), which aims to find the shortest route to
visit all n cities with IDs 0, 1, . . ., n − 1 can be reduced to the PPP as follows. Let dj,j′

(0 ≤ j, j′ ≤ n− 1) denote the distance between two cities j and j′. We use a permutation π
for representing a route, where the i-th visited city (0 ≤ i ≤ n− 1) corresponds to the city
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with ID π(i). The objective of the TSP is to find a permutation π that minimizes the total
route length computed using the following formula:

TSP(π) =
n−1

∑
i=0

dπ(i),π((i′+1) mod n). (40)

To reduce the TSP to the PPP, we define Ii,j,i′ ,j′ = dj,j′ for all i, i′, j, and j′

if i′ = (i + 1) mod n. For all other Ii,j,i′ ,j′ and Pi,j, we set them to 0. This reduction allows
us to observe that TSP(π) = PPP(π) holds for all permutations π. Therefore, it is possible
to reduce any TSP instance to the PPP. The reduced PPP has n3 − n2 non-zero interactions.

We can consider the traveling salesman problem (TSP) for a weighted undirected
graph in which each edge is assigned a weight value. The goal of the TSP is to find
a Hamiltonian cycle in the graph with the minimum total weight that visits all nodes.
Figure 7 shows an example of a 40-node weighted graph. We assume that the weight of
each edge is its length in the figure. The figure also depicts the optimal solution of the TSP.
Note that if an input graph has no Hamiltonian cycle, the TSP has no feasible solution.
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Figure 7. A 40-node weighted graph with the optimal TSP solution.

Suppose that we have a weighted graph with nodes 0, 1, . . ., n − 1, and let dj,j′

(0 ≤ j, j′ ≤ n− 1) be the weight of an edge (j, j′). If the graph does not have an edge (j, j′),
we assume dj,j′ = +∞ to prevent selecting (j, j′) as an edge of a cycle. The total route of a
node permutation π is computed using Equation (40), based on the defined dj,j′ values. For
the real implementation, we set dj,j′ = BIG instead of +∞, where BIG is sufficiently larger
than the maximum edge weight. An edge (j, j′) with dj,j′ = BIG is selected only if the TSP
has no feasible solution.

We will introduce the technique for reducing the TSP into the PPP, so that the re-
duced PPP becomes sparse. For this purpose, we apply a fixed bias of −BIG, so that
Ii,j,i′ ,j′ = dj,j′ − BIG for all i, i′, j, and j′ if i′ = (i + 1) mod n. For all other Ii,j,i′ ,j′ and Pi,j,
we set them to 0. This reduction allows us to observe that TSP(π) = PPP(π) + n · BIG
holds for all permutations π. Additionally, Ii,j,i′ ,j′ is non-zero only if the graph has an edge
(j, j′) and i′ = (i + 1) mod n holds. Thus, the PPP becomes so sparse that it has only 2en
non-zero interactions, where e is the number of edges in the graph. For instance, if no two
edges intersect each other, as illustrated in Figure 7, the graph has at most 3n− 6 edges.
Hence, the reduced PPP has at most 2(3n− 6)n = 6n2 − 12 interactions, which is much
smaller than the original TSP with n3 − n2 interactions.
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7.2.3. The Sub-Graph Isomorphism Problem

Let G = (V, E) and G′ = (V′, E′) be guest and host graphs such that V = {0, 1, . . . , m− 1}
and V′ = {0, 1, . . . , n− 1}. The sub-graph isomorphism problem aims to find a permutation
π such that (π(i), π(i′)) ∈ E′ holds for all (i, i′) ∈ E. If such a permutation π exists, it
implies that G is a sub-graph of G′. To reduce the sub-graph isomorphism problem to
the PPP, we assign −1 to Ii,j,i′ ,j′ and Ii,j′ ,i′ ,j if both (i, i′) ∈ E and (j, j′) ∈ E′ hold, and
assign 0 to all other Ii,j,i′ ,j′ as well as all Pi,j. It is evident that Ii,π(i),i′ ,π(i′) = −1 holds for
all edges (i, i′) in G if π is a permutation that proves G is a sub-graph of G′. Therefore,
PPP(π) = −|E| if such a permutation exists. Consequently, any instance of the sub-graph
isomorphism problem can be reduced to the PPP. The reduced PPP has 2 · |E| · |E′| non-
zero interactions. If G and G′ are connected graphs, then m− 1 ≤ |E| ≤ 1

2 m2 − 1
2 m and

n− 1 ≤ |E′| ≤ 1
2 n2 − 1

2 n hold. Hence, the reduced PPP has from 2mn− 2m− 2n + 2 to
1
2 m2n2 − 1

2 m2n− 1
2 mn2 + 1

2 mn non-zero interactions.

