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Abstract: With the fact that new server technologies are coming to market, it is necessary to update
or create new methodologies for data analysis and exploitation. Applied methodologies go from
decision tree categorization to artificial neural networks (ANN) usage, which implement artificial
intelligence (AI) for decision making. One of the least used strategies is drill-down analysis (DD),
belonging to the decision trees subcategory, which because of not having AI resources has lost
interest among researchers. However, its easy implementation makes it a suitable tool for database
processing systems. This research has developed a systematic review to understand the prospective
of DD analysis on scientific literature in order to establish a knowledge platform and establish if it is
convenient to drive it to integration with superior methodologies, as it would be those based on ANN,
and produce a better diagnosis in future works. A total of 80 scientific articles were reviewed from
1997 to 2023, showing a high frequency in 2021 and experimental as the predominant methodology.
From a total of 100 problems solved, 42% were using the experimental methodology, 34% descriptive,
17% comparative, and just 7% post facto. We detected 14 unsolved problems, from which 50% fall in
the experimental area. At the same time, by study type, methodologies included correlation studies,
processes, decision trees, plain queries, granularity, and labeling. It was observed that just one work
focuses on mathematics, which reduces new knowledge production expectations. Additionally, just
one work manifested ANN usage.

Keywords: data experimental; data mining; data science; data warehouse; drill-down

1. Introduction

Currently, big computers size’ measure velocity on petaflops where processors manage
to use up to 15 cores for command processing [1]. This kind of power opens an opportunity
window for hard disks, buses, and dynamic memory design, making software engineering
lag behind. The computer industry and its products are still losing pace against this dy-
namic change because software development is behind hardware [2]. Before this scenario,
data warehouse (DW) techniques had allowed new database version development, such as
Oracle 19i, whose Transparent Data Encryption technology let sensitive data encryption,
which is stored in tables and tablespaces, granting privacy and security to the user where
it was not done previously [3]. Process time during encryption administration increases
considerably when it only has 32 bit processors or less as a base, so encryption and volume
require capable enough hardware to support them. Even so, to improve efficiency on DW,
there have been new techniques created such as Deep Reinforcement Learning, which is
an agent trained on historical data on storage operations and retrieving [4]. In the case of
normalization, there has been a fault of standardization and disconnection between the
theoretical environment and practical applications, which has given as a result method-
ologies that suggest data structure map out, documentation on design, and panels for
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monitoring [5]. Other techniques that improved the performance of DW are data cube (DC),
which is frequently used in On-Line Analytical Processing (OLAP) [6], and the drill-up
method, which adds elements to the process line by clustering nodes and edges with similar
derivation histories [7]. However, there is also a tendency for the use of DD analysis to
make cross-references that focus on patterns and observations in independent sources [8]
on data analysis, and the business communications between users are also improved with
DD interaction [9].

Between storage technology and mining design, the question surges over the necessity
of redesign techniques to exploit all these potentialities. As an answer emerges DD analysis,
which has been implemented inside deterministic parameters, although underutilized
because of its lack of AI application by not using machine learning (ML) techniques. That
is why this research is pursuing the answer to the question of if the lack of ML tool
implementation on DD analysis has constituted a limitation for its technological evolution
in the scientific literature.

Existing works have shown the use of DD as a support tool for solutions research on
data analysis problems. However, under actual circumstances, it has limitations that could
be solved if the methodology is improved with ANN modeling implementation, which
will be not only an advance in technology terms but a way to exploit new hardware and
software resources. Moreover, this investigation proposes a methodology classification that
could be used for clarifying the state-of-the-art on DD analysis and helps researchers to
introduce in their own works the methodology that will help to reach their objectives.

As a systemic review, it is important to notice that patterns about productivity in
scientific journals are discipline-specific, meaning that each one has its own measures and
that productivity will raise projection on statistics or outperform in journal impact [10],
in this case, depending on DD references. The frequency of DD analysis usage in the
scientific literature will determine if it is convenient to improve this technique through the
implementation of ANN surpassing limitations that are currently confronted, such as the
shortage of knowledge generation.

