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Abstract: The modelling of trust values on agents is broadly considered fundamental for decision-
making in human-autonomous teaming (HAT) systems. Compared to the evaluation of trust values
for robotic agents, estimating human trust is more challenging due to trust miscalibration issues,
including undertrust and overtrust problems. From a subjective perception, human trust could
be altered along with dynamic human cognitive states, which makes trust values hard to calibrate
properly. Thus, in an attempt to capture the dynamics of human trust, the present study evaluated
the dynamic nature of trust for human agents through real-time multievidence measures, including
human states of attention, stress and perception abilities. The proposed multievidence human
trust model applied an adaptive fusion method based on fuzzy reinforcement learning to fuse
multievidence from eye trackers, heart rate monitors and human awareness. In addition, fuzzy
reinforcement learning was applied to generate rewards via a fuzzy logic inference process that has
tolerance for uncertainty in human physiological signals. The results of robot simulation suggest that
the proposed trust model can generate reliable human trust values based on real-time cognitive states
in the process of ongoing tasks. Moreover, the human-autonomous team with the proposed trust
model improved the system efficiency by over 50% compared to the team with only autonomous
agents. These results may demonstrate that the proposed model could provide insight into the
real-time adaptation of HAT systems based on human states and, thus, might help develop new ways
to enhance future HAT systems better.

Keywords: trust modelling; information fusion; human-autonomous teaming

1. Introduction

The emerging cooperation of artificial intelligence and advanced automation systems
provides an opportunity to ease the requirements of human labor and minimise risk in
various tasks. In many instances, human and autonomous agents are coupled in a human-
autonomous teaming (HAT) system to address complex problems where the tasks could be
either unreachable or dangerous for humans or not suitable for autonomous agents with
conventional automation [1–5]. Such problems often contain a series of factors that can
easily cause mistakes and result in a high cost, including, but not limited to, navigation,
patrolling, medical health insurance, rescue and scientific research [6–9].

As a critical factor in coordinating agents or allocating tasks, the evaluation of trust
values for human agents becomes an essential issue in the cooperation of human and
autonomous agents [10]. Previous studies proposed trust-based approaches to explore
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either human or teammate trust for the optimization of interactions among agents in
specified tasks [5,11–20]. The trust in autonomous agents can be well-modelled based on
their previous experience, states, and actions, where humans can judge the trustworthiness
of autonomous agents by observing their actions, e.g., whether they can act as expected.
Additionally, measuring human cognitive states may benefit the identification of under
what circumstances and contexts autonomous agents’ performance can be higher or lower
than expected [21,22]. However, it is challenging to fairly measure an individual’s states,
as cognitive states, such as mental stress and attention, are easily affected by human
behaviours, which could cause human cognitive states to change from time to time[5,23].
Therefore, in an attempt to properly evaluate the trustworthiness of human agents, this
study captured the human state in real-time and investigated the distributed human
trust dynamics in an HAT system. We considered human trust to be affected by human
psychological state and situational awareness as factors that indicated individuals’ bias
when making decisions during human-autonomous interactions. This definition aligns
with the concept proposed by Guo et al. [24] and Azevedo-Sa et al. [25].

In this study, we introduced a fusion mechanism in the proposed trust model to
estimate human trust values by fusing multiple pieces of information from human agents.
To obtain an adaptive fusion mechanism for the human trust model, we leveraged a
reinforcement learning (RL) algorithm to learn fusion weights from an external reward
via a simulation-based training process. One advantage of using RL is that it can learn
without prior knowledge, which avoids bias based on forepassed data [26,27]. However,
a mathematical equation to describe reward values is still difficult to define for a system
with multiple sources with RL. Moreover, uncertainty and noise are additional issues, as
external or ineffective information could confuse rewards with reinforcement learning. To
overcome these issues, we applied the fuzzy inference system (FIS) in our model. FIS is
well known as an effective method for generating rewards for complex scenarios and deal
with uncertainty from the environment. Several recent studies present the implementation
of FIS-based reward structures for different complex scenarios [28–30]. Evidence shows
that with the aid of its member functions and If-Then-Rule structure, FIS has an inherent
capability to overcome uncertainty and noise from the environment [23,31–33]. Therefore,
we used FIS in this study to generate rewards for the proposed trust model to overcome
the above issues.

