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Abstract: Health analytics frequently involve tasks to predict outcomes of care. A foundational
predictor of clinical outcomes is the medical diagnosis (Dx). The most used expression of medical Dx
is the International Classification of Diseases (ICD-10-CM). Since ICD-10-CM includes >70,000 codes,
it is computationally expensive and slow to train models with. Alternative lower-dimensionality
alternatives include clinical classification software (CCS) and diagnosis-related groups (MS-DRGs).
This study compared the predictive power of these alternatives against ICD-10-CM for two out-
comes of hospital care: inpatient mortality and length of stay (LOS). Naïve Bayes (NB) and Random
Forests models were created for each Dx system to examine their predictive performance for inpatient
mortality, and Multiple Linear Regression models for the continuous LOS variable. The MS-DRGs per-
formed highest for both outcomes, even outperforming ICD-10-CM. The admitting ICD-10-CM codes
were, surprisingly, not underperformed by the primary ICD-10-CM Dxs. The CCS system, although
having a much lower dimensionality than ICD-10-CM, has only slightly lower performance while
the refined version of CCS only slightly outperformed the old CCS. Random Forests outperformed
NB for MS-DRG, and ICD-10-CM, by a large margin. Results can provide insights to understand the
compromise from using lower-dimensionality representations in clinical outcome studies.

Keywords: clinical classification software (CCS); diagnosis-related groups (MS-DRG); length of stay;
mortality; predictive modeling; naïve bayes; random forests

1. Introduction

Clinical analytics can contribute to a better understanding of care and of the clinical
parameters that contribute to negative hospital outcomes, such as mortality, hospital
acquired infections, post-surgical complications, and excess length of stay (LOS) [1]. To
predict these outcome measures, researchers commonly analyze hospital characteristics,
along with clinical and socio-demographic patient attributes. While sociodemographic
characteristics of patients, such as age, sex, or availability of insurance, are easily retrievable
from hospital records, clinical factors reflect variety of diseases and conditions. Medical
diagnoses (Dx) are used in data analysis projects either as target variables or as predictors.
There is a lot of research around developing data-driven recommender systems which can
assist clinical decision makers establish the diagnosis [2,3]. There is also plentiful research
where Dx codes are used as predictors in risk estimation models, such as to predict high risk
patients for the development of negative outcomes of care [4]. Among generally accepted
classifications used as predictors for hospital performance are International Classification
of Diseases (ICD-10-CM), Medicare Severity Dx Related Groups (MS-DRG) and Clinical
Classification Software codes (CCS), including their recently refined version (CCSR).

During a hospital stay, a principal Dx, in ICD-10-CM format, is assigned to each
patient, representing the reason for hospitalization. In addition, an admitting Dx code (also
in ICD-10-CM format) is established at the time of admission and before all the medical
examinations, radiology and laboratory tests are completed. The admitting Dx code is
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oftentimes a symptom or chief complaint rather than a diagnosis. For known problems (e.g.,
during an elective admission) the admitting Dx code matches the principal Dx code [5].

MS-DRGs are used in prospective payment systems for reimbursement purposes. The
MS-DRG system is created on the combination of clinical Dx, patient characteristics, and
required hospital resources and contains approximately 500 groups based on 25 major
diagnostic categories of body systems [6]. An MS-DRG code is calculated from the principal
and secondary ICD-10-CM codes with the use of a software called ‘Grouper’ [6]. Each
inpatient stay will generate one MS-DRG code, which incorporates information about the
principal Dx and the presence of complications or comorbidities. MS-DRG codes, therefore,
do not only use the principal Dx for their calculation, but they draw information from
secondary Dx’s too. An MS-DRG code may lack the specificity of ICD-10-CM but can be
used as a proxy for disease severity, since it provides information on whether the principal
Dx was accompanied by complications of comorbidities [7].

