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Abstract: A lightweight network target detection algorithm was proposed, based on MobileNetv2_CA,
focusing on the problem of high complexity, a large number of parameters, and the missed detection
of small targets in the target detection network based on candidate regions and regression methods in
autonomous driving scenarios. First, Mosaic image enhancement technology is used in the data pre-
processing stage to enhance the feature extraction of small target scenes and complex scenes; second, the
Coordinate Attention (CA) mechanism is embedded into the Mobilenetv2 backbone feature extraction
network, combined with the PANet and Yolo detection heads for multi-scale feature fusion; finally, a
Lightweight Object Detection Network is built. The experimental test results show that the designed
network obtained the highest average detection accuracy of 81.43% on the Voc2007 + 2012 dataset,
and obtained the highest average detection accuracy of 85.07% and a detection speed of 31.84 FPS on
the KITTI dataset. The total amount of network parameters is only 39.5 M. This is beneficial to the
engineering application of MobileNetv2 network in automatic driving.

Keywords: object detection; attention mechanism; lightweight network; autonomous driving

1. Introduction

With the development of autonomous driving technology in recent years, object
detection has become a research focus in the field of autonomous driving, and it is crucial to
achieve the fast and accurate detection of common objects in real traffic scenes. Traditional
object detection algorithms usually rely on specific application scenarios and manually
designed features with poor generalization abilities [1,2]. With the wide application of
Convolutional Neural Networks (CNN) in the field of computer vision in recent years,
object detection based on CNN [3–5] has achieved an excellent performance. Ge Z et al. [6]
balanced the detection accuracy and speed using the decoupled head decoupling head,
anchor free method and SimOTA sample selection method. Xu S et al. [7] used the efficient
task alignment head, advanced label assignment strategy and fine-grained objective loss
function, which implements an efficient object detector. However, traditional CNN usually
requires a large quantity of parameters to achieve satisfactory precision. Liu Z et al. [8]
created a convolution-free model for image classification by stacking multiple Transformer
blocks to process sequences of non-overlapping image patches. Compared with the CNN-
based model, the Transformer-based model has a larger receptive field but requires a
system with a large amount of training data and model parameters to achieve superior
performance. The redundant attention (Attention) in the Transformer will also lead to
a huge computational cost. This is extremely unhelpful to deploying the model on an
autonomous driving platform. In real embedded autonomous driving platforms, the design
trend in the neural network is to explore lightweight and efficient network architectures
with an acceptable performance for mobile devices to improve network detection efficiency.

For the lightweight design of neural networks, it is common practice to compress the
existing convolutional neural networks or design a new lightweight network architecture.
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Han S et al. [9] proposed the use of network pruning to prune unimportant weights in
neural networks, which reduces a large quantity of parameters in the fully connected
layer by weight pruning, but may not sufficiently reduce the computational cost of the
convolutional layer due to the irregular sparsity in the pruned network. Li H et al. [10]
pruned filters to obtain effective CNNs using l1 parametric regularization; these filters are
considered to have little impact on the output precision, which reduces the calculation
cost by removing the overall filters in the network and its connected feature maps. This
approach does not lead to sparse connectivity patterns compared to the pruning weights
shown in the literature [9]. Rastegari M et al. [11] quantified the weights and activations as
1-bit data, while the filter and convolution layers, improved to binary, use binary operations
to approximate convolution, achieving a certain degree of compression and acceleration
ratio. However, the overall parametric reduction in the network is not significant. Hinton
G et al. [12] introduced the knowledge distillation method. This transfers the knowledge
from the larger model to the smaller model, which leads to a poor generalization ability
within the whole network. Han K et al. [13] used a new Ghost module, which first controls
the total number of ordinary convolutions and then generates more feature maps using
linear operations to reduce the total number of parameters without changing the size
of the feature maps. These methods of compressing the existing convolutional neural
networks usually mean that the convolutional neural networks tend to be shallow. The
detection efficiency of shallow neural networks is generally far lower than that of deep
neural networks, and will be limited by the pre-trained deep neural networks used as the
baseline. Therefore, to reduce the complexity of the network while achieving both good
detection precision and speed, a future development trend is to redesign a lightweight
network architecture with high efficiency.

The main idea of designing a lightweight neural network architecture is to design a more
efficient network structure by optimizing the computational method of convolution to effectively
reduce the computational effort during convolutional computation. Iandola F N et al. [14]
proposed the SqueezeNet network, which is constructed by the basic module of Fire module, in
which the Squeeze layer uses 1× 1 convolutional kernels to reduce the number of parameters, and
the Expand layer uses 1× 1 and 3× 3 convolutional kernels to obtain the corresponding feature
maps and then stitch them together to obtain the output of the Fire module. However, this has a
weak efficiency for complex problems due to the low number of parameters. Zhang X et al. [15]
improved the conventional residual structure by replacing the first 1× 1 convolution layer that
is connected to the input feature map with grouped convolution and using the Channel shuffle
operation to interact information on the output results of each group of grouped convolutions,
achieving a network performance with reduced computation. However, this produces a boundary
effect; that is, an output channel comes from a small part of the input channel. Howard A.G [16]
proposed replacing the general convolution layer with the depth separable convolution, which
greatly reduces the network parameters; however, feature degradation occurs during the training
process. Sandler M et al. [17] proposed resolving problem of feature degradation in MobileNetv1
using the inverted residual structure “dimension raising-convolution-dimension reduction”, and
the depth separable convolution is used to reduce the calculation amount in the intermediate
convolution operation and improve the efficiency of the convolution calculation. However, this
convolution may not extract enough information about a small number of deep-level features.