This manuscript is structured as follows: in Section 2, DD analysis general characteris-
tics are explained along with their contextual theme. Section 3 shows the explanation of
the dataset origins and the methodology for experimental work. In Section 4, results of the
analysis are presented. In Section 5, a discussion about the findings is elaborated, and in
Section 6, conclusions are offered.

2. Theoretical Fundaments

The objective of this investigation is to determine DD analysis from the results per-
spective of its implementation, using it as a search guide, among other things, concepts of
DD (which is the subject of study), overfitting (which is one of its most frequent problems),
data mining DM (which uses it as a tool), and deterministic model (whose designs are the
most frequently used).

In addition, we also want to retrieve a list of all methodologies used and the results
produced both for and against its particular objectives. In this way, we can propose a
methodology that generalizes results and suggests solutions that can be justified in the
course of experimentation.

2.1. DD Analysis

DD analysis is a deterministic model that helps to provide different data images
in reports, schemas, and spreadsheets, which makes it simple and helps to reveal the
tendency origin exposed during the study phase [11]. DD analysis applications go from
medicine [12] and production [13] to malware detection [14], visualization [15], and data
administration [16].

In modern decision panels, it is easy to understand but not to implement because
its principal limitation is the DM exploitation, which utilizes models from probabilistic
to deterministic and generates some problems, such as recursivity and letting aside base
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knowledge production. In ML, overfitting occurs when a given model develops very well
in the training stage but falls significantly in the test one [17]. Figure 1 shows the overfitting
nature with respect to model usage and error retrieved, using optimization as an arbitrary
frontier determined by the application model.
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Figure 1. Overfitting in ML, according to [17], represents data behavior when training and test data
surpass the optimum mark established by the application model.

Overfitting occurs when the parsimony principle is violated in the use of models or
procedures. This is when more than the necessary terms are included or there are more
complicated approaches than required. There are two overfitting types [18]:

1. To use a model more flexible than it should be, and
2. To over-represent performance on a dataset.

Models with overfitting tend to memorize all training data, including noise, instead
to learn the hidden knowledge inside the data. Some solutions to avoid this problem,
according to [19], are:

• Early-stopping, which prevents the algorithm precision to stop improving after a
certain point.

• Network-reduction, which is about reducing the noise amount when reducing the
classification model size.

• Training-data expansion, which is to improve the training dataset quantity and quality,
especially in supervised learning areas.

During ANN utilization, the parameters’ increase demands a great quantity of training
data to tune hyper-parameters. To reduce overfitting, even a perfect training must not only
be big in size, but include limited dosages of noise.

2.2. Deterministic Models

Deterministic models are those that, when subjected to the same impulse, lack uncer-
tainty. In other words, they can be predicted with certainty and their behavior is evaluated
with effectivity or efficacy measures.

Deterministic models are classified in tree programming methods according to [20],
which are:

1. Linear programming;
2. Entire mixed linear programming;
3. Algorithms.
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Some techniques utilized in linear programming are a variable identification of those
that influence the supplies lost, diffuse linear programming to improve the supply chain,
and integrate linear programming focused on heuristic aspects. Their limitations are
established when all these methods have an objective to maximize earnings or minimize
costs. In the case of entire mixed linear programming, it is required that variables have as
much of the integer values as no negatives with what it could obtain results on coordination
and control for subsequent studies. However, we notice a restriction for two variables when
they are integers and there is binary number utilization. In the case of algorithms, these are
used due to the complexity existing in production systems and the objective we want to
achieve. They are a solution to the problems that cannot be solved by conventional methods
or using different types such as multi-objective algorithms or genetics, among others.

The above comes up because DD analysis has been developed and implemented
always inside deterministic models, lagging behind when state-of-the-art models are used,
such as those supplied by the ANN.

3. Materials and Methods

To conduct the systematic review, it is necessary to adopt a quantitative profile be-
cause this process is performed on scientific literature available online with normalized
vectors (which we will see ahead). This allows for the retrieval of sizable, quantified,
and predictable results, which is what concerns quantitative research.