CCS is a classification system that is used to group the tens of thousands of different
ICD-10-CM codes into a smaller collection of clinically meaningful categories. The CCS
system has been developed by the Agency of Healthcare Research and Quality (AHRQ) and
has been used extensively in research due to its reduced dimensionality. The most recent
revision of CCS aggregates more than 70,000 ICD-10-CM Dx codes into over 530 clinical
categories [8]. A recently refined version of CCS is called CCSR and uses a many-to-many
representation of Dx’s, where one ICD-10-CM code can be matched with more than one
CCS code.

Other than Dx classification systems used as study inclusion criteria [9–15], multiple
research endeavors used major classification systems as predictors of hospital performance.
In 1994, Cheng et al. [16] found that MS-DRG can predict hospital LOS reasonably well,
however, the prediction was more accurate for large groups of patients rather than for
individuals. MaWhinney et al. [17] attempted to determine predictors of cost, charges, and
LOS from MS-DRG using Cox proportional hazards models and emphasized the importance
of clinical factors to predict risk-adjusted mortality. Liu, Phillips, and Codde [18], however,
warned that MS-DRG had limited ability (30% of the variance) to predict the mean LOS, in
comparison to 46% reported by Rutledge and Osler [19] for trauma patients. Omachonu
and Suthummanon [20] reported that for the top five MS-DRGs by volume for Medicare
patients at a teaching hospital in the United States, multiple regression models indicated
that approximately 60 percent (R2) of the variance in the LOS is explained by patient
attributes and clinical indicators. More recent studies [21] found discrepancies between
actual LOS and MS-DRG-predicted LOS for hip and knee replacement patients. As an
alternative for actual MS-DRG codes, Bert et al. [22] used MS-DRG weight (≤1 vs. >1) as a
predictor of a longer-than-expected LOS and found that MS-DRGs with higher weights
and MS-DRGs with comorbidities and complications can be viewed as a proxy of clinical
complexity and patient needs.

Deschepper et al. [23] used hierarchical ICD data to predict a hospital unplanned
readmission, using Random Forests technique and found that first three digits of ICD-
10 codes (less detailed) may be a better predictor than the full detailed 5 digits code.
Harerimana, Kim, and Jang [24] applied a deep attention model to forecast the LOS and
hospital mortality based on ICD codes using the basic Hierarchical Attention Network
(HAN), and reported AUROC of over 0.82 for LOS model. Similarly, Karnuta et al. [25] used
artificial neural networks to predicting LOS, discharge disposition, and inpatient costs after
shoulder arthroplasty using CCS and reported AUC 0.78 for LOS. CCS is commonly used
as a predictor of hospital performance due to the lower number of codes. Aubert et al. [26]
used CCS categories to predict 30-day hospital readmission and prolonged LOS, while
Radley et al. [27] compared CCS comorbidity risk-adjustment strategies among persons
with hip fracture on a sample of Medicare claims data to other risk-adjustment instruments:
Iezzoni and the Charlson Index to find only modest ability to predict 1-year mortality
following hip fracture. The CCS performed best overall (c = 0.76), followed by the Iezzoni
(c = 0.73) and Charlson models (c = 0.72). Recent applications of machine learning methods
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to predict hospital performance also rely on clinical classification. Ramkumar et al. [28]
reported a naïve Bayesian model after principal total hip arthroplasty to predict LOS and
payment models with ROC of 0.87 for LOS; Kim et al. [14] investigated gastrointestinal
patients LOS using CCS.

Since the year of 2015 all hospitals in the United States started to use the 10th edi-
tion of ICD-10-CM, for the purpose of capturing medical diagnoses. The 10th edition
includes five times more unique codes than its predecessor, increasing the clinical speci-
ficity. This advantage though, creates a challenge, which is the very high dimensionality
(>70,000 unique codes). The use of the ICD-10-CM in predictive analytics, therefore, can
significantly increase computational cost and at the same time creates the requirement
for clinical datasets that contain enormous data points, enough to include an adequate
number of cases for each unique ICD-10-CM code. While health systems benefit from
this high-resolution representation of medical Dx’s, ICD-10-CM was not designed with
predictive analytics in mind. There are several approaches to reduce its dimensionality and
make it possible to complete classification experiments, which otherwise could not have
been possible due to computational cost. These methods are grouped into two categories:
(i) statistical dimensionality reduction approaches, such as Principal Component Analysis,
and (ii) alternative representations of clinical diagnoses, of reduced dimensionality, which
derived from ICD-10-CM. The two most widely used, by researchers, alternatives, are the
MS-DRGs, and the CCS codes.