Figure 1 clearly demonstrates the superiority of our model in terms of the number
of network parameters and the average detection degree. Our algorithm achieved the
highest detection accuracy with the lowest amount of network parameters, and has a good
application prospect.

In this paper, based on previous research, we further explore the design of lightweight
and high-precision object detection networks. Our contributions are as follows: (1) embed
coordinate attention (CA) into the lightweight backbone feature extraction network Mo-
bileNetv2, which improves the backbone feature extraction network’s ability to initially
extract features; (2) accurately integrate the improved combination of the backbone feature
extraction network and the multi-scale feature fusion network (PANet), which further
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enriches the network’s ability to extract location information and semantic information;
(3) fast and accurate target detection is realized on the autonomous driving dataset KITTI,
which is beneficial to the algorithm during automatic driving applications.
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Figure 1. Advanced model performance comparison chart.

2. Algorithm Design

To achieve a lightweight object detection network with high precision and speed for
object detection, a lightweight network model based on MobileNetv2_CA was proposed.
The overall structure of the network model is shown in Figure 2. First, the improved
lightweight Mobilenetv2 [17] network was used as the backbone feature extraction network
for preliminary feature extraction, and the coordinated attention mechanism (CA) [18]
was embedded to adaptively extract the channel relationships and location information
to enrich feature extraction. Then, features at different scales were used as inputs for
maximum pooling at different scales in the SPP [19] module to isolate significant contextual
features, and the features were fed into the PANet [20] network for further enhanced feature
extraction and multi-scale fusion. Finally, the three enhanced feature layers that were
processed by, and input into, several convolutions were processed by 3 × 3 convolutional
feature integration and 1 × 1 convolutional adjustment of the number of channels using
the Yolo [5] detection head to obtain the prediction results. After decoding, score ranking
and a non-maximum suppression screening of the prediction results, the detection results
were obtained. The entire network combines the advantages of lightweight convolutional
neural networks, a coordinate attention (CA) mechanism and the PANet multi-scale feature
fusion network to construct an efficient and lightweight object detection network.

2.1. Pretreatment Stage

To reduce the network’s demand for device memory during feature extraction, and
to enhance the feature extraction of small object scenes and multiple complex scenes, a
novel Mosaic image enhancement method inspired by Yolov4 [21] was used in the data pre-
processing stage. We experimentally determined the optimal scaling factor, original image
warping ratio and channel warping for KITTI images. Scale represents the scaling ratio of
the original image, which was set between 0.25 and 2 in this article. The jitter represents
the distortion ratio of the width and height of the original image. In this article, we set
jitter = 0.3, which means the distortion was between 0.7/1.3 (0.538) and 1.3/0.7 (1.857).
Hue = 0.1, sat = 0.5 and val = 0.5, which represent the distortion of the three channels in
the hsv color gamut, namely, hue (H), saturation (S) and lightness (V), respectively. These
hyperparameters are related to image size, object class and density. The distribution of
small object scenes and complex scenes in datasets was generally uneven, which meant
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that the learning of small objects and complex scenes in the training process was always
less than adequate. By using the Mosaic image enhancement method, the possibility of
obtaining multiple complex scenes and small object scenes after traversing four images
greatly increases, which helps the network to accurately detect small objects and multiple
complex scene targets by learning object features during the training process. The test
results are shown in Figure 2.
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scale pooling layer, multi-scale fusion is performed, and, finally, the detection result is output.

Figure 3a shows the effect of data enhancement for small object scenes, and the
small object in the distance was successfully captured. Figure 3b shows the effect of data
enhancement for obscured objects and objects in low-light-state scenes, and the object in an
obscured and low-light state was successfully captured. Figure 3c is the detection effect
diagram of our model with Mosaic data enhancement turned off, and Figure 3d is the
detection effect diagram of our model with Mosaic data enhancement turned on, which
confirms that, if there is no data enhancement of the images, the detector will suffer from
missed detections.

2.2. Improvement in Mobilenetv2 Backbone Network

To achieve the goal of a lightweight network, the backbone feature extraction network
uses and improves MobileNetv2 [17]. The MobileNetV2 network model has a total of 17
Bottleneck layers (each Bottleneck contains two point-by-point convolutional layers and
one depth convolutional layer), one standard convolutional layer (conv) and two point-by-
point convolutional layers (pw conv), with a total of 54 trainable parameter layers. This is
a series of Bottleneck layers stacked with different operation step stride(s). For repeated
Bottleneck layers, generally only the first layer of s is 2, and the rest of the layers are 1.