3.1. Data Source

The used research criterion includes journal articles that are listed in the Journal
Citation Reports of those published by IOP, Nature, IEEE, MDPI, and others, whose topics
used DD analysis in their particular methodologies or utilized methodologies leading to
DM. During the first stage, dataset recollection, articles were grouped by type of work,
methodology, and solved and unsolved problems when authors decide to report them.
Table 1 shows the recollection criteria.

Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) [21] specifications, on the selection process, 200 works were reviewed, and from
them, only 80 were selected as the base. Special emphasis was made on those referring to
DD analysis or DM processes on its methodology. The search was focused on data science
engines and, in some cases, on engineering related to computer science.

Table 1. Dataset recollection criteria.

Work Methodology Problem Solved Problem Unsolved

The research work Applied methodology The problem or
problems solved

The problem or
problems not solved

(when researchers
have reported)

With the aim of facilitating normalization, the dataset was enriched by adding the
methodology classification proposed by Khaldi [22], which includes in the experimental
design: true experimental when variables can be manipulated, quasi-experimental when
variables are manipulated in a controlled environment, and single subject in very punctual
cases, which has not been included in this research. In the case of non-experimental design,
on which variables cannot be manipulated, it was divided into: descriptive when there is
data recollection, comparative when relationships are looked up, correlational when there
are possible but not forced relationships, survey when it refers to surveys, and post facto
when it focuses on effects and tries to establish causes.
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3.2. Works Clustered by Methodology

Already enriched, the dataset was given a procedure to cluster by methodology
following the next steps: first, ordering by the recently added methodology attribute;
second, ordering by publication year; and third, ordering by methodology approach. Then,
it was divided by methodology tables to offer an easier visualization. This procedure will
permit categorization by methodology analysis and its inner types, and at the same time, it
will avoid the use of a single table. The methodology approach, on column Type, refers
either to the type of work, which could be a mathematical analysis, or a process performed.
Regarding the referred methodologies type, it will be described next.

3.2.1. Tree

It is inferred that classification trees and regression are used to identify local structures
in both big as well as small datasets. Classification trees include models on which dependent
variables are categorical, while regression trees are continuous [23].

3.2.2. Query

There are numerous query processing techniques, of which the most popular are those
based on aleatory selection, where selection is realized in little samples, which is later
extrapolated to the rest of the database [24].

3.2.3. Correlation

Correlation analysis allows users to specify two or more key attributes in a dataset,
with the aim of making an analysis by calculating the correlation between each pair of
selected columns producing, regularly, a result matrix [25].

3.2.4. Granularity

This is the task of grouping in granules, groups, classes, or clusters from a universe in
the process of solving the problem [26].

3.3. Normalizing

To be able to quantitatively shape the research, a normalization was applied by man-
ually vectorizing columns by separating the publication year, methodology, and type,
besides the number of problems solved and not solved, as Table 2 shows.

Table 2. Added vectors for normalization.

Year Category Type Solved Unsolved

Publication year For method
categorization

For type of
categorization

Quantity of
problems solved

by work

Quantity of
problems not
solved when
authors had

manifested them

3.4. Variable Definition

To define research variables, it was necessary to look up concepts according to key
performance indicators, which are those elements that can measure the achievement pro-
curement [27]. They were adapted to the standard definitions design of ISO-9000, so
creating performance indicators could be related with the activity management [28], which
are specified in Table 3.
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Table 3. Variable definitions and characteristics.

Independent
Variable Affect on Dependent Variable Performance

Indicator

Works Production Technique knowledge ∑n
i=1(work)

Modal Frequency Problematic impact Mo = Li−1 + a D1
D1+D2

Applied Effectivity Problems solved Method ∈ Objective
methodologies Effectivity Problems not solved Method 6∈ Objective

Where:

• The sum of works will establish the quantity of knowledge around the DD analysis
on the scientific community. The denominator is the sum of time defined during the
process [29].

• The modal will indicate the year the technique was more utilized and that it will be
compared with the new knowledge stagnation or the absence of ANN techniques.

• Sum of problems solved and problems not solved will determine the proportionality
of the successful method and the causes responsible for its no- usage in subsequent
works. In set theory, this is represented by the method, which belongs to the objective
searched.

3.5. Dataset and Software

The dataset and process software are found in [30].

4. Results

Below are shown the results obtained from the systemic revision of the scientific literature.