To verify the effectiveness of the proposed trust model, we use a robot simulator to
design a ball collection task scenario that includes an HAT team working together. The HAT
team involves a human agent who has to cooperate with one or two robot agents to collect
balls with collision-free movements while performing the task. The human agent’s sight
is restricted; the environment can only be observed through a fixed monitoring camera
in the simulator. Robot agents can determine whether they follow human commands or
not, based on the human trust values evaluated by the proposed trust model. We used
a training scenario to learn the fusion method with the Q-learning algorithm and tested
it in three test scenarios with different settings. We further compare the performance of
the HAT, only human agents, and only robot agents. The comparison results demonstrate
that the proposed trust model can improve coordination in the HAT teams with different
human participants in all test scenarios, which also suggests that the proposed model can
adapt to various levels of human performance and generate reliable trust values via the
Q-learning algorithm.

The main contributions of this research are three-fold:

• This paper proposes a trust model to estimate human trust value in real-time. The
proposed trust model was applied to a ball collection task with robot agents, which
presents uses of the proposed trust model in the human-autonomous teaming frame-
work.

• The proposed trust model considers multiple pieces of information from a human
agent, e.g., attention level, stress index and situational awareness, by leveraging a
fuzzy fusion model. In this research, the attention level and the stress index are
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evaluated based on pupil response and heart rate variability, respectively; situational
awareness is measured from the environment through visual perception.

• We further use a Q-learning algorithm with a fuzzy reward to adaptively learn the
fusion weight of the fusion model. The fuzzy reward is generated by a TSK-type fuzzy
inference system, which facilitates the defending reward for complex scenarios and is
able to handle the uncertainty of human information.

This paper is organised as follows. Section 2 introduces related work on human trust
modelling. Section 3 describes the proposed Multi-Human-Evidence Based Trust Evalua-
tion Model. This section first describes the details of trust evaluation metrics, followed by
the details of the Trust Metric Fusion Model and the Reinforcement Learning Algorithm.
Section 4 presents the experimental methods, including scenario design, human agent
setup and recording and experimental procedures. Section 5 presents the experimental
results. Section 6 shows the discussion based on the experimental results. Finally, Section 6
presents conclusions.

2. Related Works

Several studies have modelled human trust by analysing human physiological signals
and behaviours. Sadrfaridpour et al. proposed a mutual trust model between human
and autonomous agents to coordinate collaboration [14]. The authors defined human
performance based on muscle fatigue and the recovery dynamics of the human body when
performing repetitive tasks, and the performance of autonomous agents was evaluated
using the difference between human and autonomous agents’ behaviours. Mahani, Jiang
and Wang applied a Bayesian mechanism to predict human-to-autonomy trust based on
human trust feedback to each individual robot and human intervention [16]. With the
aid of a data-driven approach, Hu et al. proposed a human trust model that classified an
individual’s trust and untrust with electroencephalography (EEG) signals and galvanic
skin response (GSR) data [15]. Similar work is also presented in [34]; the researchers ex-
ploited human cognitive states extracted from EEG data to model human workers’ trust in
Collaborative Construction Robots. In addition, the pupillary response is observed to be an
effective index for human trust estimation. Lu and Sarter exploited eye tracking metrics to
infer human trust in real time [17]. Alves et al. [18] consider kinesic courtesy cues from
human to machine as an important factor in establishing human trust in HAT collaboration.
Apart from pure human factors, some work considers human behaviour and machine
performance when modelling the mutual trust between human users and machines. In-
spired by human social behaviour, Jacovi et al. [19] proposed a formalisation method to
model mutual trust between a human user and a machine. Furthermore, some researchers
proposed computational trust models for HAT systems. In [11], the model of pupil dilation
is extended as a computational trust model to facilitate the interaction between humans
and robots. The computational model of human-robot mutual trust presented in [20]
considers multiple pieces of information in physical human-robot collaboration, such as
robot motion, robot safety, robot singularity, and human performance. Although all of the
above studies provide valuable perspectives on human trust modelling, some trust models
consider subjective feedback or the historical behaviour of humans, which is not reliable
enough and may lead to bias in the evaluation of present status and condition. Other
approaches that generate trust based on a single human cognitive state might also result
in a miscalibration of trust in complex scenarios. Thus, this study attempted to remedy
the lack of multievidence in current trust models by modelling information from multiple
sources that can be optimised without prior knowledge and provides a comprehensive
evaluation of human trust.

3. Multi-Human-Evidence-Based Trust Evaluation Model

This section introduces the proposed trust evaluation framework used to generate
human trust values based on real-time human cognition signals. The objective of the
proposed framework is to enable autonomous agents to be aware of the real-time human
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states and, therefore, to make a decision of the proper action based on the current human
conditions. By generating a single trust value without historical data, the proposed model
could reduce the complexity of the cooperation task and surely eliminate the bias from
previous behaviour. Figure 1 shows the structure of our model. The proposed model
combines multiple human evidence to estimate a single human trust value. The evidence
contains three human states, including attention level, stress index and human perception.
The information fusion block is responsible for combining the three pieces of evidence with
sorting and weight learning via fuzzy Q-learning. The final output of the framework is the
human trust value. Note that the human trust value is produced in real time, although the
learning of the fusion weights requires offline training. Details of the components of the
framework are presented in the following subsections.