7.2.4. The Maximum Weight Matching Problem

Let G = (V, E, w) be a weighted graph, where V = {0, 1, . . . , n− 1} and wi,j represents
the weight of an edge (i, j) (i < j) in E. We assume that wi,j = 0 for all other pairs (i, j) such
that i ≥ j or (i, j) is not in E. A subset of E is called a matching if none of its edges share a
common node. The maximum weight matching problem aims to find a matching M (⊆ E)
with the largest total weight. We can represent a matching M using a permutation π as
follows. An edge (i, j) (∈ E) is in the matching M if both π(i) = j and π(j) = i hold, and
node i is not connected to any edge in M if π(i) = i. To transform the maximum weight
matching problem into the PPP, we assign −wi,j to Ii,j,j,i for all (i, j) ∈ E, while assigning
0 to all other Ii,j,i′ ,j′ as well as all Pi,j. Let π be a permutation that represents a matching
M. Since wi,π(i) = 0 whenever i ≥ π(i), we can compute the total weight of M using the
obtained PPP as follows:

M

∑
(i,j)

wi,j =
n−1

∑
i=0

wi,π(i) = −
n−1

∑
i=0

Ii,π(i),π(i),i = −PPP(π). (41)

Therefore, any instance of the maximum weight matching problem can be reduced
to the PPP with |E| interactions. If G is a connected graph, n− 1 ≤ |E| ≤ 1

2 n2 − 1
2 n holds,

and so the number of interactions is from n− 1 to 1
2 n2 − 1

2 n.

7.2.5. The Bipartite Maximum Weight Matching Problem

If an instance of the maximum weight matching problem is restricted to a bipartite
graph, a more efficient reduction to the PPP can be used. Consider a weighted bipartite
graph, denoted as G = (V, V′, E, w), where V = {0, 1, . . . , m− 1}, V′ = {0, 1, . . . , n− 1},
E ⊆ V × V′, and wi,j represents the weight of an edge (i, j) ∈ E. We can use a partial
permutation π : V → V′ to represent a matching M of G such that (i, π(i)) ∈ M. To
transform the maximum weight matching problem for the weighted bipartite graph into
the PPP, we assign −wi,j to Pi,j for all (i, j) ∈ E, while assigning 0 to all other Pi,j as well as
all Ii,j,i′ ,j′ . Thus, we can compute the total weight of M using the obtained PPP as follows:

M

∑
(i,j)

wi,j =
m−1

∑
i=0

wi,π(i) = −
m−1

∑
i=0

Pi,π(i) = −PPP(π). (42)

Therefore, any instance of the bipartite maximum weight matching problem can
be reduced to the PPP. The resulting PPP has |E| non-zero potentials but has no non-
zero interactions.
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7.2.6. The Quadratic Term Counts of the Ising Model

This section presents the quadratic term counts for various permutation-based combi-
natorial optimization problems. We examined the total number of quadratic terms in Ising
models and permutation kernels to observe the impact of smaller permutation kernels
on the size of Ising models. To facilitate this analysis, we introduced the concept of PPP
density, which represents the ratio of non-zero interactions to the maximum number of
interactions |Q(m, n)| = 1

2 m2n2 − 1
2 m2n− 1

2 mn2 + 1
2 mn.

We used PyQUBO [37], a Python tool designed to generate QUBO/Ising models from
mathematical expressions, and SymPy [32], a Python library for symbolic mathematics,
to validate the accuracy of the QUBO/Ising models. However, this approach, which op-
erates on provided mathematical expressions, has a significant drawback in terms of its
substantial time and space requirements. This limitation could make it impractical to solve
particularly large problems. For optimization problems based on specific permutations, an
alternative and more efficient approach is to create a custom computer program for gener-
ating QUBO/Ising models. This approach can leverage a low-level programming language
like C++. Given the fixed and straightforward nature of the underlying mathematical
expressions for such problems, it becomes feasible to design a program that efficiently gen-
erates QUBO/Ising models without the need to expand the mathematical expressions. This
process can be achieved with linear time complexity and requires a memory proportional
to the size of the models.

Figure 8 illustrates the quadratic term counts for the following problem instances:

1. A random instance of the QAP with n = 50: The reduced PPP consists of all 3,001,250
interactions, yielding a density of 1.00.

2. A random instance of the QAP with n = 50 and 10% non-zero flows: The reduced
PPP contains 301,350 interactions out of 3,001,250 maximum interactions, yielding a
density of 0.10.

3. A random instance of the TSP with n = 100: The reduced PPP includes 990,000
interactions out of 49,005,000 maximum interactions, yielding a density of 0.020.