4.1. Data Distribution

Considering that work [31] from 1997 is an extreme value, which was used as an initial
reference of the DD analysis implementation over procedural language on SQL (PL/SQL),
and starting from 2004 to 2022, the mathematical mean by year was established on 4.
Figure 2 shows its growth after the start of 4G communication networks technology and it
soaring during the COVID-19 pandemic in 2021, produced by works that were focused on
the research caused by this disease.
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Figure 2. Relation of works collected by year, showing the inconsistency of the use of DD analysis
among scientific research.
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Normalized and categorized tables are shown next.

4.1.1. Comparative

Those works in which the performance, processes, a correlation on a pair basis, or sim-
ple query are compared are shown in Table 4.

Table 4. Works by comparative methodology.

Year Work Type

2004
[32] correlation
[33] performance|process
[34] query

2010 [15] correlation
[35] performance|process

2011 [36] correlation

2012 [37] performance|process

2017 [38] performance|process
[39] tree|query

2019 [40] query
[41] query

2021 [13] correlation
[42] query

4.1.2. Descriptive

All those works that intended to depict data and their relationships are listed in Table 5,
sorted by year and analysis type.

Table 5. Works by descriptive methodology.

Year Work Type

2004 [43] performance|process

2005 [44] correlation
[45] performance|process

2007 [46] performance|process

2009

[16] correlation
[47] correlation
[48] correlation
[49] performance|process

2010
[50] correlation
[51] performance|process
[52] performance|process

2011
[53] label
[54] performance|process
[55] query

2012 [56] correlation

2015 [57] correlation
[58] correlation

2016 [59] performance|process
[7] performance|process

2017 [60] correlation
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Table 5. Cont.

Year Work Type

2018 [61] granularity
[62] query|granularity

2019
[63] mathematics
[64] performance|process
[65] performance|process

2020 [66] query

2021 [67] performance|process

2023 [68] performance|process

4.1.3. Experimental

One of the best ways to reach data science is the experimental approach. Table 6
shows those works that focused on the results, specifically when performance or query
were involved.

Table 6. Works by experimental methodology.

Year Work Type

1997 [31] tree|label

2000 [69] performance|process

2002 [70] query

2003 [71] performance|process

2005 [72] tree|label

2007 [73] performance|process

2008
[74] performance|process
[75] performance|process
[76] tree|label

2009 [77] correlation

2010 [78] correlation

2011 [79] tree|query

2012 [80] query
[81] query

2013

[82] correlation
[83] granularity
[84] performance|process
[85] performance|process

2016
[86] performance|process
[87] query
[88] query

2017 [89] performance|process

2018
[90] correlation
[14] performance|process
[91] query

2019 [92] query
[93] query

2020 [94] performance|process
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Table 6. Cont.

Year Work Type

2021

[95] correlation
[96] correlation
[12] correlation
[97] performance|process
[98] performance|process
[99] performance|process

2022 [100] tree|label
[101] tree|query

4.1.4. Post Facto

Table 7 lists those works for which the methodology was looking for effects intending
to justify causes. The fact is that so few studies emphasize the lack of theories that are
subject to verification.

Table 7. Works by post facto methodology.

Year Work Type

2018 [102] label

2020 [103] query

2022 [104] query

Once the dataset was processed with the application software, both independent
variable and dependent variable incidence were obtained, along with the sum of studies
that are related to them. Table 8 shows the results.

Table 8. Variable incidence on applied studies.

Variable Type Observation Value Unit

Independent Applied studies 80 Works
Independent Modal 2021 (9) Modal

Independent Applied
Methodologies experimental (36) Predominant

Dependent Problems Solved 100 Works
Dependent Problems Not Solved 14 Works

4.2. Problems Solved

Studies that solved a great diversity of problems that are classified by category are
described below.