Even though there are several clinical outcome studies that utilize these Dx classifica-
tion systems, there is no comparison of their predictive performance. This is the motivation
of the present study, as the first ever effort to quantify the differences in the predictive
performance of these widely used Dx classification systems. In specific, the study objec-
tive is to estimate the predictive performance of the CCS and its recent refined version
(CCSR), the MS-DRG classification systems, and the admitting Dx codes for the outcomes of:
(i) inpatient mortality and (ii) hospital LOS, and to furthermore compare their performance
against the principal ICD-10-CM Dx’s. We will test the hypotheses that:

1. MS-DRGs outperform the principal ICD-10-CM Dx codes for the prediction of in-
patient mortality and LOS, since they incorporate information about the presence or
not of (major) complications or comorbidities. This information is not incorporated
into the principal ICD-10-CM.

2. CCS and CCSR codes perform reasonably well compared to ICD-10-CM codes for
in-patient mortality and LOS, since CCS consist of manual, expert-designed represen-
tations of medical Dx’s in a clinically meaningful way.

Table 1 summarizes the different diagnosis classification systems, and their role in the
present study.

The study does not aim to develop clinically applicable models, but to compare the
performance of these medical Dx coding systems. The goal is therefore not to compare
algorithms to find the best performing one. For the outcome of inpatient mortality, the
study focuses on the positive class ‘died’ since this is the outcome that health systems and
clinical decision makers are interested about.

Table 1. Description of the Dx classification systems and their role in the present study.

Dx Code System Origin Remarks Role in the Study

Principal Dx (ICD-10-CM) Developed by WHO and
modified by the National
Center of Health Statistics.
Used in the US since 2015.

The principal Dx in
ICD-10-CM. This is used as
the ground truth of this study.

The ground truth of the
present study

Admitting Dx (CD-10-CM) See above The initial Dx, which, later,
during the hospital stay is
replaced by the principal Dx.

Learn about the loss in
predictive power due to
clinical uncertainty
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Table 1. Cont.

Dx Code System Origin Remarks Role in the Study

Diagnosis Related Group
(MS-DRG)

Generated by the ‘Grouper’
software from the ICD-10-CM
codes, after the patient is
discharged.

Encapsulates information
from principal and secondary
Dx’s that qualify as
complications or
comorbidities. It has lower
dimensionality than
ICD-10-CM since it groups
several similar ICD-10 codes
under the same MS-DRG.

Learn about information loss
from the lower dimensionality
of MS-DRGs and
compensation due to the
severity information
MS-DRGs incorporate

Clinical Classification
Software (CCS) old version

Developed in the framework
of the HCUP project, under
the umbrella of AHRQ.

A clinical grouping of
ICD-10 in ~500 categories.
Despite specificity loss, since
the grouping was performed
with clinical relevance in
mind, it is a useful Dx
representation.

Amount of predictive power
lost compared to the
ICD-10-CM representation

Clinical Classification
Software Refined (CCSR)

Recent refined version of CCS,
developed in the framework
of the HCUP project, under
the umbrella of AHRQ.

The CCSR for ICD-10-CM
diagnoses balances the
retention of the clinical
concepts included in the old
CCS categories and the
specificity of ICD-10-CM
diagnoses by creating new
clinical categories.

(1) Amount of predictive
power lost compared to the
ICD-10-CM representation
(2) comparison of CCSR to
the old version of CCS

The next section of the article (methods) explains the data preparation, the experimen-
tal setup, and the analysis pipeline. The article continues with the results of the classification
and regression experiments and the comparison of the performance of the studied con-
structs of medical diagnoses. The discussion section, finally, summarizes findings to discuss
practical implications and recommendations for future research.