When the Stride is 2, MobileNetv2 Bottleneck optimizes the network with a Linear Bot-
tleneck Block. The fewer the number of channels in the feature map, the less the computation
of the convolutional layer. However, it is difficult to extract enough feature information
using only feature maps with a low number of channels. MobileNetV2 establishes a trade-off
between these two, taking the 1 × 1 pointwise convolution to raise the dimension and using
the Relu6 activation function instead of the Relu activation function. This is followed by
3 × 3 depth convolution and the use of the Relu6 activation function; then, 1 × 1 pointwise
convolution is used to down-dimension and, after down-dimensioning, the linear activation
function is used, the structure of which is shown in Figure 4. This convolution operation is
beneficial to reduce the number of parameters.
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When the Stride is 1, MobileNetv2 Bottleneck optimizes the network using the Inverted
Residuals Block to enhance the feature extraction ability of MobileNetv2, a lightweight
backbone feature extraction network, and causes the network to adaptively adjust the
inter-channel relationship and location information to improve feature extraction. In this
paper, the coordinate attention (CA) [18] mechanism proved to be an efficient attention
mechanism. To demonstrate its advantages, different attention mechanisms are embedded
in the same backbone network and trained and tested on the same dataset. The Pascal
VOC [22] test set was used, and the object detection results are shown in Figure 5. When
the same lightweight object detector—Yolov4Tiny—was used, the network adding our
coordinated attention mechanism CA achieved the highest mAP of 77.54%, which is higher
than the results achieved by SE [23], at 77.32% mAP, and CBAM [24], at 77.27% mAP.
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However, the parameter amount in the CA network was only 5.983 M, which is lower
than the 6.004 M achieved by CBAM. Compared with SE, CA only increases the parameter
amount by 0.02 M, but increases mAP by 0.22%. Compared with the other two attention
mechanisms, SE and CBAM, the CA attention mechanism achieves the best detection at the
cost of a small increase in the amount of parameters and is highly competitive. Inspired by
this, we inserted this mechanism into the backbone network Mobilenetv2.
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We embedded the mechanism in an Inverted Residuals Block, which is located between
3 × 3 deep convolution and 1 × 1 reduced-dimensional point convolution, forming the
Inverted Residuals_CA Block. This was embedded into the Inverted Residuals Block using
the following steps:

(1) In the channel attention, input X is given. Each channel was encoded along the
horizontal and vertical coordinates using two spatial range pool kernels, (H,1) and (1, W),
respectively. The output of the C-th channel at height H can be determined using Formula (1):

zh
c (h) =

1
W ∑0≤i<W xc(h, i) (1)

Similarly, the output of the C-th channel with width W can be determined using
Formula (2):

zw
c (w) =

1
H ∑0≤j<H xc(j, w) (2)

The above two transformations aggregate features along two spatial directions, which
helps the network to more accurately locate the objects of.

(2) After enabling the global receive field and encoding the exact location information
using the aggregated feature mappings generated by Formulas (1) and (2), these were
concatenated and input to the 1 × 1 convolutional transformation function f to generate
Formula (3):

f = δ
(

F1

([
zh, zw

]))
(3)

wherein [] denotes the cascade operation along the spatial dimension, δ is the nonlinear
activation function, f ∈ RC/r ×(H+W) is the intermediate feature mapping that horizontally
and vertically encodes spatial information and r is the reduction rate of the control block
size. f was divided into two independent tensors, fh ∈ RC/r × H and fw ∈ RC/r × W, along
the spatial dimension. The other two 1 × 1 convolution transformations, Fh and Fw, were
used to transform fh and fw into tensors with the same number of channels, which can be
used to obtain Formulas (4) and (5), respectively:

gh = σ
(

Fh

(
fh
))

(4)
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gw = σ(Fw(fw)) (5)

wherein σ is sigmoid function. Outputs gh and gw were expanded. The output of the
coordinate attention block Y can be formulated as Equation (6):

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

Each element in the two attention mappings reflects the presence or absence of the
object of interest in the corresponding row and column.

The structure of the Inverted Residuals_CA Block after embedding the Coordinate
Attention (CA) mechanism is shown in Figure 6. This can first aggregate features along
two spatial directions, and then encode the generated feature maps as a pair of direction-
aware and position-sensitive attention maps. These attention maps can be complementarily
applied to the input feature map to enhance the representation of the objects of interest and
fully extract the feature information of the image.
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After embedding the CA mechanism, the improved MobileNetv2 was renamed the
MobileNetv2_CA network. A structural table is shown in Table 1. Input indicates the
size of each module input in the network; operator denotes the modules experienced by
each feature layer; t indicates the expansion factor, which is always applied to the input
size; c indicates the number of channels output after passing through each feature layer; n
indicates the number of bottlenecks; and s indicates the first-layer stride of each operation.

Table 1. Overall structure of Mobilenetv2_CA.

Input Operator t c n s

4162× 3 Conv2d - 32 1 2
2082× 32 Bottleneck 1 16 1 1
2082× 16 Bottleneck 6 24 2 2
1042× 24 Bottleneck 6 32 3 2
522× 32 Bottleneck 6 64 4 2
262× 64 Bottleneck 6 96 3 1
262× 96 Bottleneck 6 160 3 2

132× 160 Bottleneck 6 320 1 1
132× 320 Conv2d1 × 1 - 1280 1 1
72× 1280 Avgpool7 × 7 - - 1 -

1 × 1 × 1280 Conv2d1 × 1 - k -

The network adaptive adjustment channel relationship and location information was
extracted by MobileNetv2_CA backbone features, and the effective feature layer with the c = 32
output channels was extracted using the Inverted Residuals_CA Block at the seventh layer of the
network when s = 1. The effective feature layer with c = 96 output channels was extracted using
the Inverted Residuals_CA Block at the fourteenth layer of the network when s = 1. The effective
feature layer with c = 320 output channels was extracted using the Inverted Residuals_CA Block
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at the eighteenth layer of the network when s = 1. The interaction between different channels’
information at different scale feature layers, and the aggregation of different directional features,
was achieved. Three feature layers for different scales with different feature directivities could
be preliminarily extracted and used as the basic features of the next multi-scale feature fusion.