4.2.1. Comparative Methodology

In work [32], the authors presented a range tree that is used to compact and mark out
correlation in metadata, which produces improved scalability and adaptiveness. In the
case of visualization, it allows researchers to arrange aleatory, while multi-compare groups
make possible the comparisons of clustering algorithms and analysis of multidimensional
data [15]. Interactively visualizing a sequence of filters and logical combinations produces
faster and more efficient workflow [36]. On the verge of analyzing production process
data against those obtained through simulation predicts the emergence of the accuracy
of outstanding failures [13]. Prototype implementations of expand-ahead drill-down
faster [33]. Metric access methods make it possible to understand data organization [35].
While integrating layers on SOA systems, it was realized that the service bus allows a
declarative definition of how to react to anomalies and diagnose origins of problems [37].
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Graphical statistical methods as well as data mining methods produce knowledge discovery
techniques [38]. Human–machine interactive methods perform data mining to make a data
classification and relativity analysis [34]. To understand data sub-clustering behavior on
adding filters progressively, ref. [40] shows how tendency deviation is attributed to a local
change, also named the drill-down fallacy. Post-Study System Usability Questionnaire
(PSSUQ), a tool made for testing based on user satisfaction, makes the SOLAP measures
possible to complete OLAP visualizations on operations and data [41]. Kitchenham’s
technique for selecting and clustering makes it possible to research learning analytics on
big data that generally intends to gain learning processes [42]. Hierarchization for data
clustering and a hybrid data warehouse model for extraction and analysis solves obstacles
in data mining process algorithms, even on a data cube [39].

4.2.2. Descriptive Methodology

For Angryk and Petry [44], mining multi-level knowledge makes it possible to en-
hance the methodology to apply scientific data mining. Identifying relevant metrics while
exploring data cubes helps support the decision-making functions, which are integrated
into a commercial OLAP [16]. Substring hole analysis for viewing the coverage of huge
datasets identifies coverage holes [47]. Machine learning created to construct structures
with tree shapes that interpret dependencies on a KPI allows business analysis to process
them, even if they depend on lower-level metrics [48]. Techniques that are based on his-
tograms to reduce sliding windows have proposed one relying on a multi-structure tree [50].
Cross-lateral identification support traffic classification on multilateral and hierarchical
identification [56]. The bi-level framework that unifies macroscopic and microscopics mea-
sures spam to pinpoint suspicious results on rating datasets used in websites supporting
restaurants [57]. The use of non-supervised techniques to discover everyday activities
of smart home residents produces automatic identification of such activities [58]. When
information flow is grouped into matrix design cells, to identify patterns and instances
from the larger network, it flows and another distinguished quantity flows [60]. To create
a concise schema design, the grouping data process must adjust to understand the rela-
tionship between data sources, so structure design will implement a robust, documented,
and updatable architecture [61]. Aggregation represented by UML diagrams and PRR
language makes it possible to class diagrams and typology [53]. Describing each column
as a rule by format f(a b*n) optimizes problems [63]. An auto-organized map working
as an unsupervised learning algorithm to render visualization of multivariate data by
producing an initial cluster, and at first only showing representational clusters, makes
it possible to show inherited global structure [43]. Application technology on AI makes
it possible to highlight production issues and easily analyze information [45]. The use
of vector-type methods to validate every DD operation may clarify if such a method is
really efficient [46]. The approach to the workflow field by taking a data-centric workflow
viewpoint makes it possible only if processes are connected by a record and the system is
available to connect processes with different data formats [49]. Using plug-in architecture,
which permits module development to return data, allows for the building of websites with
sophisticated DD operations [51]. An approach to discover knowledge by the integration
of sums and rendering techniques reduces time to search and identify information [52].
A wisdom appreciation of system and job execution reduces code volume, splits data,
and leverages open sources for tools [54]. Linear data analysis is much better when a
tree map is adapted along with the calendar metaphor and using time as the principal
hierarchical attribute [59]. To conduct methods for reproducible science, it is necessary to
accumulate tracing by grouping edges and nodes with the same derivation [7]. Designing
and developing the design process develops executive information [64]. The OLAP visual-
ization approach with tree-like analysis views generates multidimensional expressions [65].
For the implementation of a new data cube, a hierarchy algorithm is necessary to implement
spatial indexing and non-relational techniques [67]. DD view adjusts to perceive noise
on data analysis (noise on vibrating mechanical parts), allowing for design optimizations
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and the ability to study data simulation noise much faster [68]. The development of a tool
based on a pie chart benefits the visual analysis of categorical data [55]. To explore data
sub-clustering behavior on the learning analytics dashboard, [66] propose a perspective
that recommends a profound DD on LAD users. Architecture for solving big data queries
on NoSQL depots, which pre-compute results on the granular sector for collections, which
are de-grouping, proves model effectivity to apply DD and drill-up queries on extensive
experimental evaluations [62].

