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Abstract: Internet of Things devices are frequently used as consumer devices to provide digital
solutions, such as smart lighting and digital voice-activated assistants, but they are also employed to
alert residents in the instance of an emergency. Given the increasingly costly nature of present neural
network systems, it is necessary to transport information to the cloud for intelligent machine analysis.
TinyML is a potential technology that has been presented by the research world for building fully
independent and safe devices that can gather, analyze, and produce data, without transferring it to
distant organizations. This paper describes a gas leakage detection system based on TinyML. The
proposed solution can be programmed to identify anomalies and warn occupants via the utilization
of the BLE technology, in addition to an incorporated LCD screen. Experiments have been employed
to show and assess two distinct test situations. For the first occasion, the smoke detection test case,
the system earned an F1-Score of 0.77, whereas the F1-Score for the ammonia test case was 0.70.

Keywords: TinyML; gas detection; machine learning; deep learning; internet of things; smart homes

1. Introduction

Indoor Air Quality (IAQ) monitoring is a vital process for persons with health-related
difficulties, such as respiratory disorders, and is attracting more scientific interest. Numer-
ous IAQ monitoring systems have been adopted for diverse locations, including homes,
clinics, and workspaces over the years [1–4]. The most installed IAQ monitoring systems
rely on Wireless Sensor Networks (WSNs) and Internet of Things (IoT) devices. These
systems gather many forms of sensory data in real time and transmit them to the cloud,
where they are saved, evaluated, and filtered. However, the security and privacy of the
data acquired from smart homes constitute a significant obstacle to the widespread usage
of IoT monitoring devices. Consequently, the research community has created alternate
and new strategies to reduce the risk of a sensitive information breach [5].

Enabling edge intelligence is one potential method for developing new smart services
and devices that are capable of providing machine intelligence in real-time. Utilizing
intelligence in edge devices will result in the local processing of data and, as a result,
privacy-sensitive processing. Additionally, data results may be accessed in real-time,
and, despite the security benefits, the resulting devices may be small, inexpensive, low-
power, and autonomous [6].

This paper presents an IAQ system based on Tiny Machine Learning (TinyML) for
real-time gas leakage and smoke detection. The system analyzes sensory data at the edge
using TinyML technology. Specifically, the proposed system detects anomalies comprising
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high concentrations of ammonia and/or smoke in an indoor environment. Furthermore,
the proposed IAQ system is based on open hardware and freely accessed software tools, al-
lowing reproducibility and low-cost implementation. According to the authors’ knowledge,
this is one of the first IAQ systems to be developed using TinyML. In addition, a mobile
application was created to improve the alerting and monitoring of inhabitants.

The remainder of the paper is structured as follows: the Section 2 introduces the
IAQ mechanism as an aspect of smart homes and presents earlier work regarding IAQ
monitoring. Section 3 introduces the TinyML technology. Section 4 presents the hardware
and software details of the proposed TinyML-based system, the developed application,
and the experiments conducted for the evaluation of the system. Section 5 provides a
discussion regarding current and future solutions. Finally, Section 6 summarizes the
conclusions of this study and outlines future plans.

2. Smart Home and Air Quality

The research area of smart home technology has attracted the attention of researchers
and has advanced over the past few decades. Initially, it was referred to as home automation,
but as research in the specific subject has advanced, this nomenclature has evolved into
smart homes. Primarily, a smart home is a collection of automated devices installed in
residences to enhance the comfort and quality of life for its occupants, and to reduce their
effort and time costs in regard to their everyday tasks [7].

While smart home technology was maturing and improving, many works were fo-
cused on residents’ assistance, their health monitoring, and their safety, by a variety of
in-house smart sensors and smart devices. Active and Assisted Living (AAL) [8] refers
to the usage of smart home technologies, aiming at in-house personal well-being and
healthcare monitoring. Schieweck et al. [9] presented the most important aspects that have
to be considered in an AAL smart home. In Figure 1, the four aspects of AAL smart homes
are depicted in a diagram, highlighting their importance in ensuring the best possible
quality of life for residents. The socio-technical aspect is depicted as a crucial component
in ensuring the optimal monitoring of residents’ healthcare. The socio-ethical aspect is
represented by the importance of allowing residents to live in a technologically advanced
home, with minimal intrusions into their privacy and daily life. The functionality and data
security aspect is emphasized in the diagram, showing the need for the simple and secure
administration of daily operations. Finally, the instrumentality aspect is represented by the
improvement of IAQ and energy efficiency, as well as a reduction in environmental impact,
which is crucial in promoting sustainability and a healthier living environment [10,11].