Figure 1. Structure of the proposed model.

3.1. Trust Evaluation Metrics
3.1.1. Attention Level

As one of our three evaluation metrics for human performance, the attention level is
calculated based on pupil response. Research evidence has shown that the dynamics of
pupil response are an effective characteristic for estimating the human state of concentration
or distraction [35]. The attention level is computed based on Equation (1) proposed by
Hoeks and Levelt [35]:

y(t) = h(t) ∗ x(t), (1)

where y(t) is the pupillary response, h(t) is a system constant called the impulse response,
x(t) is the attention level and ∗ is the convolution operator. The variables y, h, and x
indicate the functions for the independent variable, time t.

The impulse response h(t), derived from the approach introduced by Hoeks and
Levelt [35], is set to represent the relation between attention and the pupillary response.
The computing equation of impulse response h(t) is presented in (2).

h(t) = s× (tn)× e(
−n×t
tmax ), (2)

where n is the number of layers that is set to 10.1, tmax = 5000 ms is the maximum response
time of participants, s = 1

1033 is a constant used to scale the impulse response, and t is the
response time, which are the same settings as in the cited equation [35].

3.1.2. Stress Index

It has been well accepted that the stress level of individuals can affect the correspond-
ing performance in a task. Thus, we also calculated human stress as one metric used for
human trust evaluation. In this paper, we used heart rate variability (HRV) as the stress
index of the participants. HRV is computed based on the measurement of the duration
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from a series of continuous heart cycles, known as the interbeat interval (IBI), which is used
to evaluate the human body’s autonomic regulation. A normal heart rate is in the range of
60–70 beats/min, which is controlled by the parasympathetic nervous system. During a
cognitive state with stress, human sympathetic nervous system activity increases, which
affects the duration of IBI and heart rate. To quantitatively evaluate the stress level, we
applied geometric methods to analyze the distribution and shapes of the IBI. The stress
index (SI) was computed with the IBI data by means of Baevsky’s equation in (3) [36].

SI =
AMo

2×Mo×MxDMn
, (3)

where AMo is the pattern amplitude expressed as a percentage, Mo is the mode that
represents the most frequently occurring RR interval (the interval between successive
heartbeats), and MxDMn is the variation range, which reflects the variability degree of the
RR interval, as shown in Figure 2. The mode of Mo is simply taken as the median of the RR
intervals, and AMo is the height of the histogram of the normalized RR interval (the width
is 50 ms). MxDMn represents the difference between the shortest and longest RR intervals
for each participant.

Figure 2. Histogram of the RR distribution for Baevsky’s stress index, in which n is the number
of beats, N is successive beat intervals, AMo is the height of the histogram of the normalised RR
interval, MxDMn represents the difference between the shortest and longest RR intervals, and Mo is
the median of RR intervals.

3.1.3. Human Perception

Human perception measures confidence in the decision-making of the human agent
based on the situational awareness of the human in a HAT environment through visual
perception. The simulation task applied in this study is a target (ball)-collection task. As
shown in Table 1, based on human perceptions of the autonomous agent and target, four
situations could occur during the task. The first situation is that the human can see both the
autonomous agent and target; the second and third are that the human only observes either
the target or the agent, respectively; and last, the human can see neither the autonomous
agents nor the target. We use four factors, including the indexes to indicate position (S1),
orientation (S2), distance (S3) and view angle (S4), to estimate human perception ability,
where the human perception evaluation level equals f (S1) + f (S2) + f (S3) + f (S4). More
details of our experiment and indexes are elaborated in Section 4.
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Table 1. Four situations of human perception.