2. Materials and Methods
2.1. Dataset

The research was conducted with secondary medical claims from the Centers for
Medicare and Medicaid Services (CMS) [29]. The dataset was purchased after a Data Use
Agreement with CMS. The original dataset includes every Medicare hospital admission
during the year 2018 in the State of Michigan and has a total of 418,529 observations. The
dataset includes, among other features, the admission information, patient demographics,
the ICD-10-CM Dx’s (principal and secondary) and MS-DRG codes. Since the CCS codes
were not originally included in the dataset, we added them with the use of a mapping
database that was provided by AHRQ [30]. The refined mapping of CCS (CCSR) follows a
many-to-many relationship with ICD-10-CM, and therefore some ICD-10-CM codes were
mapped with more than one CCS code. We represented this relationship in our dataset
by merging the multiple CCS codes per patient into a new feature. The LOS variable was
calculated after subtracting the admission date from the discharge date. The following
features were then extracted from the database and imported to the Weka Environment for
Knowledge Analysis [31]: admitting ICD-10-CM Dx, principal ICD-10-CM Dx, principal
CCS Dx, principal CCSR Dx (merged feature), LOS, age group, gender, ethnicity, type of
admission (elective/urgent/emergency), and ‘transfer from another hospital’.

2.2. Experimental Setup

A randomized sample of 50,000 cases was extracted from the CMS database and was
used to complete the classification experiments. The sampling was performed with the
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ReservoirSample method in Weka, which is a popular random sampling approach [32]. The
target dichotomous variable ‘inpatient mortality’ has two classes (A—‘alive’, D—‘died’).
The experiments were completed with the use of two different classifiers: Naïve Bayes,
and Random Decision Forest. Naïve Bayes (NB) is a method based on the Bayes theorem,
and it uses conditional probabilities. The algorithm’s most discussed drawback is that it
assumes independence of the predictors. Despite this limitation the algorithm has been
used extensively in biomedical research [33]. Random Forests is a popular ensemble
learning method that operates by constructing many decision trees during the training
phase, therefore creating a ‘forest’. The output is the class selected by most trees [34]. We ran
all the experiments with these two algorithms since they follow a quite different approach.
NB is a simple and computationally efficient Bayesian method, which is oftentimes used as
baseline in similar studies, while the Decision Forests consist of a popular ensemble method
that uses the principles of decision trees combined with bagging and majority voting.

Six NB and four Random Forest models were created. The first one was used as a
baseline and only included the demographic variables. This model served as the baseline
performance model of the study. Models 2–6 used the demographic variables plus one Dx
coding system: Model 2 = baseline features + principal ICD-10-CM Dx, Model 3 = baseline
features + principal CCS (old), Model 4 = baseline features + principal CCSR (refined),
Model 5 = baseline features + MS-DRGs, and Model 6 = baseline features + admission
ICD-10-CM Dx. We created multiple models since the goal of this work is to examine the
predictive power of each of the coding systems independently. The coding systems cannot
be used together in one model, since they are expressions of the same concept, that is the
medical diagnosis. Inserting different expressions of these data into a single model would
introduce multicollinearity.

In all models, the following control variables were included: patient age group, eth-
nicity, gender, type of admission (elective/urgent/emergency), and the ‘transferred from
another hospital’ index. All control variables were inserted into the model as dichotomous
ones, where each of the categories were assessed as present/non-present (0/1), This format
is appropriate for algorithms that require the independent variables to be categorical or
numerical, therefore appropriate for classification and regression experiments. For the
prediction of the continuous variable LOS, we used the Multiple Linear Regression imple-
mentation of Weka and disabled the feature selection option in the algorithm parameters.
A bagging method with 100 iterations was used. Figure 1 presents a summary of the
experimental setup.
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For all experiments we tested the models using the 10-fold cross validation method.
The two classes are unbalanced because the number of cases of the negative class
(A-alive) outweighed significantly, in number, the cases in the positive class (D-died).
In the case of unbalanced datasets, the overall accuracy metric provides skewed and biased
information [35]. Added to this, there is a tendency for algorithms to correctly classify
cases of the large sized class (in our case ‘alive’), therefore boasting low false positive rates,
while having the tendency to misclassify deaths as ‘alive’. Due to this, the precision metric
is also not useful to the researcher. For these reasons, the present study will evaluate the
performance using the Recall, F-score, ROC, and Precision-Recall Curve (PRC) metrics.
While there is no natural ground truth for the performance comparison, the ICD-10-CM
construct can be considered as one, since this is the foundation on which the other summary
classification systems (CCS, DRGs) were created from.