4.2.3. Experimental Methodology

Sen et al. [77] show that OLAP operations on multidimensional models are possible
after adding smaller cuboids partitioned depending on their cardinality. The entropy is
maximized when its information principles are used to determine proxy databases [78].
Opinion-mining techniques and visualization tools quantify the opinion of the voters [82].
An analytics solution focused on team metrics allows for visual design and navigation [90].
Regression function and forecasting make possible trend detection [95]. The use of online
dynamic queries on data layers establishes correlations, trends, or outlier identifications [96].
We use the MediSyn tool for selecting, connecting, elaborating, exploring, and sharing
qualified insights via interactions [12]. Group-by-group aggregation for performance
evaluation makes alternatives possible for moving computer object groups [83]. For imple-
menting functionality information, recovery is useful to combine text ranking/searching
techniques [69]. In some cases, materialized views from OLAP cubes could be originated
from data models on hierarchical and multidimensional definitions [71]. The use of flash
memory in energy-efficient environments is possible due to a storage-centric sensor net-
work [73]. Improved complete algorithm Glide for views actualization eliminates data
anomalies [74]. On query algorithms, the parallel closed cubes decrease and the number
of data blocks increases [75]. The collection of data is made possible due to multi-layered
and constraint language based on offline and DD analysis [84]. Shortened response time
on performance evaluation is made possible through experimental evaluation on open
source software [85]. Running several instances of fixed window sizes is made possible
due to an algorithm that supports intense traffic [86]. Tendencies and statistics to perform
analysis are made with the help of frameworks supported by event collection and aggre-
gation [89]. Malware inspection on data networks allows for activating or inactivating
verification timeout [14]. Effectivity of the space–temporal simulation model provides feed-
back on geo-spatial data [94]. Perspective on performance and process shows errors that
can be produced along manual decision tree trace [97]. Gaussian Alerts of un-reachability
incidents level are possible due to the average raw rate of HTTP pings [98]. Reliability
performance analysis on large datasets is possible by extracting transaction data with a
fast model [99]. Comparison and identification is possible with a hierarchy and pivot
visualization breakdown [70]. Education data can be integrated, analyzed, and processed
with the Panda application system [80]. Multidimensional analysis tools affect the outline
of each function [81]. Citation was designed considering usability and user experience goals
fulfilling usability goals of effectiveness, efficiency, and learnability [87]. DW instantiation
using a document-oriented system makes it possible to model and cross-model compari-
son [88]. Efficiency on heavy hitters and frequency queries relies on specific algorithms [91].
The limitations established by tuple shape data can be redefined by OLAP queries [92].
E-learning visual narrative potential could be demonstrated with a narrative approach [93].
Node labeling on the hierarchy tree makes it possible to choose table categories throwing
the labeling method [31]. Locating targets is made more accurate by using a distortion
algorithm from fisheye design [72]. Feedback texts’ foreground and background models
supported by weighting schemes lay the foundations for cluster contrasts [76]. The size of
interface elements, including shaping emotions in interface design, can be conducted with
the use of concept hierarchies [100]. The algorithm for using a dynamic data structure iden-
tifies a Galois Connection with well-defined abstraction and concretization functions [79].
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Multi-layer networks as data models make it possible to generate EER diagrams, model
flexibility, and model suitability [101].

4.2.4. Post Facto Methodology

Odoni et al. [102] presented Orbis, an extendible environment for DD analysis with
multiple notation tasks and versioning that makes it possible for entity recognition, disam-
biguation, and entity typification. Generation of generic knowledge needs a big set of rules
and then searching down the basic one with semantic analysis [103]. Use of a panel that
leads introspection to the facilities level makes it possible to identify probable problems
and retrieve eight performance indicators visualized in several views, which will enable
DD analysis on specific data [104].