Human Perception

First situation Agent + Target

Second situation No Agent + Target

Third situation Agent + No Target

Fourth situation No Agent + No Target

3.2. Trust Metric Fusion Model

The fusion model combines three pieces of evidence from human states in real time to
produce a trust value. The function is defined as F : [0, 1]n → [0, 1], through which multiple
values located in the interval [0, 1] are assigned to a single final value. We use the Hamacher
product [37] to implement the fusion for the proposed trust model. The Hamacher product
is a nonlinear transformation operation that uses confidence values from detectors to
produce the final confidence for the fusion. If the evaluated single input values improve,
the final trust value will increase such that F(0, 0, . . . , 0) = 0 and F(1, 1, . . . , 1) = 1.
When all single input values evaluated are zero, the final trust value falls to the minimum;
in other words, the human is completely untrustworthy. However, if all the values of the
evaluated input are 1, the upper limit of the trust value is 1. Assuming that the result of the
fusion F(E) satisfies the constraint min

(
E1, E2, . . . , En) ≤ F(E) ≤ max

(
E1, E2, . . . , En),

we can define an aggregation function as follows:

F(E) =
n

∑
i=1

f (Ei − Ei−1, wi), (4)

where E = (E1, E2, . . . , En) ∈ [0, 1]n is an increasing permutation of evaluations such
that 0 ≤ E1 ≤ E2 ≤ . . . ≤ En, w = [w1, w2, . . . , wn] is the fusion weight vector, and
w1 + . . . + wn = 1.

We use the Hamacher product to fuse each pair of evidence. The Hamacher t-norm
involves the use of a fuzzy measure [35]. Therefore, the fusion model that produces the
trust value based on the three pieces of evidence is defined as follows:

Fh(E) =
g(E)× wi

g(E) + wi − g(E)× wi
, (5)

where Fh(E) represents the human trust value, and g(E) = ∑n
i=1 (Ei − Ei−1). The fusion

weights w = [w1, w2, w3] are learnt by Q-learning based on collective human state data,
including the pupil, HRV and human perception signals. In addition, we used the min-max
normalisation for the pupil and HRV data to normalise the value in the range of [0, 1].

3.2.1. Reinforcement Learning

This section discusses the Q-learning method used to update the fusion weights. As
a model-free, off-policy reinforcement learning method, Q-learning tracks what has been
learnt and finds the best course of action for the agent to gain the greatest reward [38,39].
As discussed above, the final trust value is calculated by multiplying the evaluated values
of three human states by the corresponding weights and then summing the results. Weights
represent the relative importance of each individual evaluation, and the vector of weights is
initialised randomly. Thus, since Q-learning is capable of transferring functions or reward
functions with random factors [40], we applied its algorithm to determine which weight
vector is used to fuse the estimated trust values from a random perspective. The equation
to update the Q-value with action i and state s in each step is shown below:

Q(s, i)← Q(s, i) + α×
(

w(s, i)×∇+ γ×
n

∑
j=1

(
w
(
s′, j

)
×Q

(
s′, j

))
−Q(s, i)

)
(6)
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where α is a fixed value used as the learning rate that satisfies the condition 0 < α ≤ 1,
w(s, i) represents the value of the weight in state s and action i, the parameter γ is a tempo-
ral discount factor that satisfies the condition 0 < γ ≤ 1, s′ is the state after performing the
action under state s, and ∇ is the reward. Here, we set α to 0.1 and γ to 0.2. Additionally,
we update the weight vector based on the Q-values after updating the Q-tables. Two
conditions are used when applying the value of weight w(s, i): (1) The summation of
w(s, i) is normalized to 1. (2) Parameter δ is within the range (0, 1].

Formula (7) shows the weight updating rule:

w′(s, i)← w(s, i) +

(1− w(s, i))× δ×
(

1
1+e−a×Q(S,i)+b

)
, i f i = arg maxj Q(s, j)

(0− w(s, i))× δ×
(

1
1+e−a×Q(S,i)+b

)
, otherwise.

(7)

Then, we normalize the weight value in (8) so that ∑n
i=1 w(s, i) = 1:

w(s, i)← w′(s, i)
∑n

j=1 w′(s, j)
, (8)

3.2.2. Fuzzy Reward

This section presents the FIS used to produce fuzzy rewards for RL to learn fusion
weights and adjust the Q-learning reward. The FIS is composed of a zero-order Takagi–
Sugeno–Kang (TSK) fuzzy system [41–43], which can be defined as

RI : I f x1(k) is Ai1 And . . . And xn(k) is Ain

Then y1(k) is ai,
(9)

where x1(k), . . . , xn(k) represents the input variables at time k, Ai1,. . . , Ain are the fuzzy
sets, and ai represents the singleton consequence. Moreover, µAij is the membership value
of Aij, and Φi is the firing strength of rule Ri. We use algebraic multiplication to implement
the fuzzy AND operation. Then, Φi with input data set ~x(k) = [x1(k),. . . , xn(k)] can be
described as

Φi(~x(k)) =
n

∏
j=1

µAij(xj(k)) (10)

Supposing the FIS consists of r rules, the output of the FIS y(k) can be calculated by
the weighted average defuzzification method in (11).

y(k) = ∑r
i=1 Φi(~x(k))ai

∑r
i=1 Φi(~x(k))

(11)

To properly score the relationship between the generated trust value and human
performance, we used the fuzzy reward to feed back the score to the proposed trust model
to tune the fusion weights. We defined four rules for reward evaluation based on human
performance for the Q-learning algorithm. There are two input variables for each fuzzy
rule: human reaction time τh and human trust value Fh. Here, the reaction times are divided
into fast and slow camps, and the trust values also contain high and low levels. Thus, four
combinations exist. The rules are defined as follows.