2.3. Pipeline for Data Preparation and Analysis

Step 1: The following variables were extracted from the original dataset: ‘age group’,
‘gender’, ‘race’, ‘admission was elective (yes/no)’, ‘transfer from another hospital (yes/no)’,
‘length of stay’, ‘discharge status (alive/dead)’, ‘icd-10-dx principal Dx’, ‘icd-10-cm admit-
ting Dx’, ‘DRG code’.
Step 2: The ‘CCS Principal Dx (old)’ and ‘CCS Principal Dx (refined)’ to ICD-10-CM
mapping dataset was acquired from the AHRQ website (https://www.hcup-us.ahrq.gov/
toolssoftware/ccs/ccs.jsp (accessed on 29 June 2022)).
Step 3: The CCS variables were merged with the first dataset to form the target file.
Step 4: All categorical control variables were transformed to dichotomous (0/1), and the
dataset was inserted into Weka.
Step 5: A randomized sample of 50,000 cases was generated using the ReservoirSample
algorithm of Weka.
Step 6a(i): Using Naïve Bayes models were generated for the outcome ‘discharge status’
using the following parameters: batchSize = 100, numDecimals = 2

Model 1 predictors: only control variables (‘age group’, ‘gender’, ‘race’, ‘admission was
elective’, ‘transfer from another hospital’; model 2 predictors: control variables + DRG codes;
model 3 predictors: control variables + primary ICD-10-CM codes; model 4 predictors: control
variables + admitting ICD-10-CM codes; model 5 predictors: control variables + CCS codes
(old); model 6 predictors: control variables + CCS codes (refined)

Step 6a(ii): using 10-fold validation, each model was tested and the metrics of recall, PRC,
f-score for the outcome of ‘died’ and the ROC were calculated.
Step 7b(i) and 7b(ii): The same process was followed using the Random Forest algo-
rithm with the following parameters: bagSize% = 100, batchSize = 100, maxDepth = n/a,
numDecimals = 2, numExecuionSlots = 1, numIterations (number of trees) = 100
Step 8: Using multiple linear regression, six models were trained for the numerical outcome
of Length of Stay. Each model had the exact same predictors as shown in 6a(i). Each model
was tested with 10-fold validation and the following metrics were calculated: model fit
(R2), mean absolute error, root mean squared error.

3. Results
3.1. Data Description

Table 2 presents descriptive information of the original dataset, prior to the random-
ized sampling. Since this is a Medicare dataset most patients are 65 years or older. The
random sampling (50,000 cases) generated, in each run, similar distributions.

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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Table 2. Description of dataset.

Feature Name Information and Descriptive Statistics

Diagnosis Related Group Code A total of 745 unique MS-DRG codes
Principal CCS code (old) A total of 251 unique CCS codes
Principal CCSR code (refined CCS) A total of 754 unique CCS code combos
Principal Dx code A total of 8354 unique ICD-10-CM codes
Admitting Dx code A total of 7657 unique ICD-10-CM codes

Age group

<65 years: 102,721 (24.54%), 65–69 years: 69,527
(16.37%), 70–74 years: 62,244 (14.87%),
75–79 years: 56,414 (13.48%), 80–84 years:
50,575 (12.08%), >84 years: 77,048 (18.41%)

Female patients 231,377 (55.28%)
Percent non-white 90,313 (21.58%)

Type of admission
Emergency: 288,409 (68.91%), Urgent: 54,390
(12.99%), Elective: 71,859 (17.17%), Other:
3871 (0.9%)

Transferred from another hospital 33,417 (7.98%)
Discharged dead 10,922 (2.61%)
Length of Stay Mean = 5.35 days, Std. Dev. = 6.817 days