Figure 1. The most important aspects of an Active and Assisted Living smart home.
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IAQ is an aspect of AAL smart homes and a very interesting field that many researchers
have focused on, as poor IAQ causes various health issues, especially when people are
constantly exposed to it. Moreover, the monitoring of IAQ is also expanded to other
environments, except homes, as many people spend more than 90% of their daily time
indoors, while indoor air pollution is on the top global five environmental health dangers,
causing morbidness and mortality [12]. The most common indoor environmental air
pollutants that are commonly monitored by various smart home systems include Carbon
Oxides (CO2 and CO) [13], Particulate Matters (PM1, PM2.5, and PM10) [4], and Volatile
Organic Compounds (VOCs). The aforementioned pollutants are presented in Table 1,
with their units and their indoor exposure thresholds.

Table 1. The most common indoor environmental air pollutants and their exposure thresholds.

Pollutants Indoor Thresholds References

CO2 (ppm)
<1000 (harmless)

[14]1000–2000 (high)
>2000 (unacceptable)

CO (mg/m−3)

100 (average time 15min)

[15]35 (1 h)
10 (8 h)
7 (24 h)

PM2.5 (µg/m−3)
10 (a year) [14]25 (24 h)

PM10 (µg/m−3)
20 (a year) [14]50 (24 h)

VOCs (mg/m−3)

<0.3 (harmless)

[16]
0.3–1 (relevant harmless)

1–3 (some harmless)
3–10 (high)

>10 (unacceptable)

Despite the fact that the vast majority of smart home implementations involve IoT
devices, new and emerging technologies are continuously employed, in order to overcome
some or all of the obstacles posed by these devices. Blockchain [17], Federated Learning [18],
and TinyML [19], which will be described further in Section 5, are among the technologies
being studied to improve the security measures of conventional IoT devices.

Related Systems

Various IAQ and gas detection monitoring systems have been proposed over
time, utilizing different types of sensors, architectures, and methods of data process-
ing. In the following paragraphs, a brief description of the various aforementioned
systems is provided.

Krayden et al. [20] employed a TinyML approach to improve the Gas Metal–Oxide–
Semiconductor (GMOS) sensor results in their work. The proposed system comprises a
GMOS sensor detecting ethanol and acetone, an Arduino board, and LEDs that indicate the
detection of the gases. Edge Impulse (EI) was utilized for system training, and the network
structure consists of 24 features, representing an input layer, 30 neurons, as a hidden layer,
20 neurons, as a hidden layer, and 3 classes, as an output layer. The success rate for the
detection of each gas (ethanol, acetone, and no gas) in the test set was 100%. The system
resources that were utilized were 1.7 KB of RAM and 19.5 KB of flash memory, while the
system’s latency was 1 ms.

Another work [21], proposed a method for detecting dangerous VOCs, e.g., xylene,
hexane, acetone, toluene, methanol, and butanol, by using a multichannel GMOS sensor
that generates signature responses specific to every organic component. These signatures
served as the training data set for a quantified Neural Network (NN) model in EI. Then,
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the NN model was transformed to an 8-bit integer precision using TensorFlow Lite and
deployed to embedded devices. The study’s embedded device is the Wio terminal devel-
opment platform, an all-in-one solution that consists of a colored LCD screen, a 120 MHz
ARM Cortex-M4F microcontroller (MCU), and a wireless network. On the primary sen-
sor module, four distinct sensors, e.g., GM-102B, GM-302B, GM-502B, and GM-702B, are
coupled, resulting in accurate gas detection. Except for methanol and butanol, whose sig-
natures were substantially identical and thus misclassified by the system, this investigation
obtained a detection rate of 99.8% for distinct gases. In addition, the conversion of the
model from a 32-bit floating point to an 8-bit integer precision quantization consumed
fewer system resources, while producing almost the same inference, and using 53% less
RAM, 52% less flash memory, and 0.01 ms more inference.