4.3. Problems Not Solved

Although the difficulty implies scientific research development and errors and inaccu-
racies that are frequently attained, not all authors reported failures or narrow circumstances
in the process. Those who made it, grouped by category, are listed below.

4.3.1. Descriptive Methodology

In 2018, Jiménez [61] presented that to create a concise schema design, the grouping
data process must adjust to understand the relationship between data sources, and such
schema must be updated to prevent future problems. The plug-in architecture, which
permits developing on server-side modules, does not permit expansion [51]. Development
of a tool based on a pie chart is based on a short usability study [55]. Architecture for
solving big data queries on NoSQL depots that pre-compute results on the granular sector
for collections, which are de-grouping. Notice that proposed architecture was just tested
in specific study cases, and it was considered temporal data importance due to its low
granularity [62].

4.3.2. Experimental Methodology

Mathrani [96] practiced with dynamic online queries into data layers that show that
deployment was not ready to allow for the understanding evaluation during performance.
Perspective on performance and process suggest that errors may be produced at data
overfitting [97]. In the case of heavy hitters, their algorithms have shown a slight over-
head [91]. OLAP query redefinition does not allow one to see a list of problems to solve [92].
Node labeling on the hierarchy tree informs that in the absence of a label, reading must be
made on the detail [31]. Concept hierarchies that render a dynamic interface lack mobile
applications [100]. Multi-layer networks as data models do not inform the existence of total
verification [101].

4.3.3. Post Facto Methodology

Additionally at Orbis, Odoni et al. [102] noticed that multiple notation tasks and
versioning do not integrate significance testing statistics, building plug-ins for monitoring
and developing support for extra evaluations. The creation of base knowledge sometimes
is omitted in the works, although that is an obligatory step to improve the adoption of
these techniques [103]. Use of a panel leads introspection to the facilities level, making it
possible to identify probable problems. Notice that for better efficiency not all data were
included [104].

4.4. Methodologies Application

This section refers to the use given to methodologies in the aforesaid works. Each
research, as explained before, has been normalized to be classified within a methodology
categorization, which could help in understanding its own nature and being helpful for
ease of later studies in the same area. Table 9 shows the results of methodologies classified
by category.
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Table 9. Sum of research grouped by category.

Category Sum

comparative 13
descriptive 28

experimental 36
post facto 3

For better appreciation, Figure 3 outlines the distribution percentage by category on
research studies that applied DD analysis or DM techniques, with some similarities in the
analysis approach.

comparative 13 16.25%
descriptive 28 35.00%
experimental 36 45.00%
post-facto 3 3.75%

16.25%16.25%

35.00%35.00%

45.00%45.00%

3.75%3.75%

comparative

descriptive

experimental

post-facto

Figure 3. Methodology distribution with respect to DD that displays experimental and descriptive as
a standard for methodology.

It follows from the above that for each category, a diverse set of techniques were used,
which are depicted in Table 10.

Table 10. Method results.

Category Type Works

Comparative correlation 4
performance|process 4

query 4
tree|query 1

Descriptive correlation 9
granularity 1

label 1
mathematics 1

performance|process 13
query 2

query|granularity 1

Experimental correlation 7
granularity 1

performance|process 14
query 8

tree|label 4
tree|query 2

Post facto label 1
query 2
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The methodology type was not limited to one particular category but was also com-
bined to obtain results suited to each particular objective of the researchers. Figure 4 shows
the interrelationships between the category of each methodology and the techniques used.
For lack of a third dimension, it had to connect with the dotted line granularity technique
used in experimental as much as in descriptive methodologies.

Com
pa

ra
tiv

e

Descriptive

Experimental

Post-
Facto

Correlation

Granularity

Label

Mathematics

Performance 
or Process

Query

Query and 
Granularity

Tree and 
Label

Tree or Query

Granularity

Figure 4. Interrelationship between methods and type of methodology that states that any method-
ology is a mixture of shared techniques.

At the end of the day, a general coincidental technique is the use of methodologies for
data extraction or query.