3.2. Prediction of In-Patient Mortality

The baseline model which only used demographic attributes had, as expected, the
worst performance. The model had a positive recall rate and F-score of 0.0% in both NB
and Random Forest experiments; virtually every inpatient death was misclassified as a
non-death. Similarly, the ‘died’ class was found to have a low PRC score of 4.3% (NB)
and 4.0% (Random Forest). After establishing the baseline performance, five classification
experiments were completed as explained in the experimental setup section. Firstly, we
added to the baseline predictors the principal ICD-10-CM Dx feature. The positive recall rate,
the F-score and PRC area were only very slightly increased in the case of NB (0.2%, 0.4%,
and 5.9%), respectively, while the same run with the use of Random Forest demonstrated
slightly better improvement in comparison, specifically, Recall(D) = 4.5%, F-score(D) = 7.5%,
and PRC(D) = 8.0%.

In a similar manner, we then replaced the ICD-10-CM feature with the older principal
CCS feature as our main predictor. The positive recall rate, the F-score and PRC area
metrics were found to be slightly improved than with the principal ICD-10-CM experiment
in the case of NB (0.4%, 0.9%, and 9.8%), respectively, while the same run with the use of
Random Forest demonstrated slightly worse improvement in comparison to the principal
ICD-10-CM predictor (Recall(d) = 2.2%, F-score(d) = 4.0%, PRC(d) = 7.2%). It is interesting
how the very much reduced clinical representation of medical Dx that the CCS system
represents outperformed the high-dimensionality matrix of ICD-10-CM in the case of NB.
In the third experiment we used the refined CCS (CCSR). The positive recall rate, the F-score
and PRC areas in the case of NB were found to be 0.1%, 0.1%, and 8.7%, respectively, while the
same run with the use of Random Forest presented improved performance (Recall(d) = 3.0%,
F-score(d) = 5.2%, PRC(d) = 7.6%). This performance is slightly improved than that of the
old CCS system.

The fourth experiment used the admitting Dx code (ICD-10-CM) feature as the main
predictor of mortality. The positive recall rate, the F-score and PRC areas were found to be
like those of the principal ICD-10 Dx in the case of NB (0.1%, 0.3%, and 6.2%), respectively,
while the same run with the use of Random Forest presented improved performance
against the principal ICD-10 (Recall(d) = 5.3%, F-score(d) = 8.8%, PRC(d) = 8.0%). This is
interesting, since the admitting Dx codes are assigned at the start of the hospitalization
before all the lab tests and examinations are completed, with a high degree of physician
uncertainty. Despite this, though, it appears that this construct has similar if not better
predictive power than the principal ICD-10-CM Dx.
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The last experiment used the MS-DRG feature as the main predictor of mortality.
The positive recall rate, the F-score and PRC areas were significantly better than in the
previous experiments and were found to be increased in the case of NB (Recall(D) = 6.2%,
F-score(D) = 11.5%, PRC(D) = 20.9%) and Random Forest (Recall(D) = 8.3%, F-score(D) = 13.4%,
PRC(D) = 17.2%). See Table 3 and Figure 2 for a summary of results.

Table 3. Performance of classification experiments with different Dx code systems as predictors for
inpatient mortality.

Recall (D) F-score (D) ROC PRC (D)

Dx Predictor(s) NB Random
Forest NB Random

Forest NB Random
Forest NB Random

Forest

1: Baseline (no Dx) 0.0% 0.0% n/a 0.0% 63.7% 61.9% 4.3% 4.0%
2: Baseline + Principal ICD 0.2% 4.5% 0.4% 7.5% 71.4% 71.4% 5.9% 8.0%
3: Baseline + Principal CCS 0.4% 2.2% 0.9% 4.0% 77.9% 72.0% 9.8% 7.2%
4: Principal CCSR (refined) 0.1% 3.0% 0.1% 5.2% 77.5% 72.8% 8.7% 7.6%
5: Baseline + MS-DRG 6.2% 8.3% 11.5% 13.4% 85.3% 78.4% 20.9% 17.2%
6: Baseline + Admitting ICD 0.1% 5.3% 0.3% 8.8% 69.3% 66.5% 6.2% 8.0%
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3.3. Prediction of Hospital Length of Stay (LOS)