Salhi et al. [22] describe a Machine to Machine (M2M) system comprised of various
sensors, such as DHT-11 (temperature and humidity), MQ-2 (smoke, Liquefied Petroleum
Gas (LPG), and CO), LM35 (flame), and an MG-811 (CO2). All of the sensors are connected
to an Arduino Uno R3 board, which uses the Zigbee communication protocol, and trans-
mits the collected data to a Raspberry Pi 3 Model B for additional processing. This study
employed supervised Machine Learning (ML) and evaluated six algorithms: logistic re-
gression, linear discriminant analysis, K-Nearest Neighbors (KNN), Classification And
Regression Trees (CART), Gaussian Naive Bayes, and Support Vector Machines (SVM).
The algorithms with the highest accuracy were the CART algorithm, with 99.93%, and the
KNN, with 99.71%. In addition, the system can transmit alerts to a smartphone, display
real-time data, and connect to other embedded devices, via the Zigbee communication
protocol, in order to trigger potential functions in the event of an incident.

Another study [23] employed an array of eight Metal Oxide–Semiconductor (MOS)
sensors with distinct features. This makes the detection more precise when compared
to commercially available MOS sensors. Various ML techniques were used to train the
proposed system, which detected NO2, ethanol, SO2, H2, and O2 gases. Then the system
is evaluated by various algorithms, such as decision tree, SVM, Naive Bayes, and KNN.
The SVM and Naive Bayes algorithms were the only classification algorithms with 100%
classification accuracy for single or mixed gases, while the acquisition of the data used UV
light at 20 ◦C, which results in reduced power consumption.

A real-time CO2 monitoring system proposed by Spachos et al. employs sensor nodes
for sensing and relaying data packets across available simple relay nodes that are located
at various locations within the building where measurements are collected [24]. All data
packets are stored, processed, and monitored by a scalable monitoring system, called
MonArch, located in the main control room. The proposed system is able to work in
complex indoor situations, due to the plug-and-play nature of the sensor nodes and simple
relay nodes, which construct different data packet pathways based on the availability of
each relay node. This makes the proposed system robust and capable of real-time data
storage and processing, despite environmental interference.

The iAirCO2 [25] is an IAQ system that measures CO2 concentrations. The system
consists of an MHZ19CO2 sensor connected to an ESP8266 MCU, and is responsible for
transmitting encrypted and signed communications to a web server by using Microsoft.Net
web services with SSL certification. The received data is stored on an SQL Server, and au-
thorized users can gain access via a smartphone application or a web browser. The iAirCO2
system is designed for use in homes, in which healthcare experts or caregivers can monitor
the IAQ, configure the system’s thresholds, and receive extra notifications, such as e-mails,
SMS, and notifications on their smartphones.

The authors of study [26] presented an artificial intelligence-based system for the
indoor detection of numerous hazardous gases on a remotely driven vehicle (robot). By us-
ing the ML methods, such as KNN, SVM, and Softmax regression, the system classifies
three dangerous gases; cigarette smoke, flammable ethanol, and the off-flavor of rotting
food. The system was trained automatically via MatLab software, and the input vector
represents the output characteristics of the three sensors (TGS2620, TGS2603, and TGS2600).
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In the proposed study, SVM with the TGS2620 sensor, KNN with the TGS2603 sensor,
and SVM with the TGS600 sensor were the best combinations of sensors and classifiers in
terms of sensitivity, specificity, and accuracy, respectively, with KNN achieving the greatest
performance for all three sensors, with 99.33%.

Using various ML algorithms, Taheri et al. [27] created a model to estimate CO2
concentrations in a campus classroom, while the following six algorithms were modified
and compared: SVM, AdaBoost, random forest, gradient boosting, logical regression,
and multilayer perceptron. The multilayered perceptron network outperformed the other
algorithms, and was employed in the final system that could re-adjust the ventilation
system’s settings in real-time. This resulted in a reduction in the total energy consumption
of heating, ventilation, and air conditioning systems by 51.4%.