4. The TSP for a randomly generated 40-node weighted graph as shown in Figure 7: The
graph has 104 edges, and the reduced PPP includes 8320 interactions out of 1,216,800
maximum interactions, yielding a density of 0.0068.

5. The TSP for a randomly generated 300-node weighted graph: The graph is gen-
erated to avoid edge intersections, similar to the 40-node weighted graph. It has
277 edges, and the reduced PPP includes 524,400 interactions out of a maximum of
4,023,045,000 interactions, yielding a density of 0.00013.

6. A random instance of the sub-graph isomorphism problem for a three-regular guest
graph with m = 200 nodes and a six-regular host graph with n = 400 nodes: The re-
duced PPP consists of 720,000 interactions out of 3,176,040,000 maximum interactions,
yielding a density of 0.00023.

7. A random instance of the maximum weight matching problem for a complete graph
with n = 300 nodes: The reduced PPP contains 44,850 interactions out of 4,023,045,000
maximum interactions, yielding a density of 0.000011.

8. A random instance of the bipartite maximum weight matching problem for a complete
bipartite graph with m = n = 300 nodes: The reduced PPP has no interactions,
yielding a density of zero.

The figure illustrates the total number of quadratic terms in the resulting Ising model,
referred to as the “model total”, for each problem. Additionally, it displays the number of
quadratic terms contributed by the permutation kernels, referred to as the “permutation
kernel”, which is also included in the model total. The quadratic term counts are evaluated
for four permutation kernels: the conventional one-hot technique (one-hot), the all-different
domain-wall technique (all-different), the dual-matrix domain-wall technique (dual-matrix),
and the extended technique with a one-hot matrix (extended).
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Figure 8. The quadratic term counts of Ising models reduced from combinatorial optimization
problems by the conventional one-hot technique (one-hot), the all-different domain-wall technique
(all-different), the dual-matrix domain-wall technique (dual-matrix), and that extended with a one-hot
matrix (extended). We evaluated the total quadratic term counts of the resulting Ising models (model
total), as well as those specifically for kernels generating permutations (permutation kernel).

From the figure, it is evident that our dual-matrix domain-wall technique is more
effective in reducing the quadratic terms of resulting Ising models when the original PPPs
have a lower density. When the density of the PPP is close to 1, the quadratic terms for
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PPP interactions outweigh those for permutation kernels. On the other hand, when the
PPP has a lower density, the total number of quadratic terms in the resulting Ising model
can be significantly reduced. For instance, if the conventional one-hot encoding is used for
the TSP with a randomly generated 300-node graph, the total number of quadratic terms
in the resulting Ising model is 27,434,400. However, when our dual-matrix domain-wall
technique extended by a one-hot matrix is applied, the total number of quadratic terms
reduces to only 1,062,000. This represents a remarkable reduction factor of 25.8.

We should take note of the impact of extending by a one-hot matrix in our dual-matrix
domain-wall technique. Recall that the original technique utilizes variables in matrix A
for PPP interactions, while the extended technique introduces an one-hot matrix X/S. As
shown in Equation (26), the dual-matrix domain-wall technique generates four quadratic
terms of A for each PPP interaction. In contrast, the extended dual-matrix domain-wall
technique produces only one quadratic term. When the PPP density is high and involves
numerous interactions, the quadratic terms generated by A may overlap, resulting in the
Ising model encompassing nearly all pairs of variables in A. Similarly, the Ising models
produced by the extended dual-matrix domain-wall technique also include almost all pairs
of variables in X/S. Consequently, the number of quadratic terms is nearly identical for
both techniques, and the extended dual-matrix domain-wall technique does not effectively
reduce them. Likewise, when the PPP density is too low and contains few interactions, the
number of quadratic terms generated by variables A/X/S is small. Since the extended dual-
matrix domain-wall technique yields a slightly larger kernel size, it does not perform well
in reducing the overall number of quadratic terms. Therefore, the extended dual-matrix
domain-wall technique can effectively reduce the total number of quadratic terms only
when the PPP density is moderate—neither too small nor too large. An example illustrating
this is the sub-graph isomorphism problem depicted in Figure 8, where the extended
dual-matrix domain-wall technique reduces the total number of quadratic terms to less
than half. The quadratic term counts of the extended technique are slightly larger than
those of the non-extended technique for the other problem. However, since the difference is
quite small, we should select the extended dual-matrix domain-wall technique if we must
use a fixed technique for some reason.