2.3. Multi-Scale Feature Fusion and Post-Processing

The three different scales of feature layers extracted by the backbone feature extraction
network were located in the middle layer, the lower middle layer and the bottom layer. In the
feature extraction process, the feature information extracted by the shallow layer network and
the deep layer network was different: the shallow layer feature learning was more focused
on the location information of the object, while the deep layer feature learning was more
focused on the semantic information of the object. To make full use of the feature information
contained in the feature maps at different scales, the feature information at different scales,
extracted from the seventh, fourteenth and eighteenth layers of the network, was input into
PANet network [20] for feature fusion to obtain rich feature information. As shown in Figure 7,
in this paper, the PANet network first spliced the features extracted from the 13 × 13 scale
of the eighteenth layer of the MobileNetv2_CA backbone network with the Concat tensor,
convolved the pooled feature layers several times for upsampling, and spliced them with
the features extracted from the 26 × 26 scale of the fourteenth layer of the backbone feature
network using the Concat tensor after convolution. After further convolutional processing,
another upsampling processing was performed. The features extracted from the 52 × 52 scale
of the seventh layer of the backbone network after convolutional processing were spliced
using the Concat tensor to create a path incorporating rich location information. Then, the
features extracted from the 52 × 52 scale of the seventh layer of the backbone network were
downsampled and Concat tensor spliced with the features extracted from the 26 × 26 scale
of the fourteenth layer of the backbone network. After convolutional processing, another
downsampling process was performed to splice the features extracted from the 13 × 13 scale
of the eighteenth layer of the network using the Concat tensor, thus creating a path that
incorporates rich semantic information. Finally, the feature fusion network fused deep and
shallow feature information to achieve feature enhancement, avoiding the information loss
caused by the use of single features.
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Figure 7. Multi-scale feature fusion and prediction were used to fuse location and semantic informa-
tion at different scales.

The fully fused feature information was input into Yolo Head [5] for 3 × 3 convolu-
tional feature integration and 1 × 1 convolutional adjustment of the number of channels.
Each effective feature layer divided the whole image into grids corresponding to length and



Technologies 2023, 11, 47 9 of 19

width. Multiple a priori boxes set by the network were built at the center of the grid, and
the network judged whether these boxes contain objects and the type of object to output
prediction results. The prediction results were decoded to obtain the center and size of the
prediction frame, which enabled object localization regression. The object detection results
were obtained by sorting the obtained prediction results into scores, removing detection
results with scores greater than a set threshold in each category and filtering them according
to NMS non-maximum suppression using the confidence level.

3. Experiments
3.1. Dataset and Experimental Environment

The experiments in this paper used the VOC [22] dataset and KITTI [25] dataset for
validation. The KITTI dataset contains 6000 images for training and validation, and 1481
images for testing. The KITTI dataset has three classes: car, pedestrian and cyclist. This
dataset has a total of 7481 pictures, which were divided according to the ratio of the training
set + validation set: test set = 9:1. 5984 pictures were taken as the training set, 748 pictures
were used as the verification set and 749 pictures were used as the test set. For the VOC
dataset, this paper mainly used four of these categories: car, bus, motorbike and person.
This dataset contained a total of 9963 images, which were divided according to the ratio
of training set + validation set: test set = 9:1. 7970 images were taken as the training set,
997 images were used as the validation set and 996 images were used as the test set. In
Table 2, the upper part shows the division of the Kitti dataset, and the lower part shows the
division of the VOC.

Table 2. Dataset partition details.

Class Number Car Cyclist Pedestrian

train&val 6732 30,005 1480 4277
test 749 3256 147 432

Class Number Car Bus Motorbike Person

train&val 8967 11,167 1329 1522 41,146
test 996 1201 213 325 4528

Our computation environment for inference included a 4 cores Silver 4110 CPU, 16 GB
of DDR4 memory and a GTX 2080 Ti GPU, the software environment includes Python 3.8,
cuda11.0 and Pytorch1.7.0.

3.2. Optimizer and Loss Function

Our network was pre-trained on the ImageNet [26] dataset using Mobilenetv2 after embed-
ding coordinate attention (CA) as the backbone of the entire network. In this paper, experiments
were conducted on the KITTI dataset. The concrete process is as follows: the Adam [27] optimizer
was used to train the network on the training set. During the first 50 epochs, the training of the
backbone network was frozen, and only the model was slightly adjusted. The feature extraction
network did not change. The initial learning rate was set to 10−3 and the batch size was set to
16. After 50 epochs, the network backbone training was unfrozen. After the feature extraction
network changed, all the parameters of the network would then change. The initial learning
rate was 10−4 and the batch size was 8. The multiplication factor and weight attenuation of the
updated learning rate were 0.94 and 0.0005, respectively. The IoU threshold was set to 0.5. The
mean average precision (mAP) of each class was evaluated on the validation set.