The study [28] describes an IoT device with low-cost sensors, used for monitoring
and managing air quality. By using Recurrent Neural Network (RNN) models, the system
detects CO, O3, and NO2, and enhances their detection accuracies. The IoT device was used
for sensing and detection, and is comprised of an Arduino Mega 2560 board, a NodeMCU
Wi-Fi chip, and gas sensors. The IoT device transmits the acquired data to the Google
cloud, where a personal computer performs the data preprocessing, while the processed
data are used as the training input for the Artificially Intelligent (AI) model. The proposed
study combined four types of RNN models, resulting in the superior performance of the
testing set when compared to a single RNN. Additionally, the proposed system includes a
retraining procedure to improve model performance stability. The results of the models for
the gases were as follows: CO: 0.73; O3: 0.51; NO2: 0.37.

3. The Technology of TinyML

The vast majority of IoT systems are still not intelligent, and those employing ML
models capture and transmit data to the cloud for further assessment [29,30]. The reason
for communicating data to a distant entity depends on the sort of procedure the data
must undergo [31]. The vast and intricate structure of algorithms and ML models[32]
requires additional processing resources and computing power than a modest IoT device
can provide. This results in an enormous amount of information that the gadget cannot
store. IoT devices are configured to interact via wireless communication protocols with
other intelligent devices. Frequently, the knowledge being communicated is not protected,
and the systems are perceived to lack basic security safeguards[33–35].

TinyML, which intends to bring machine learning to the forefront by enabling the
application of deep learning models to low-power microcontrollers [36], finds the issues
described earlier to be particularly pertinent. As IoT devices become more complicated
and are entrusted with conducting more advanced analyses, the issues associated with
networking, security, and decision-making become more pressing. These devices frequently
operate in resource-constrained contexts, with limited power, memory, and computing
capability. This makes it more difficult to guarantee a reliable connection, prevent security
breaches, and fine-tune the system architecture for each device. In contrast, TinyML
necessitates models that can operate offline and with little latency, independent of cloud
services. As a result, tackling the issues presented by IoT technology is crucial for the
widespread acceptance and success of TinyML across a variety of applications.

NNs have a propensity to include multiple parameters, with multiple redundancies
in the models, ultimately resulting in more computing and memory requirements than
necessary [37]. As noted previously, TinyML is a framework that enables ML models
to run on restricted hardware without sacrificing energy efficiency [38]. To enable ML
inference on devices with low resources, particularly MCUs, the models under discus-
sion must be optimized and compressed. Refining methodologies and ML models is a
difficult problem. As explained previously, it is not only a software-based issue; rather,
hardware and software co-design is required to achieve the desired outcome [39]. Re-
cent research also reveals the initial attempts to improve deep reinforcement learning
for resource-constrained devices [40].
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The technology under consideration could become an area of study that dramatically alters
how programmers address the creation of creative and secure applications presently [17,41–44].
Notifying a user of a suspected gas leak or heightened risk is important, and there should
be no risk of communication overhead or disruptions. These gadgets will perform real-time
processing and notify householders, without the necessity of transferring data, ushering in
a new paradigm of autonomous devices that are the equivalents of credit cards, and that
require just the availability of battery power.

TinyML’s use in the proposed system, which will be explained in greater detail in the
following section, is crucial, because it enables the implementation of machine learning
models into compact and energy-efficient hardware. This enables the detection and process-
ing of gas leaks in real time, without the need to transfer data to a remote cloud server for
processing. The system is designed to collect, analyze, and extract data directly, resulting
in more private and secure devices, because the collected data is not shared with other
organizations. The TinyML framework enables us to optimize and compress our machine
learning models, so that they can run on hardware with limited resources, such as MCUs.
By employing techniques such as quantization and pruning, the memory requirements and
energy consumption of the models are significantly reduced, making them ideal for devices
with limited resources. TinyML is essential to the proposed gas leak detection system, for
enabling real-time detection and protecting privacy and security.

4. The TinyML-Based System for Gas Leakage Detection

The suggested system consists of a development board, two gas leak detection sensors,
an LCD display that informs the user with text, and a buzzer to be utilized for the detection
of excessive amounts of dangerous gases. The core objective was to develop a small,
self-contained, cost-effective, and accurate device that could identify a gas leakage and
immediately alert the user. The gadget may be placed in a residence in order to allow the
detection of the presence of ammonia or smoke, and to inform the residents. When the
system is installed in a garage, it may also be used to notify the owner of a vehicle that
is leaking LPG. The suggested solution is based on TinyML, a technology that enables
the system to run autonomously without an internet connection, connectivity with other
systems, or cloud access for data analysis and warnings. This is a significant advantage,
as it enables the system to continuously analyze data and issue real-time alerts without
network connectivity or delay limits. Additionally, because the solution does not rely on a
cloud-based architecture, it is less susceptible to cyber-attacks or data breaches, which can
jeopardize the system’s security and potentially risk the occupants’ safety.