R1: If τh(k) is A f ast and Fh(k) is Bhigh, then r(k) = 1.
R2: If τh(k) is Aslow and Fh(k) is Blow, then r(k) = 1.
R3: If τh(k) is A f ast and Fh(k) is Blow, then r(k) = −1.
R4: If τh(k) is Aslow and Fh(k) is Bhigh, then r(k) = −1.

where A f ast and Aslow are fuzzy sets describing fast and slow human reaction times,
respectively. Specifically, under R1, humans make decisions faster and are trustworthy, the
trust value of the fusion result is high, which represents a positive result, and the reward
value of R1 is 1. Under R2, humans are slow to make decisions and, thus, untrustworthy.
In addition, the fusion result of the trust value is low. The two input variables of R2 both
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show a consistently negative result, so the reward value of R2 is 1. However, if the trend is
inconsistent, as in R3 and R4, the reward is −1.

The membership value of A f ast and Aslow is computed by the membership function,
as follows

µA f ast =

{
f
(

τh

∣∣∣m f ast , σf ast

)
, τh > m f ast,

1, otherwise
(12)

and

µAslow =

{
f (τh|mslow , σslow), τh > mslow,
1, otherwise

(13)

where f (x|m, σ) = exp
[
− (m−x)2

σ2

]
,Bhigh and Blow are the fuzzy sets describing high and low

human trust values, respectively. The membership value of Bhigh and Blow is computed by
the membership function as follows:

µBhigh =

{
f
(

Fh

∣∣∣mhigh , σhigh

)
, Fh > mhigh,

1, otherwise
(14)

and

µBlow =

{
f (Fh|mlow , σlow), Fh > mlow,
1, otherwise

(15)

where mhigh and mlow of the reaction time are calculated using the average reaction time
and standard deviation of reaction times from all participants. The slow reaction time is
defined as the time values that are twice the standard deviation more than the average
reaction time, and the fast reaction time is twice the standard deviation less than the average
reaction time. Figure 3 shows a schematic diagram of the four rules.
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Figure 3. Four rules of the fuzzy neural network.

4. Methods
4.1. Participants

Six healthy male participants aged 21 to 24 years participated in this study. Following
an explanation of the experimental procedure, all participants received an informed consent
form and signed before participating in the study. This study received the approval of the
Institute’s Human Research Ethics Committee of National Chiao Tung University, Hsinchu,
Taiwan. None of the participants reported a history of psychological disorder, which could
have affected the experimental results.

4.2. Scenario Design

The built simulation scenario of ball collection is designed by a professional robot
simulator, Webots 8.6.2 (Cyberbotics Ltd., Lausanne, Switzerland). As shown in Figure 4,
the environment is fenced with several balls and obstacles inside. A human agent and a
robot agent are expected to work together to collect the balls without collision between the
robot and the wall or obstacles. Humans can only observe the entire environment with
restricted sight through a monitoring camera located in the top left corner of the scenario.
On the basis of the observation, the human can instruct the robot to search for the ball, and
the robots are also allowed to explore the environment by themselves when there is no
instruction from the human or the human trust values are not high enough to be trusted.
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(a) Scenario with one robot and three balls.

(b) Participant’s view via the monitoring cam-
era during the experiment.

Figure 4. Scenario for training data collection (Scenario_1).

4.3. Human-Agent Setup and Recording

The design of the whole scenario is affected by not only the autonomous agents’
actions but also human physiological factors. Here, we use two instruments, eye-tracking
and a heart rate monitoring watch, to measure the human physiological state in real time, as
shown in Figure 1. Eye tracking data were recorded using the Tobii Pro X2-30 screen-based
eye tracker (Tobii AB Corp., Stockholm, Sweden). We corrected the pupil data and gaze
location of each participant to monitor their concentration level and fixation pathways.
Heart rate data was recorded using the Empatica-E4 wristband (Empatica Inc., Cambridge,
MA, USA). We used the real-time heart rate of each participant to estimate the current
stress level of the human agent while performing the task.