The loss function is an important index to evaluate the training effect of the network,
and the corresponding loss function in this paper consisted of three parts: the location loss
function (LosscIou), the confidence loss function (Losscon) and the class loss function (Losscls).
The total loss function was Loss = r1Lossloc + r2Losscon + r3Losscls, where r1 represents the
localization loss function coefficient, r2 represents the confidence loss function coefficient

and r3 represents the category loss function coefficient. r1 = 0.05, r2 =
input[0]×input[1]

4162 ,
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r3 = 1 × numclasses
80 . In different datasets, the values of r1 and r2 will change according to

the specific situation. Additionally, the loss function of confidence and class adopted the
cross-entropy loss function, and the loss function of location adopted CIoU [28] loss. CIoU
loss function makes the object box regression more stable, and it does not face problems
such as scattering during IoU training, is sensitive to scale transformation and converges
faster than IoU loss function. Then, for the bounding box localization loss Lossloc, the IoU
loss function needs to be replaced by the CIoU loss function, which can be expressed as:{

α = ν
1−IoU+ν

ν = 4
π2

(
arctan ωgt

hgt − arctan ω
h

)2 (7)

where ω and ωgt and h and hgt, respectively, represent the width and height of the predic-
tion frame and the true frame. The loss function Lossloc of the corresponding CIoU can be
expressed as:

Lossloc = 1− CIoU = 1− IoU +
ρ2(b, bgt)

c2 + αν (8)

The prediction confidence loss function Losscon is measured by the cross-entropy loss
function, which can be expressed as:

Losscon = −
s2

∑
i=0

B
∑

j=0
Iobj
i,j

[
Ĉj

i log
(

Cj
i

)
+
(

1− Ĉj
i

)
log
(

1− Cj
i

)]
−λnoobj

s2

∑
i=0

B
∑

j=0
Inoobj
i,j

[
Ĉj

i log
(

Cj
i

)
+
(

1− Ĉj
i

)
log
(

1− Cj
i

)] (9)

where s2 is the number of divided grids and B is the number of prior frames contained in each
grid. Iobj

i,j and Inoobj
i,j indicate whether the j-th prior frame of the i-th grid contains an object

and whether it is set to 1 or 0. λnoobj is the confidence error weight of the prior frame without
objects; it has an extremely small value because positive samples and negative samples in
prior frame are extremely unbalanced (there are very few prior frames with objects).

The class loss Losscls was used to measure the class error between the prediction frame
and the true frame, and was measured by the cross-entropy loss function, which can be
expressed as:

Losscls = −
s2

∑
0

Iobj
i,j ∑

c∈classes

[
P̂j

i log
(

Pj
i

)
+
(

1− P̂j
i

)
log
(

1− Pj
i

)]
(10)

where P and P̂ represent the class probabilities of the prediction frame and the true frame,
respectively.

3.3. Evaluation Indexes

General object detection evaluation indexes were adopted: precision (P), recall rate
(R), average precision (AP) and mean average precision (mAP), represented by:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

mAP =
∑k

i=1 APi

k
(13)

AP =

1∫
0

P(R)dR (14)
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where true positive (TP) represents the true case, false positive (FP) represents the false
positive case, false negative (FB) represents the false negative case and k is the category.

In this paper, the recall R was divided into six points (0, 0.2, 0.4, ..., 1.0), and the preci-
sion P under each recall was obtained according to the calculation of PASCAL VOC [22].
Then, the P–R curve was obtained, and the area enclosed by the P–R curve and the coordi-
nate axis denotes the AP value. For each class, the AP was calculated in the above manner,
and the average of the AP for all classes was the mAP.

3.4. Analysis of Experimental Results

To verify the effectiveness of using the Mosaic image enhancement method and adding
the coordinate attention (CA) mechanism to Mobilenetv2—the lightweight backbone feature
extraction network—ablation experiments were designed for different modules. Ablation
experiments were performed on two different datasets: KITTI and VOC.

Performing ablation experiments of the same module using a variety of different
datasets can effectively verify whether each module can adapt to different task requirements
in different scene datasets, and verify the actual contribution of each module to the network.√

in Table 3 represents the participation of the module. This module is represented in
Table 3. A denotes use of the Mobilenetv2 backbone network, B is with the addition of the
coordinate attention (CA) mechanism to the backbone network, and C is with the addition
of the Mosaic image enhancement to the data pre-processing stage. To verify that using the
Mosaic image enhancement method and a lightweight backbone network incorporating a
coordinated attention (CA) mechanism can improve the precision of network detection, a
comparative experiment was designed.

Table 3. Ablation experiment.

Model A B C mAP (%) Promotion Rate (%)

KITTI

Mobilenetv1-PANet 81.86 /
Mobilenetv2-PANet

√
84.56 2.70

Mobilenetv2-CA-PANet
√ √

84.79 2.93
Mobilenetv2-CA-M-PANet

√ √ √
85.07 3.21

VOC

Mobilenetv1-PANet 79.72 /
Mobilenetv2-PANet

√
80.12 0.4

Mobilenetv2-CA-PANet
√ √

81.12 1.4
Mobilenetv2-CA-M-PANet

√ √ √
81.43 1.71

Networks with the network backbone Mobilenetv1, networks with the network backbone
Mobilenetv2, networks with a coordinated attention (CA) mechanism added to backbone
Mobilenetv2 and networks with a coordinated attention (CA) mechanism added to backbone
Mobilenetv2 using Mosaic image enhancement were trained separately and evaluated on two
different datasets: KITTI and VOC.