In addition, the device is not a conventional Internet of Things device that operates
depending on specified elements, such as criteria. Instead, it can be programmed to offer
customized results and alerts based on particular factors. For instance, if the system detects
an amount of smoke in a home inhabited by smokers, the device will not sound an alarm.
The device can be trained to differentiate between instances in which someone is smoking
and those in which there is an actual threat, and ultimately alert the homeowners if it
detects irregularities in the input data. This level of personalization is made feasible by
training the model using data collected on a typical day, which provides the system with a
baseline of usual behavior. Consequently, this solution provides a more versatile, adaptive,
and secure choice for home security, and it can be tailored to fit the specific requirements of
each household.

4.1. Hardware

The Nano 33 BLE Sense board from Arduino, a popular and widely-used piece of hard-
ware for creating TinyML applications, was chosen for the proposed system. The board is
built on the Nordic Semiconductor nRF52840, which has a 64-MHz 32-bit ARM®CortexTM-
M4 processor, 256 KB SRAM, and 1 MB flash memory. It operates at 3.3 V and is 45 × 18 mm,
making it one of the smallest boards that are currently available. Additional details are
available on the official datasheet for the board [45]. In addition, the board is compliant with
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the EI development platform used to construct the ML models, which will be explored in
further depth in the next section. Initial evaluations involved the MQ-2, MQ-5, and MQ-135
gas sensors.

MQ-2 is a GMOS sensor, and is commonly known as a chemiresistor, due to the
fact that it identifies variations in the resistance of the sensing material once the gas is
brought into contact with it. Utilizing a simple voltage divider network, gas volumes
may be determined. The MQ-2 gas sensor runs at 5V DC while using around 800 mW. It
can detect LPG, smoke, alcohol, propane (C3H8), hydrogen (H2), methane (CH4), and CO
concentrations between 200 and 10,000 ppm [46].

The MQ-5 gas sensor is necessary for discovering gas leaks in homes and enterprises.
It can detect hydrogen, LPG, carbon monoxide, and alcohol. Owing to the instrument’s high
sensitivity and quick response time, instantaneous readings may be acquired. Whenever the
gas concentration rises, the output voltage of the gas sensor correspondingly increases [47].

The MQ-135 gas sensor can detect hazardous gases and smoke, including ammonia
(NH3), sulfur (S), benzene (C6H6), and carbon dioxide (CO2). This gas sensor, similar to
others in the MQ series, has both a digital and an analog output pin. Whenever the level of
these gases surpasses a certain threshold, the digital pin swings high. This threshold value
is adjustable, using the inbuilt potentiometer. The analog output pin creates an analog
signal, which can be utilized in order to determine the concentration of specific gases
present in the air. The sensor module operates at 5 V and consumes around 150 mA [48].

The LCD 1602 [49], which has a display format of 16 Characters × 2 Lines, was used
to alert the user to messages. In addition, the Arduino’s networking chip allows for the
use of wireless protocols for data transfer. When an anomaly is detected, the onboard
Bluetooth Low Energy (BLE) module alerts the user through their mobile device. Lastly,
a storage-protection box for the device was 3D-printed. Figure 2 displays the system in its
assembled state.

Figure 2. The TinyML-based system for gas detection.

4.2. Datasets

Several datasets were generated over the course of two weeks. The Arduino Nano
33 BLE Sense board and the above-listed sensors were utilized for all monitoring periods.
Using EI’s data forwarder, a technique that sends data, in real time, to a web platform,
the datasets were generated. The cloud infrastructure of the laboratory was employed to
store and assess the results. Due to the significant similarity between the MQ-2 and MQ-5
sensors, experiments demonstrated the redundancy of employing all three. The MQ-2 and
MQ-135 sensors were chosen, in order to decrease the complexity of the ML model and to
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improve the system’s performance and efficiency. Figure 3 displays a warning provided by
the system’s screen.

Figure 3. An anomaly detected from the system.