The second objective of this study is to compare the performance of the above repre-
sentations of medical Dx’s, in predicting the outcome of LOS. Since LOS is a continuous
variable, for all tests, we used the Weka implementation of Multiple Linear Regression
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(MLR). We first started with the baseline model. As shown on Table 4, the baseline model
was found to have an R2 = 6.29%, and a mean absolute error of 3.52 days. The first exper-
iment added to the baseline feature set the principal ICD-10 Dx, and a new MLR model
was created. This model had slightly improved performance compared to the baseline
(R2 = 10.82%, and a mean absolute error of 3.34 days). The next run used the principal
CCS (old version) representation and performed better than in the case of the principal
ICD-10-CM, with an increased R2 up to 15.83%, and a further mean absolute error, down to
3.22 days. The new revision of CCS had a marginally improved performance in comparison
(R2 = 15.92% and mean absolute error of 3.19 days).

Table 4. Regression Analysis to compare the predictive power of Dx code systems for the outcome of
inpatient LOS.

Dx Predictor(s) R2 Mean abs. err.
(days)

Root Mean
sqr. err.

Root Relative
sqr. err.

1: Baseline (no Dx info) 6.29% 3.52 5.81 96.81%
2: Baseline + Principal ICD-10 10.82% 3.34 5.93 98.84%
3: Baseline + Principal CCS 15.83% 3.22 5.50 91.75%
4: Baseline + Principal CCSR (refined) 15.92% 3.19 5.51 91.82%
5: Baseline + MS-DRG 30.38% 2.89 5.01 83.49%
6: Baseline + Admitting ICD-10 12.94% 3.33 5.67 94.60%

The admitting Dx (ICD-10) feature had an improved performance compared to the
principal ICD-10-CM (R2 = 12.94% and mean absolute error of 3.33 days). As in the case
of inpatient mortality the MS-DRG construct was also the best predictor of LOS, with an
even more reduced mean absolute error of 2.89 days compared to the other constructs and
a model fit almost five times higher than the baseline model, explaining 30.38% of the LOS
variance (Table 4).

4. Discussion

According to the results, the DRG variable is the best predictor for both outcomes.
Using Random Forest there was found that the DRG outperformed the other diagnostic
classification systems by two to three times for the outcome of the inpatient mortality. The
DRG construct also had a model fit significantly higher for the outcome of LOS (30.38%
vs. the principal CCS R2 of 15.92%). The performance of the CCS classification system was
close to that of ICD-10-CM for the two outcomes of study, and the recent revision of CCS
slightly outperformed its older version.

Health analysts and researchers have been using several representations of medical
Dx in health analytics projects. Some of the most popular representations are the MS-DRGs,
which are readily available in medical claim datasets. The MS-DRGs were confirmed to
have the best performance even outperforming the much higher dimensionality principal
ICD-10-CM Dx feature. Although there are only 745 unique MS-DRG codes in our dataset
(compared to more than 8000 ICD-10-CM ones) the experiments with the MS-DRG feature
produced better prediction of the outcome of inpatient mortality. This is expected to some
extent, since MS-DRGs incorporate more than just principal Dx information. MS-DRGs are
estimated by scanning the secondary diagnoses from the Electronic Medical Records to
find whether the principal concern was also accompanied by comorbidities/complications.
MS-DRGs, in that respect, can be used as a useful proxy for disease severity. This benefit
of MS-DRGs is at the same time its biggest drawback. MS-DRG’s are calculated post
discharge and the MS-DRG information is unknown during the hospital stay. Several
studies are designed with the goal to predict outcomes of care during the beginning phases
of a hospitalization, and these studies cannot utilize MS-DRGs as predictors. Authors
explain that while the capability to predict outcomes such as mortality and LOS in the early
stages of admission can provide very useful insights, making such predictions on the first
day of a hospitalization is a challenging endeavor [24].
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According to the results of our study, the ‘primary ICD-10-CM Dx’ did not outperform
the ‘admitting ICD-10-CM Dx’ in terms of predicting the two outcomes of study. In some
cases, the results showed that the ‘admitting ICD-10-CM Dx’ can even be a better predictor
for the outcome of LOS. This is a finding that needs to be confirmed in follow-up studies.
It appears that the initial and easy to recognize medical concern is a very good predictor
of hospital outcomes, and can be used as a prognostic tool. This is especially important
considering that this information is known very early during hospitalization, when the
initial planning for care management usually takes place.