√
in Table 3 represents the participation of this module.

By using Mobilenetv2 as the backbone network, compared with the Mobilenetv1 backbone
network, the accuracy improved by 2.7% on the KITTI dataset and 0.4% on the VOC dataset,
but the detection speed was almost unchanged. Mobilenetv2 is shown to be an efficient and
lightweight backbone network. After adding the attention mechanism CA to Mobilenetv2, the
network considered both the relationship between the channels and the location information,
which enhances the network’s sensitivity to direction and location information, strengthens
the extraction of important features, and improves the network’s learning ability. The network
accuracy was further improved—by 0.23% on the KITTI dataset and by 1% on the VOC
dataset—proving the contribution of CA. After using the Mosaic image enhancement method,
the network can detect objects outside the normal context, making the feature extraction of
various objects more complete and continuous, allowing the attainment of more abundant
image features. The detection accuracy was further improved on the KITTI dataset by 0.28%.
On the VOC dataset, the detection accuracy was further improved by 0.31%, proving the
contribution of Mosaic image enhancement. Compared with the original network, using
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Mobilenetv1 as the backbone, the detection accuracy on the KITTI dataset was increased by
3.21%, and the detection accuracy on the VOC dataset increased by 1.71%, which improved
the overall generalization performance of the network.

There are many kinds of current object detection networks. To verify the effectiveness
of the networks in this paper, a variety of object detection networks were selected for
experimental comparison on the KITTI dataset. Faster R-CNN [3], SSD [4], and YOLOv3 [5],
YOLOv4 [21], YOLOv5-l [29] and YOLOv4-tiny [30] algorithms were selected to be trained
on the KITTI dataset and compared with this detection network on the test set, focusing on
average class accuracy, the number of model parameters, and detection speed.

The parameters in Table 4 refer to the number of parameters of the network, and FPS
refers to the number of images processed by the network each second, which can be used to
characterize the network’s detection speed performance. As can be seen in Table 4, compared
with the Faster R-CNN algorithm, the detection speed of this paper was 3.1 times faster,
the detection accuracy of the car improved by 15.14%, the detection accuracy of pedestrians
improved by 18.71%, the detection accuracy of cyclists improved by 22.52% and the average
detection accuracy (mAP) improved by 18.79%. However, the number of participants signifi-
cantly decreased by 28.8%. Compared with the SSD algorithm, although the detection speed
of this paper’s algorithm was reduced, the detection accuracy for cars improved by 9.57%,
for pedestrians by 28.07%, for cyclists by 23.22% and the average detection accuracy (mAP)
improved by 20.23% for the same number of model parameters. Compared with the YOLOv3
algorithm, the detection speed is slightly slower, the detection precision of cars is slightly
higher, the detection precision of pedestrians improved by 2.73%, the detection precision of
cyclists improved by 2.75%, the average detection precision (mAP) of this paper increased by
1.84% and the number of participants was only 63.8% of the YOLOv3 algorithm’s total number
of participants. The network performance was better than that of the YOLOv3 algorithm.
The network performance of this method was better than that of YOLOv3. Compared with
YOLOv4, our algorithm improved by 0.67% in car detection accuracy, with almost the same
level of accuracy as when detecting pedestrians. Additionally, an improvement of 1.05% was
obtained in the detection accuracy of cyclists, and 0.51% in the average detection accuracy.
Compared with YOLOv5, our algorithm improved by 6.23% in the detection accuracy of cars,
2.97% in the detection accuracy of pedestrians, 5.15% in the detection accuracy of cyclists and
4.79% in average detection accuracy. Compared with YOLOv4-tiny, our algorithm improved
the average detection accuracy by 24.32%. We focused more on high detection accuracy than
on increasing the detection speed. Taken together, the number of network parameters was
significantly reduced in this paper, achieving the goal of excellent detection precision with a
lightweight network.

Table 4. Performance comparison of different detection networks on KITTI dataset.

Model APcar APpedestrian APcyclist mAP (%) Parameters FPS

Faster R-CNN [3] 80.22 53.15 65.46 66.28 136.7 M 10.33
SSD [4] 85.79 43.79 64.76 64.84 23.9 M 72.36

YOLOv3 [5] 95.34 69.13 85.23 83.23 61.5 M 45.03
YOLOv4 [21] 94.69 72.05 86.93 84.56 63.95 M 34.79

YOLOv5-l [29] 89.13 68.89 82.83 80.28 46.64 M 39.51
YOLOv4-tiny [30] 82.11 39.80 61.13 60.75 8.879 M 129.32