The data stored in the cloud infrastructure of the Laboratory were in a time-series
format and exceed the 100.000 monitored values. Additionally, the datasets will be stored
for further analysis, and, by utilizing the laboratory’s custom repository, they will be
available to laboratory members for additional tests and implementations.

4.3. Model Training and Inference

The initial step in training and deploying a model to an MCU utilizing EI is to ob-
tain sensor values via data capture. EI offers a range of data collection methods, such
as connecting to devices or uploading files, which can subsequently be utilized to create
a unique dataset. This dataset is then used to train the machine learning model for the
specified job, such as anomaly detection. Once the dataset has been constructed, the data is
preprocessed using several EI processing blocks, including the Flatten processing block.
The above-mentioned block prepares the training data by flattening the multidimensional
input into a single-dimensional array. The data are then delivered into the anomaly de-
tection learning block, following preprocessing. Anomaly detection is a sort of machine
learning method that detects odd data patterns. The anomaly detection learning block
is trained to recognize abnormal behavior in the input data, such as unexpected sensor
readings. Typically, the block is trained on labeled data, in which abnormal and normal
behaviors are explicitly described. Once the block has been trained, it can generate real-time
alerts anytime it detects aberrant behavior. The trained model can then be distributed to an
MCU using the EI platform. EI supports a range of MCUs, including the Arduino Nano
33 BLE Sense board, and provides deployment tools for the model. Using the aforemen-
tioned method, developers can build robust solutions for real-time anomaly detection and
alerting in a variety of applications. Figure 4 demonstrates the model’s training procedures
as described above.
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Figure 4. The Model’s Training Procedure.

By incorporating a time-series block that gathered sensor data from MQ-2 and MQ-135
gas sensors, a novel system was generated inside the proposed framework. The flatten
processing block was created, in order to allow maximum flexibility in processing sensor
inputs, such as temperature, as well as other factors pertinent to the current use case.
Figure 5 illustrates multidimensional data, obtained by calculating the average distance
between clusters, demonstrating the device’s classification of orange data in real-time using
the TinyML inference. The figure’s left side identifies gases related to the MQ-2 sensor,
while the right side classifies gases associated with the MQ-135 sensor. According to both
the various machine learning techniques for the prediction of IAQ parameters [4] and the
restrictions of the open hardware boards, the utilization of the K-Means algorithm was
selected, in order to create the anomaly detection block of the learning block. The per-
formance of the model was assessed using the model validation tab in EI. In addition,
the generated EI model was transformed into source code that was optimized and made
ready for implementation into the Arduino Nano 33 Sense board. Additional experiments
were conducted using the Arduino IDE and cloud architecture of the laboratory, in order to
identify anomalies in newly collected data.

Figure 5. Data Visualization related to sensors’ data.

4.4. Model Evaluation

A case study in a typical household environment, to assess the ability of the TinyML-
powered system, was performed, in order to detect changes in IAQ resulting from daily
activities. The TinyML-based system was placed in two rooms of a typical household,
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as depicted in Figure 6, collecting and analyzing data from the daily tasks and activities
being carried out by the home’s residents. Specifically, the proposed system was placed in
the kitchen (device D1) ) and in the living room (device D2) of the household. It should be
noted that the system’s ability to detect changes in air quality was affected by the presence
of rooms’ ventilation, which in some instances resulted in lower values that were not
identified in a timely manner. This could potentially be attributed to the device’s placement
in the room. Overall, the case study demonstrated the potential of TinyML in addressing
practical IAQ issues.

Figure 6. A typical household environment, used in a case study of the proposed system’s evaluation.

To evaluate the trained models for smoke and ammonia, we considered the frequency
of anomalies identified by the proposed system, the fraction of recorded anomalies that
were in fact anomalies, and the models’ overall performance, as depicted in Figures 7 and 8.
To achieve this, Precision, Recall, and F1-Score were used as performance standards. Re-
garding to the smoke use case, Precision scored 0.73, Recall was 0.85, and F1-Score was
0.79. The false-negative rate was 12% and the false-positive rate was 36%. The highest
difference between the ammonia test case scenarios was the 0.60 point difference in the
Recall score. Precision and F1-Score measurements have corresponding values of 0.83 and
0.70. In this test situation, the trials found a 35% false-negative rate and a 21% false-positive
rate. Table 2 displays the experimentally determined assessment metrics for the two test
scenarios, smoke and ammonia. The results are satisfactory, but there is potential for
improvement that could be attained by extra training and enhanced equipment utilization.