Human perception ability was identified by the monitoring camera used to provide
sight of the scenario situation for the human agent, as presented in Figure 4a. Following
our definition of human perception in Section Trust Evaluation Metrics, we categorised
human perception into four classes (see Table 1). Real-time perception ability is calculated
according to the following formula:

Ea =k1 ×
(

1− ymr

y

)
+ k2 ×

(
1− ymb

y

)
+ k3 ×

(
1− θrb

π

)
, (16)

where Ea is the value of current perception ability, k1, k2, k3 are predefined weights, ymr is
the distance between the monitoring camera and the robot, ymb is the distance between the
monitor and ball, θrb is the deviation value between the robot and ball, and y is the distance
the monitor can measure, as shown in Figure 4b.

We set k3 as the largest weight because it represents the situation in which both the
robot and ball can be perceived, in which humans have the best chance of completing the
task successfully. k2 is given the second highest weight that represents the situation in
which the human knows the exact position of the ball, although the robot is not visible.
Finally, k1 has the smallest weight, which indicates the situation in which the human
does not know the location of the ball, although the robot is visible. Every situation is
transformed into a corresponding evaluation value, which ranges in value between 0 and 1.
Here, if the human cannot see the ball or robot, the corresponding terms are set to zero in
the equation. Then, if neither the robot nor ball can be seen, the third term in the equation
is set to 0. Furthermore, if an object does not exist in some conditions, the value of that item
is also set to 0.

4.4. Experimental Procedures

During the experiment, participants sat in front of the computer screen while per-
forming the task. Each participant first performed a calibration for the eye tracker was
performed by each participant first. Next, we introduced the operation and process of the
whole experiment, including how the robot is controlled and various other considerations
in the experiment. While conducting the ball-collection task, participants used two keys on
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the keyboard to control the clockwise or anticlockwise rotation of the robot, following our
instructions. The balls were scattered around the environment, including invisible or blind
areas. The participant can only monitor the scenario from a fixed perspective, as mentioned
above, and an example of the participant’s view via the monitoring camera is shown in
Figure 4b. The task would be completed once all the balls have been found by the robot.

For the cooperative work between human and robot agents, we define the process of
their interaction in each trial. First, the human has eight seconds to set the facing direction
for the robot through rotation control. Then, the robot moves in the direction the human
agent has selected for 15 s. To discard the direction setting for the robot, the human agent is
allowed to select robot self-exploration. The robot may move for more than fifteen seconds
if it detects a target by itself during self-exploration. A schematic diagram of each trial is
shown in Figure 5. Here, tp represents the time that the human controls the direction of
the robot, tpmax represents the maximum time for the human to control the robot, and tr
represents the time that the robot acts and follows the command from the human.

Figure 5. Robot and human interaction in each trial.

5. Results

This section describes the results of our simulation experiment with our proposed trust
model in the human-autonomous cooperation task scenario. We first discuss the training
results by presenting the convergence of the fuzzy reward and its standard deviation.
Then, we provided our testing results based on three different scenarios with our trained
trust model.

5.1. Training Results

The training process inputs the data collected in Figure 4 into the Q-learning. In (6),
we set the learning rate, α, to 0.1 and the discount factor, γ, to 0.2. These settings are
commonly applied to various scenarios with the fuzzy neural network to obtain the reward
value [43–45]. We implemented 100 episodes to train our model to eliminate the impact
of the unstable reward in the first ten episodes. The visualized convergence result of the
reward values from each episode is shown in Figure 6. The data recorded in Figure 5
were used to train the reinforcement learning method, including three pieces of human
evidence signals and the reaction time of humans tp. The training results combined
cross-subject data. One of the best-performing weights with the best reward values is
[w1, w2, w3] = [0.2440, 0.3688, 0.3872].
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Figure 6. Convergence of the fuzzy reward during the training process of the fusion mechanism.

5.2. Testing Results

We used the trained weights to fuse the three human states. The fusion results from all
six participants are used to assess the human trust value, which ranges from 0 to 1. Then,
we conducted the tests in one training (Scenario_1) and three test scenarios (Scenario_2–4).
Figure 7 presents the three test scenarios, which we refer to as Scenario_2, Scenario_3
and Scenario_4. Tables 2 and 3 provide all the test results. We statistically analyzed the
execution time of three task-performing modes, including human instruction (robot follows
human instruction only to find the targets), a collaboration of human and robot agents
(HAT) and robot random search in Table 2. The results contain both the completion time
and decision time. Additionally, the number of operations in the collaboration and human
instruction modes are presented in Table 3.

Table 2. Completion time under Scenario_1–4, HAT represents experiments with control switching
between the human and robot.