MobileNetv2_CA (ours) 95.36 71.86 87.98 85.07 39.1 M 31.84

In autonomous driving scenarios, cars, pedestrians and cyclists are the most common
detection objects, and it is important to achieve high precision detection on the basis of real-
time detection. During object detection, the real-time detection requirement is satisfied when
the number of images per second that are processed by the network is more than 30 FPS.
Therefore, the requirement of real-time detection can be met. Table 4 shows that that the
Faster R-CNN network does not meet the requirements of real-time detection, and the SSD
network, although it achieved a faster detection speed, has a detection accuracy that is too
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low to meet the requirements of high-precision detection. Both the YOLOv3 network and the
MobileNetv2_CA network in this paper can achieve real-time and high-precision detection.
Therefore, the detection precision of the two networks are further compared in Table 5, using
the KITTI validation set and three different evaluation criteria. It can be seen that, under the
three different criteria, the proposed network has a 2.25%, 1.38% and 0.9% higher detection
precision than the YOLOv3 in the car class. The precision of pedestrian detection is 8.8%,
7.65% and 0.8% higher than that of YOLOv3, respectively. The detection precision of cyclists is
0.95%, 0.53% and 0.88% higher than that of YOLOv3, respectively. In conclusion, the detection
precision of all the networks in this paper is better than that of the YOLOv3 network, and
the number of parameters is only 63.58% of that of the YOLOv3 network. Although the FPS
is slightly lower than that of the YOLOv3 network, because the Coordinate Attention (CA)
mechanism added in this paper takes time to extract rich features, the detection precision
of this network is higher if the real-time detection FPS is greater than 30 FPS. A scheme
combining a better detection speed and precision was achieved under the premise of ensuring
a lightweight network.

Table 5. Performance comparison using KITTI validation set (where Easy, Moderate and Hard refer
to the precision under easy, moderate and hard standards, respectively).

Average Precision (%)

Model Standard Car Pedestrian Cyclist

YOLOv3 [5]
Easy 83.72 68.97 89.66

Moderate 85.51 60.52 80.57
Hard 77.16 59.33 80.20
Easy 85.97 77.77 90.61

Moderate 86.89 68.17 81.10MobileNetv2_CA (ours)
Hard 78.06 60.13 81.08

In the relevant traffic scenes of the autonomous driving KITTI dataset, vehicles (car)
and pedestrians (pedestrian) are the main detection objects, and the pedestrian (pedestrian)
class is a small target compared to the vehicle (car). During the data pre-processing stage,
the Mosaic data enhancement method is used, and the network enhances the sensitivity
of the network, allowing for it to detect small targets through pre-processing methods
such as scaling the target image. When the backbone feature extraction network extracts
relevant features, it coordinates the attention mechanism. In this algorithm, according
to the uneven distribution of the large and small objects in the image, the information
between the channels can be cooperatively processed, and more attention is paid to the
adaptive extraction of the position information of objects of different sizes compared with
the comparison algorithm without the attention mechanism. This increases the location
information extraction of small targets. Therefore, compared with the vehicle (car) class
detection accuracy, there were 2.25%, 1.38% and 0.9% gains under the different standards.
In the pedestrian (pedestrian) class detection accuracy, higher gains of 8.8%, 7.65% and 0.8%
were obtained under different standards. To show the difference in time taken by different
layers in specific detection tasks in more detail, this paper split and refined different parts
of the model for time series analysis.

Experiments on a single dataset may not be very convincing, and more datasets
need to be tested and verified to draw better conclusions. Therefore, we selected several
categories that are more common in autonomous driving scenarios for comparison. The
results show that, on the Pascal Voc2007 + 2012 dataset, as show in Table 6, our method
improved the bus category by 0.29% compared to Faster R-CNN. The results were also
0.76% higher than SSD, 1.66% higher than Yolov3, 2.22% higher than Faster R-CNN in the
motorbike category, 1.62% higher than SSD and 2.07% higher than Yolov3. In the person
category, compared with Faster R-CNN, accuracy improved by 0.06%—by 5.31% compared
with SSD and by 0.1% compared with Yolov3. Compared with Faster R-CNN on mAP,
accuracy improved by 1.15%, was 3% higher than SSD and was 2.07% higher than Yolov3.
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Compared with YOLOv4, our algorithm showed little difference in terms of detection
accuracy and detection speed, but the number of parameters in our model was almost half
that of YOLOv4. Compared with YOLOv5, our algorithm improved the average detection
accuracy by 6.26%. Compared with YOLOv4-tiny, our algorithm improved the average
detection accuracy by 4.89%.

Table 6. Pascal Voc2007 + 2012 dataset detection performance.

Model APcar APbus APmotorbike APperson mAP (%)

Faster R-CNN [3] 88.71 86.69 84.81 85.37 80.28
SSD [4] 88.37 86.22 85.41 80.12 78.43

YOLOv3 [5] 91.54 85.32 84.96 85.33 79.36
YOLOv4 [21] 90.61 92.89 82.76 87.28 81.05

YOLOv5-l [29] 88.63 90.54 76.43 87.96 75.17
YOLOv4-tiny [30] 90.76 83.42 84.03 84.34 76.54

MobileNetv2_CA (ours) 91.11 86.98 87.03 85.43 81.43

As shown in Table 7, we also explored the effect of using different original image
scaling ratios and width-to-height distortion ratios on the detection accuracy, and finally
determined our parameter range to achieve the highest detection accuracy.