In our study, the use of CCS as predictor improved upon the baseline performance and
was only outperformed by the principal ICD-10-CM, by a small margin. Contrary to MS-
DRGs, which cannot be used in early on-admission risk estimation models, CCS, including
the recent refined edition (CCSR) are readily known as soon as the principal Dx is established.
CCS is therefore recommended by the authors of the present study, to be a useful medical
Dx classification system for predictive modelling purposes. Deschepper et al. [23] also used
Random Forests and found that first three digits of ICD-10 codes (less detailed) may be a
better predictor than the fully detailed five-digit code. This may explain the finding of the
present study that CCS codes are only marginally worse predictors than the ICD-10-CM.
It is finally worth noting that the new refined version of CCS (CCSR) only marginally
improves the predictive performance of the two outcomes under study. The authors believe
that more research in needed to understand how the refined CCS compares against the old
version, in terms of their usefulness in predictive analytics.

Deschepper et al. [23] attempted to predict unplanned readmissions and compared the
performance of Random Forests against other machine learning algorithms, with Random
Forests demonstrating the best performance. The superiority of Random Forests has been
demonstrated in other similar studies [36,37], which are in line with our findings.

There are several studies which attempt to create predictive models for the outcome
of impatient mortality, and using, each, one or another Dx constructs. This is the first study
which attempted to compare the performance of these Dx constructs and provide to the
research community a resource which will provide to them insights when they come to
decision about what Dx construct to use in their health analytics paper.

We recommend that future research can focus on the development of prediction
oriented medical Dx classification systems, designed with their focus being their capacity
to perform well in predicting clinical outcomes. These efforts may utilize existing systems
(such as CCS), as their foundation. One approach would be a combined use of the clinically
meaningful and human-developed CCS with additional features that are extracted via
dimensionality reduction, such as Principal Component Analysis. We would also be
interested to see how the classification systems that the study compared perform, if they
are examined not for the entire clinical spectrum, but separately for different families of
medical conditions.

The authors acknowledge as a limitation of the study that only two outcomes were
studied (LOS and mortality), and therefore any conclusions about the appropriateness of
the different Dx constructs are only generalizable for these two outcomes. Additionally, this
study did not examine diagnosis-specific performance, for example, for which diagnoses the
different Dx constructs perform close to the ICD-10-CM and for which there was a greater
performance gap. The present study used a randomized sample of 50,000 cases instead of
the entire dataset, since Random Forests could not handle the enormous dimensionality
of ICD-10-CM for larger samples. We resampled the target dataset several times and
determined the maximum data size where Random Forests could be trained and cross-
validated in a reasonable amount of time. For the prediction of inpatient mortality, the
present study focused on the performance of the ‘died’ class, which is not only the most
challenging to predict correctly but is also the class that health systems and clinical decision
makers are most interested to know about. The models that we developed had a near-
perfect performance for the negative class ‘alive’. We chose not to focus on presenting
results for the ‘alive’ and to not draw attention to these non-contextually useful, near-perfect
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scores. Inpatient mortality, which is the important class in this study, is a hard-to-predict
problem, and this work was not designed to develop clinically applicable models, but to
rather compare the performance of the various Dx systems (MS-DRG, CCS and CCSR,
ICD-10-CM) for two well-studied outcomes of care. In summary, since this study is the first
ever effort to quantify the differences in the predictive performance of these Dx classification
systems, it is intended to serve as a useful reference in clinical outcome studies.
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