Evaluation of Participant

Completion Time 1 2 3 4 5 6

Scenario Setting Time (s)

human instruction 223 175 194 196 177 216

Scenario_1 HAT 194 138 171 140 131 143

random search 287

human instruction 165 181 168 121 132 129

Scenario_2 HAT 117 119 123 98 100 90

random search 185

human instruction 408 428 407 469 427 450

Scenario_3 HAT 372 343 371 403 380 359

random search 573

human instruction 209 237 248 229 222 242

Scenario_4 HAT 178 208 195 201 197 213

random search 330
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Table 3. Number of decisions made in Scenarios_1–4.

Evaluation of Number Participant
of Decisions Made 1 2 3 4 5 6

Scenario Setting Number of Decisions

Scenario_1
human instruction 6 6 6 6 6 6

human/robot 4 / 2 4 / 2 4 / 2 4 / 2 5 / 1 4 / 2

human instruction 6 / 6 5 / 6 6 / 6 4 / 5 4 / 6 4 / 5

Scenario_2 human/blue 4 / 2 4 / 1 5 / 1 3 / 1 3 / 1 2 / 2

human/pink 2 / 4 3 / 3 4 / 2 3 / 2 5 / 1 2 / 3

Scenario_3
human instruction 12 12 13 12 12 11

human/robot 9 / 3 9 / 3 7 / 6 7 / 5 8 / 4 6 / 5

human instruction 5 / 7 6 / 7 6 / 8 6 / 7 6 / 7 8 / 7

Scenario_4 human/blue 3 / 2 3 / 3 2 / 4 2 / 4 4 / 2 4 / 2

human/pink 7 / 0 7 / 0 5 / 3 5 / 2 4 / 3 4 / 3

(a) Small scenario with two robots and three balls. (Scenario_2)

(b) Large scenario with one robot and
six balls. (Scenario 3)

(c) Large scenario with two robots and
six balls. (Scenario_4)

Figure 7. Scenarios for testing.
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Overall, the completion time in the collaboration mode is always the shortest compared
to the other two modes for all participants. Specifically, in Scenario_1 shown in Table 2,
Participant 5 spent the shortest time completing the task in collaboration mode, and the
proportion of manipulation by humans was also the highest, indicating that a high level of
trust was evaluated for this participant while performing the ball collection task.

In Scenario_2, Participant 3 took the longest time to complete the task in collaboration
mode. However, the proportion of manipulations by humans was also the highest in this
case. This may be because Participant 3 maintained a high level of trust, but did not control
the robot well, which led to a longer time required to complete the task. In Scenario_3,
the second participant took the shortest time to achieve the task in collaboration mode,
and the robot was involved in the least amount of autonomous control. This result may
suggest that the second participant was trustworthy and able to identify the shortest route
to save a considerable amount of time during the experiment. In Scenario_4, the result
of the decisions indicates that Participants 1 and 2 controlled the robot all by themselves
without robot intervention, and the completion time varied greatly. This may suggest that
both participants were trustworthy, but the first participant could identify a better path
than the second.

6. Discussion

This section discusses the improvement of efficiency among the three modes (robot
random search, human instruction and collaboration/HAT) and explores the reasons for
the improved efficiency. The magnitude of the improvement for each scenario is shown in
Table 4.

Table 4. A Comparison of improvement rate in Scenarios_1–4. HAT represents experiments with con-
trol switching between the human and robot, H represents experiments with only human instructions,
and RS represents experiments with only robot random search