4.5. Perspective

At the beginning of this systematic review, the perspective revolved around the
application of DD on macro- and micro-economic research, but because of the little material
found, it was expected that it will not be enough to back the desired results up; hence, the
investigation profile was redefined, focusing more on knowing the work’s frequency and its
methodological profile. As a result, it posed its application inside the general investigation
that, from there, split by categories and profile by quantity, nor for specificity, with respect
to the exploitation of this technique.

Those works collected on the basis of DD analysis have only coincided with the
fundamental methodology core, which is the profound data analysis. Each one has focused
its own analysis on the resolution of specific problems in the researcher’s selected area.
Inside this panorama, Tables 4–7 show the methodology type and the year the study was
made. In the case of the possibility of reproducing the experimentation, with the exception
of Wang & Iver [31], which presented the PL/SQL code for a relational database, there were
no available codes nor open databases.

At the moment, there are few works on DD focused on this particular topic. Hence,
studies on this could be considered emergent technology.

According to the results, there were found slopes over query manipulation and de-
cision tree labeling, whose common factor is data exploitation, leading to efficiency. It
turns out interesting to see the scarce amount of methodologies focused on mathematics,
circumstances that justify the lack of base knowledge, and as a consequence, the loss of
evolutive usability of the DD analysis.
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5. Discussion

The lack of DD analysis usage in research works results in the display of biased
conclusions. If it is true that deterministic models applied to DD have a set lag behind before
the implementation of new AI tools, it must be considered that the rehabilitation of this
technique from the application of ANN faces technological advances in software in such a
way that it can be reestablished on the scientific as well on the economic research vanguard.

If a combinatory application of the used methodologies in the previous studies is
realized, and the lack of knowledge base generation is fixed, a new methodology capable of
bringing down the overfitting problem and integrating AI technologies would be obtained,
as well as avoiding redundancy problems. New knowledge generation to establish future
theories will be a researcher’s responsibility in future application technology works.

It was observed that decision trees and labeled related models drive attention to
granularity processes, what is right in the case of conclusive results or those which require
streamlining process velocity. However, it is recommended to avoid it because it does not
permit specific knowledge generation, just because data grouping may obey the necessity
of establishing tendencies and not resolve punctual problems.

Figure 5 displays problems solved and not solved with respect to an applied methodol-
ogy. The majority of solved problems focused on experimental (42%) and descriptive (34%)
methodologies, which infers that researchers exhibit a tendency to establish observation
processes or to describe them from the perspective of a third one. Only 17% compare
processes with the object to obtain new knowledge, and just 7% focused on data science.

The tendency on works that manifest unsolved problems indicates that 50% had issues
during experimentation, 29% on the description of the sample, and 21% on data analysis.
This is coincidental with the small interest in the last figure to board such methodology
as an objective or that there were affectations on the data process, as it would be in the
overfitting case. It was noticed that there were no manifestations of unsolved problems in
the case of methodology comparison, which is normal given the fact that comparison is
just an observation activity.

comparative 17 17%
descriptive 34 34%
experimental 42 42%
post-facto 7 7%

17%

34% 42%

7%

(a)

comparative 0 0%
descriptive 4 29%
experimental 7 50%
post-facto 3 21%

29%

50%

21%

(b)

comparative

descriptive

experimental

post-facto

Figure 5. Findings on the methodology by (a) solved problems and (b) not solved problems points
out that experimental factors can show quantifiable measures capable of detecting issues during the
research job.
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6. Conclusions

With respect to the methodologies performed by the analysis of the state-of-the-art, it
was proved that, besides finding biases in its methodologies, they have not been empowered
by ANN algorithms such as an AI tool. With respect to the application of DD and DD plus
ANN, there were no findings of studies that showed the usage of such methodologies.

Most dissected works used DD analysis as a supervision technique and not as a
method for producing conclusions. In other words, DD is used as a vehicle for other
methodologies and is not as a methodology per se.

Low frequency in the amount of work made by researchers by year demonstrates the
pursuit of newer techniques as newfangled rather than the actualization with resources
surrounding the technological world and, for that reason, easily available and effective,
which only needs new methodologies to be able to compete, as currently is the application,
in any technological area of ANN. Something this research has really done is to appreciate
the wide application of DD analysis, in all faces data can offer or apply, depending on the
point of view.
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