Table 7. Effect of different original image scaling ratios and width-to-height distortion ratios on
detection accuracy.

r mAP (%)

r1 84.29
r2 84.37

Ours 85.07

3.5. Network Detection Effect

To intuitively reflect the detection performance of this model, some pictures with
a complex image environment that are difficult to distinguish were selected from the
KITTI test set for detection. Figure 8 shows the small object scene. Figure 8a shows the
Faster R-CNN detection effect. Although it can achieve more accurate object detection,
its detection speed is too slow to meet the real-time detection requirements. Figure 8b
shows the SSD detection effect, which shows a more serious leakage phenomenon and does
not detect any object. Figure 8c shows the detection effect of YOLOv3 with some missed
detections. Figure 8d shows the detection effect of the network in this paper, which can
more comprehensively and accurately detect the emerged objects. Figure 9 shows low-light
scenes. Figure 9a shows the Faster R-CNN detection effect in low-light intensity scenes,
while the vehicle located on the right side of the scene in the low-light environment was
missed. Figure 9b shows the SSD detection effect, where both the vehicle on the right side
in the low-light environment and the vehicle on the left side, which belonged to a smaller
target, were missed. Figure 9c shows the detection effect of YOLOv3, which contains a
high number of parameters despite achieving real-time detection of the target. Figure 9d
shows the detection effect of the network in this paper, which can precisely detect both
vehicles in the low-light environment as well as vehicles belonging to smaller objects.
Figure 10 shows a complex scene containing small objects, occlusion, high light intensity
and low light intensity, etc. Figure 10a shows the Faster R-CNN detection effect. Although
it can achieve a more accurate target detection, its detection speed is too slow to meet the
real-time detection requirements. Figure 10b shows the effect of SSD detection, and the
detection phenomenon was missed for vehicles at a low light intensity and rear-obstructed
vehicles. Figure 10c shows the detection effect of YOLOv3, which can better detect the
object, and Figure 10d shows the detection effect of this network, which can correctly
and simultaneously detect all the objects at a low light intensity, high light intensity and
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obscured objects. In summary, the network used in this paper can quickly and accurately
complete detection tasks in different scenarios; therefore, the network proposed in this
paper is a real-time object detection network with a light weight and high precision. To
more clearly show the difference in the detection results of different models for targets in
different KITTI dataset scenes, we visualized the final detection results of different models
in a heat map. The first column in Figure 11 shows the detection results of our work. It is
clear that our model can accurately locate and detect hard-to-differentiate persons with the
right shade in the first scenario, hard-to-differentiate two-vehicle targets with the left shade
in the second scenario, and the smaller vehicle in the opposite lane and the vehicle target
in the same direction in the third scenario. These scenarios took place in a poor lighting
environment. In the fourth scenario, the smaller vehicle in the opposite lane and the vehicle
in the same direction were accurately located and detected. This demonstrates the better
robustness of our model compared toYOLOv4, YOLOv5, and YOLOv4-tiny in handling
autonomous driving scenarios.
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After comprehensively weighing the detection accuracy and the number of network
parameters, our method could achieve real-time detection. A runtime comparison of each
part of various detectors is shown in Figure 11. To show the time-consuming differences
between different layers during specific detection tasks in more detail, this paper split and
refined the different parts of the model to analyze the runtime. Our model mainly uses the
attention mechanism to extract backbone features. This is slightly more time-consuming,
but real-time detection is still possible.

At the same time, in order to clearly show the superiority of our algorithm model in
capturing small objects or occluded objects, we drew the heat map shown in Figure 12
below, from which it can be seen that our algorithm model uses the attention mechanism in
the process of network training and learning, strengthens some signals in the heat map and
suppresses other parts, making the network extraction features more accurate.
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4. Discussion

This paper studies and explores a lightweight object detection network, which reduces
the complexity of the object detection network and can achieve efficient and accurate object
detection in autonomous driving embedded platform devices. We propose a method of
feature extraction, using an improved lightweight neural network as the backbone. First,
the Mosaic image enhancement method was used, and an efficient lightweight backbone
was used. These were combined with a coordinated attention mechanism to guide the
initial feature extraction of the entire network, and then combined with a multi-scale feature
fusion network to fuse image features with location information and semantic information
to obtain richer image features. Finally, a multi-scale predictor was used for prediction to
obtain the detection results. In this article, our related experiments show that our method
has obvious advantages in terms of network parameters over the comparison network,
which obtained only 39.1 M, and is even better in terms of robustness. Whether referring to
the average precision of 85.07% on the KITTI dataset or the detection accuracy of 81.43%
on the Voc2007 + 2012 dataset, our method achieved robustness. Regarding the detection
accuracy in the automatic driving scene, which requires high detection accuracy, achieving
a robust accuracy performance is of great significance. Our method also met the speed
requirements of automatic driving target detection in terms of delay, reaching a 31.84 FPS
detection speed performance. In terms of comprehensive computing resources, robustness
and real-time performance, our method achieved the best performance coupling. As an
efficient target detection algorithm, the lightweight neural network can also be applied to
some other fields. For example, in the field of smart cities, our algorithm can be deployed in
smart traffic lights. It can also be used to monitor the real-time flow of people and vehicles
at an intersection, and intelligently change the duration of traffic lights according to the
flow size.
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5. Conclusions

The purpose of this paper was to explore a lightweight and efficient target detection
algorithm that can be efficiently deployed on smart cars. Target detection is different when
not using simple scenes. Our method was used in complex traffic scenes. We used an
efficient coordination mechanism for lightweight backbone network feature extraction
and fusion, focusing on optimizing pre-processing methods and multi-scale feature fusion
networks. In this way, our work achieved a better performance than previous work in
autonomous driving scenarios. It realized the fast and accurate detection of targets in
various traffic scenarios and has great application potential in actual autonomous driving
scenarios. In future work, our focus will be on further optimizing our detection speed. The
next step is to continue to optimize the network model to improve the detection speed and
accuracy, allowing for the network to adapt to more complex traffic scenes and achieve a
robust detection in actual complex traffic scenes.
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