Scenario Setting

Participant

1 2 3 4 5 6 Avg

Improvement Rates

Scenario_1

H vs. RS 22.29 39.02 32.4 31.71 38.33 24.74 31.42

HAT vs. RS 32.4 51.92 40.42 51.22 54.36 50.17 46.75

HAT vs. H 13.01 21.14 11.86 28.57 25.99 33.79 22.39

Scenario_2

H vs. RS 10.81 2.16 9.19 34.59 28.65 30.27 19.28

HAT vs. RS 36.76 35.68 33.51 47.02 45.95 51.35 41.71

HAT vs. H 29.09 34.25 26.79 19.01 24.24 30.23 27.27

Scenario_3

H vs. RS 28.8 25.31 28.97 18.15 25.48 21.47 24.69

HAT vs. RS 35.08 40.14 35.25 29.67 33.68 37.35 35.19

HAT vs. H 8.82 19.86 8.85 14.07 11.01 20.22 13.81

Scenario_4

H vs. RS 36.67 28.18 24.85 30.61 32.73 26.67 29.95

HAT vs. RS 46.06 36.97 40.91 39.09 40.3 35.45 39.79

HAT vs. H 14.83 12.24 21.37 12.22 11.26 11.98 13.98

In Scenario_2, Participant 3 conducted the task with the largest number of decisions
made by humans and the longest completion time, and, on the contrary, Participant 6 had
the largest number of decisions made by two robots and the shortest completion time.
The two robots follow Participant 3’s instructions nine times in 12 trials, which is 75%
of decisions made by the human, and follow Participant 2’s instructions seven times in
11 trials, which is 63.6% of decisions made by the human. Whereas, Participant 6 made
decisions four times for the two robots in nine trials, which is 44.4% of decisions made
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by the human. To visualise how these two participants conducted the tasks, we present
the robot paths and control decisions in Figures 8 and 9 for each participant, respectively.
As revealed in Figure 8, Participant 3 controlled the pink robot in the third trial, but did
not adjust it in the right direction, causing the pink robot to take a long detour to find
the ball and wasted a substantial amount of time. In contrast, the pathways of robots in
Figure 9 indicate that Participant 6 could well control both robots and guide them on a
shorter route to find the balls. Furthermore, as the greatest improvement achieved between
human instruction and HAT, we also visualised the route of the task of Participant 2, as
shown in Figure 10. In the human instruction condition, Participant 2 failed to adjust the
robot in the right direction in the fifth trial, which resulted in a miss-out of the targets for
the robot. However, in the collaboration condition, due to the lower trust value in the
fifth trial for Participant 2 than the threshold value, the pink robot did not receive human
instructions and proceeded forward to collect the ball. In other words, along with the
successful awareness of human states, the robot made the decision itself and achieved
better performance through an efficient evaluation of human states by our model.

In addition to Scenario_2, the collaboration controlled by our proposed model also
greatly improves in the more complicated scenarios. The performance of Participant 2 in
Scenario_3 indicates that the human decision was estimated to be trustworthy to make
the shortest choice of path through the aid of our evaluation model on real-time human
states, which achieved an optimal decision on the route to save a lot of time to complete the
task. Similarly, in Scenario_4, Participant 1 and Participant 2 were successfully evaluated
as trustworthy agents, although Participant 1 could choose the better path. The test results
shown in Table 2 suggest that the fusion weights trained with the Q-learning algorithm in
Scenario_1 can be directly applied to more complicated scenarios without retraining. The
fusion weights were trained with collected cross-subject human data and can be used in
real-time scenarios, implying that the FIS can overcome the subject difference in human data
and compute appropriate rewards for the Q-learning algorithm to tune the fusion weights.

In summary, the proposed multievidence-based trust evaluation model could generate
a trust-considering value for human agents that reflects the dynamics of human states
in real-time. The comparison among robot random search, human instruction only, and
collaboration modes demonstrates that the collaboration between human and autonomous
robots controlled by the proposed trust model has adaptability and robustness for the
ball-collection task under different levels, which greatly improves the task completion time
compared to the other two modes.
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(a) Control switch between human and robot.

(b) Robot path trajectory.
Figure 8. Experimental results made by Participant 3.
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(a) Control switch between human and robot.

(b) Robot path trajectory.
Figure 9. Experimental results made by Participant 6.
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(a) Control switch between human and robot.

(b) Robot path trajectory.
Figure 10. Experimental results of Participant 2.

7. Conclusions

This study proposed an adaptive trust model considering multiple real-time human
cognitive states. The proposed trust model uses a fusion mechanism to combine various
types of information, namely human attention level, stress index, and human perception.
To verify the performance of the proposed trust model, we implemented four environmental
settings, including different types of obstacles and different numbers of robot agents. We
compare the performance of the HAT with those of pure human agents and those of robot
agents. The results of the comparison show that the HAT team with the proposed trust



Technologies 2022, 10, 115 19 of 21

model can improve the efficiency of the given task by at least 13% in different scenario
settings; The HAT team coordinated by the proposed trust model can complete the given
task faster than others. Our results also suggest that the trust value generated based on
these three pieces of evidence can reflect the performance of a human agent more accurately,
which contributed to an improvement in efficiency for the cooperation between human
and autonomous robot agents in all test scenarios. These results demonstrate that the
proposed model can adapt to various levels of human performance and generate reliable
trust values via the reinforcement learning algorithm. The main limitation of this study is
our participant pool; only male participants were involved in our experiments. For future
works, we will enlarge the participant pool and consider gender balance to conduct more
comprehensive research. Furthermore, we will develop trust modelling to assess the trust
of robot agents and then create a mutual trust model to provide more informatic reasoning
for interaction in the HAT systems.
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