8. Embedding of Permutation Kernels in D-Wave Quantum Annealer

This section presents the implementation results of Ising kernels on a quantum an-
nealer called the D-Wave Advantage 4.1. The purpose was to evaluate the suitability of
the dual-matrix domain-wall technique for currently available quantum annealers and to
verify the impact of quadratic term counts in Ising models on the cell counts. We employed
Ising kernels designed using mathematical expressions such as Hnn

1 (S) (one-hot), Hnn
a (S)

(all-different), Hnn
d (S) (domain-wall), and Hnn

e (S) (extended) for generating permutations.
Additionally, we used Hmn

1 (S) (one-hot), Hmn
d (S) (domain-wall), and Hmn

e (S) (extended)
for partial permutations. These Ising kernels were embedded in the D-Wave Advantage 4.1,
which was equipped with a 5760-node Pegasus graph designed for solving Ising models.
However, due to faulty nodes and connections, only 5627 cells with 40,279 connections were
available. Therefore, we retrieved the real graph topology and employed “minorminer”, a
heuristic tool for finding minor embeddings [38], to embed the Ising kernels.

Figure 9 illustrates the number of cells used to embed Ising kernels in the D-Wave
Advantage 4.1. We embedded Ising kernels to generate permutations obtained by Hnn

1 (S)
(one-hot), Hnn

a (S) (all-different), Hnn
e (S) (domain-wall), and Hnn

d (S) (extended) for n = 5
until embedding failed. For partial permutations, we fixed the parameter m = 12 and
evaluated embedding for Hmn

1 (S) (one-hot), Hmn
d (S) (domain-wall), and Hmn

e (S) (extended)
for n = 12 until embedding failed. Ising kernels for generating permutations using the
one-hot, all-different, domain-wall, and extended techniques were successfully embedded
in the D-Wave Advantage 4.1 topology until n = 16, 28, 35, and 29, respectively. Regarding
Ising kernels for partial-permutation generation by the one-hot, domain-wall, and extended
techniques, successful embedding was achieved until n = 22, 112, and 75, respectively.
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Our dual-matrix domain-wall technique significantly reduced the cell count required for
permutation generation. However, the permutation kernels produced by the extended
dual-matrix domain-wall technique utilize slightly more cells than those produced by
the non-extended version. Additionally, the total number of cells used by the extended
technique can be smaller, because it uses fewer quadratic terms for PPP interactions.

If the entire Ising models for solving combinatorial optimization problems are em-
bedded, the upper bound for the value of n must be smaller. For such small values of n,
conventional digital computers are capable of finding optimal solutions for the problems.
Therefore, it does not make sense to utilize the D-Wave Advantage 4.1 for solving such
problems. However, in the future, if a larger number of cells becomes available, the D-Wave
Advantage 4.1 could potentially load Ising models reduced from larger combinatorial
optimization problems. In this scenario, it could uncover optimal solutions that are beyond
the reach of conventional digital computers. In such cases, kernels for generating permuta-
tions with larger values of m and n would be employed, and our dual-matrix domain-wall
technique would be a powerful approach for designing them. For a quantum annealer with
a fixed size, our dual-matrix domain-wall technique enables us to program larger-sized
combinatorial optimization problems than the conventional one-hot encoding techniques,
which require a cubic number of quadratic terms.
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Figure 9. The numbers of cells of the D-Wave Advantage 4.1 used for embedding permutation
kernels. We evaluated them for Ising kernels that generate permutations of n numbers and partial
permutations of m = 12 numbers selected from n numbers.

9. Conclusions

We introduced a novel permutation encoding technique called the dual-matrix domain
wall, which can be utilized to design QUBO/Ising kernels for generating permutations and
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partial permutations. The conventional one-hot encoding technique for QUBO/Ising ker-
nels requires a cubic number of quadratic terms, whereas our dual-matrix domain-wall tech-
nique enables a reduction to a quadratic number of quadratic terms. In this study, we pro-
vided a detailed mathematical analysis of QUBO/Ising kernels for permutation generation.

Additionally, we introduced a generic problem known as the particle placement
problem (PPP), which can be easily converted to QUBO/Ising models by utilizing the
QUBO/Ising kernels for generating permutations. Furthermore, we identified several
permutation-based combinatorial optimization problems that can be reduced to the PPP.
As a result, these problems can be efficiently converted to QUBO/Ising models using our
dual-matrix domain-wall technique.

To evaluate the effectiveness of our approach, we analyzed the number of quadratic
terms used in the QUBO/Ising models derived from these optimization problems. Finally,
we provided implementation results on the D-Wave Advantage 4.1, a quantum annealer
developed by D-Wave Systems.

Regrettably, the existing quantum annealers currently accessible are of insufficient
size to showcase the practical efficacy of our novel technique. From a practical perspective,
our methodology is specifically tailored for optimal performance exclusively on quantum
annealers of a substantial scale. The dual-matrix domain-wall technique is not presently
feasible with the D-Wave Advantage 4.1. Nonetheless, it possesses the potential to evolve
into a valuable technique for forthcoming large-scale quantum annealers.
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