Table 2. Evaluation of the trained model.

Test Cases Precision Recall F1-Score

Smoke 0.73 0.85 0.79
Ammonia 0.83 0.6 0.70
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Figure 7. Anomalies related to the smoke test case, as detected by the system.

Figure 8. Anomalies related to the ammonia test case, as detected by the system.

4.5. Mobile Application

To establish a more user-friendly system and a more effective warning mechanism,
a mobile application was created. The first configuration of the application must be
performed by the user. The user must enter the number of rooms containing the gas leak
detection gadget. To connect each room to a device, the resident should add the unique
ID from each device in the subsequent step. Following the above steps, the program
is configured to identify the devices in each room, and warn users accordingly. Every
time a device finds a potential gas detection threat, a push-up notification warns the user.
The presented information indicates the room and the type of gas detected. Figure 9 depicts
a smart home with five rooms, including a kitchen, living room, garage, and two bedrooms.
In the scenario depicted in this figure, the user is notified that smoke has been detected in
the kitchen. Additional features of the application include a display of the current date,
the ability to add additional users, as the residents of each smart home may differ, and a
view that acts as a log and displays the potential gas detection identifications, along with
the room, the time, and the gas detected.
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Figure 9. The developed mobile application.

5. Discussion

By alerting residents in the case of an emergency, current technology improvements
could make smart homes even more secure. Despite the fact that IoT devices look appropri-
ate for the above-mentioned cases, they are required to transport vital data to the cloud for
additional processing, in order to give intelligent and customized solutions utilizing ML
and DL technologies. TinyML is a new technology that provides unsupervised systems,
which do not involve a connection to the internet or information transmission, due to their
capacity for properly running ML and DL models locally. Several other developing tech-
nologies, such as Blockchain and Federated Learning, should also be considered, as their
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security measures could augment or replace those currently applied in IoT devices. In
conclusion, present and emerging methods could collaborate in order to provide a better
and, most importantly, safer environment. Furthermore, IAQ systems can be applied not
only in smart home environments, but also in various other environments where IAQ is
crucial, such as working environments, factories, classrooms, hospitals, etc.

6. Conclusions

This research presents a TinyML-based system for identifying dangerous gas leaks.
The proposed device may be configured to recognize and alert residents of potential gas
leaks, such as those containing LPG, smoke, alcohol, propane (C3H8), hydrogen (H2),
methane (CH4), Carbon Monoxide (CO), ammonia (NH3), sulfur (S), benzene (C6H6),
and Carbon Dioxide (CO2). For experiments of this work, the model training involved only
ammonia and smoke detection.

As future work, the model will be trained to recognize and alert the leakage of
additional hazardous gases. Additionally, the usage of ready-made solutions such as
rechargeable Li-On batteries and power banks is investigated, as the proposed system is
currently operating by utilizing a set of alkaline batteries. The aforementioned addition
will assist into making the system portable and ready to be installed in various locations
without electricity, such as a home garage. Furthermore, another subsequent step is to
assure the security of both system and data communication to the smartphone. Regarding
the system, future efforts will be focused on researching techniques for assuring firmware
integrity, and a well-established security protocol will be utilized for data transfer. Lastly,
based on the authors’ knowledge, having more sophisticated detectors for the detection of
each gas, as opposed to sensors that detect various gases, will enhance user warnings and
the displayed results.
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AAL Active and Assisted Living
ABS Acrylonitrile Butadiene Styrene
AI Artificial Intelligent
BLE Bluetooth Low Energy
CART Classification And Regression Trees
DL Deep Learning
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DSP Digital Signal Processing
EI Edge Implulse
GMOS Gas Metal Oxide Semiconductor
IAQ Indoor Air Quality
IoT Internet of Things
KNN K-Nearest Neighbors
LPG Liquefied Petroleum Gas
M2M Machine to Machine
MCU microcontroller
ML Machine Learning
MOS Metal Oxide Semiconductor
NN Neural Network
PMs Particular Matters
RNN Recurrent Neural Network
SVM Support Vector Machines
TF TensorFlow
TinyML Tiny Machine Learning
VOCs Volatile Organic Compounds
WSNs Wireless Sensor Networks
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