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Abstract: To improve the accuracy and real-time performance of vehicle recognition in an advanced
driving-assistance system (ADAS), a vehicle recognition method based on radar and camera informa-
tion fusion is proposed. Firstly, the millimeter-wave radar and camera are calibrated jointly, the radar
recognition information is mapped on the camera image, and the region of interest is established.
Then, based on operator edge detection, global threshold binarization is performed on the image
of the region of interest (ROI) to obtain the contour information of the vehicle in front, and Hough
transform is used to fit the vehicle contour edge straight line. Finally, a sliding window is established
according to the symmetry characteristics of the fitting line, which can find the vehicle region with
the highest symmetry and complete the identification of the vehicle. The experimental results show
that compared to the original recognition region of the radar, the mean square error of this algorithm
is reduced by 13.4 and the single frame detection time is reduced to 28 ms. It is proven that the
algorithm has better accuracy and a faster detection rate, and it can solve the problem of an inaccurate
recognition region caused by radar error.

Keywords: vehicle detection; millimeter-wave radar; machine vision; information fusion

1. Introduction

Environmental perception is a key technology in the research field of advanced driving-
assistance systems (ADAS). The sensors currently used in environmental perception mainly
include a millimeter-wave radar, lidar, and camera. A millimeter-wave radar can detect
the distance, relative velocity, and azimuth information of the target in front, but cannot
acquire category and size information of the target. Lidar can create the point cloud of
the measured target with depth information, but due to the expensive price and complex
algorithm, it has not been popularized on a large scale. A camera can collect images with
rich environmental information, but distance information is missing in the detection targets
of images. Through information fusion, more accurate and less redundant information
can be obtained than with a single sensor, which can improve the safety of vehicle driving.
Therefore, the use of multi-sensor information fusion is an inevitable development trend.

For the research on multi-sensor sensing systems, Teoh and Bräunl [1] proposed a fast
vehicle-detection method based on vehicle edge symmetry and horizontal shadows, which
searched the symmetrical area overall based on the characteristics of the vehicle. However,
the algorithm only used a single visual sensor and did not consider the identification infor-
mation of a millimeter-wave radar. During the vehicle driving process, the environmental
information will add noise to the image, making it impossible to accurately identify areas
of vehicle symmetry. Therefore, Satzoda and Trivedi [2] proposed a symmetry-detection
algorithm based on closed contour corner information. The symmetry error detected by
the algorithm became smaller and solved some problems, but it still needs to be improved
to meet real-time requirements.

In the work of Mingchi et al. [3], a camera and millimeter-wave radar were fused,
where the millimeter-wave radar was used to provide the camera with a region of interest.
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However, when symmetry analysis was performed for the region, the symmetry axis was
only determined by calculating the midpoint of the shadow at the rear of the vehicle. Af-
fected by the visual ranging error, it could not guarantee high accuracy. Parvin et al. [4] first
acquired the approximate position of the vehicle in the image by extracting the overall fea-
tures of the image, then projecting the millimeter-wave radar detection area into the image
to match the vehicle features for information fusion, but this method had a slow processing
speed, and the acquisition of the overall features required a complicated operation.

To enhance the image feature-extraction ability, Sun et al. [5] used the vehicle recogni-
tion algorithm based on the AdaBoost classifier, which achieved some beneficial results, but
this algorithm only explored the two-dimensional detection performance, failing to analyze
its fusion effect and ranging accuracy. On this basis, Hu et al. [6] calculated the intersection
ratio between the visual detection frame and the millimeter-wave radar detection frame,
and they used this as the basis for determining the front target, but the generation of a
visual detection frame in this algorithm was affected by the training data. In the case of
multi-vehicle occlusion, leak detection of the algorithm would occur.

Wang et al. [7] proposed a vehicle target-detection algorithm based on the fusion of the
millimeter-wave radar and a monocular camera using rectangular boundary constraints
and active contour detection. The algorithm used the active contour method to detect the
vehicles within the boundary. Yet, in the detection process, the active contour method was
seriously affected by the occlusion of light and shadow, so it was difficult to adapt to a
traffic scene with multiple vehicles. Han et al. [8] proposed a fusion detection framework of
the millimeter-wave radar and a camera based on probabilistic reasoning, which completely
inputted the recognition results of the classifier and the detection results of the millimeter-
wave radar into the probabilistic reasoning module to estimate the location and category of
the target. However, the algorithm involved a large amount of computation and time delay.

Jiang et al. [9] proposed a target-detection algorithm based on millimeter-wave radar
and camera fusion in foggy weather. In the fusion stage, the weighted method was used
to simply combine the neural network detection results with the radar target estimation
results, but the accuracy of the detection results was not high enough.

In view of the shortcomings of the millimeter-wave radar and camera fusion in
environmental perception, the method proposed here first uses coordinate transformation
to achieve the spatial fusion of the millimeter-wave radar and camera, then uses projected
target points to generate a region of interest on the image to reduce the cost of pixel
searching. In this area, image preprocessing, edge detection, and roof line fitting are
performed. Furthermore, the prior information on the vehicle size is used to establish
a sliding window, and a symmetry function is proposed to guide the translation of the
window. Finally, the identification area with the highest linear symmetry on the roof
is found to accurately complete the vehicle identification. This paper qualitatively and
quantitatively proves the effectiveness of the proposed fusion method for correcting the
inaccurate regions detected by radar through real-vehicle experiments, and explores the
determination of the sliding window size in scenes under different lighting.

2. Radar and Camera Information Fusion

Radar and cameras are used to perceive the road environment and collect information
about vehicles ahead. In this paper, the 77 GHz ARS404 mm wave radar from Continental
Germany and the MV-SUA134GC monocular industrial camera from MindVision are used
as sensors. The installation positions of the millimeter-wave radar and the camera are
shown in Figure 1. The millimeter-wave radar is installed in the center of the front bumper
of the vehicle and fixed with bolts. The camera is fixed on the front windshield of the
vehicle with a suction cup, which is specifically installed under the rearview mirror of the
vehicle. Taking the horizontal road surface as the reference, the radar axis and the camera
optical axis are on a vertical plane perpendicular to the road surface.
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Figure 1. Radar and camera installation locations.

2.1. Coordinate Fusion of Sensors

The camera imaging model follows the ideal pinhole imaging principle. The principle
is that the light in the three-dimensional space needs to be mapped to the two-dimensional
plane of the camera. Therefore, to establish the three-dimensional world coordinate system
and pixel coordinate system, the camera needs to be calibrated to measure its internal and
external parameters. Figure 2 shows the camera imaging model, which represents the
process of the conversion of a point from the world coordinate system to the image pixel
coordinate system.
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In Figure 2, Ow − XwYwZw is the world coordinate system, Oc − XcYcZc is the cam-
era coordinate system, OI − XIYI is the image coordinate system, and Or − UV is the
pixel coordinate system. According to the mapping principle, the transformation relation-
ship between the world coordinate system and the pixel coordinate system is shown in
Formula (1):

Zc

 u
v
1

 =

 fx 0 u0 0
0 fy v0 0
0 0 1 0

[ R T
0T 1

]
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Yw
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1

 = M2M1


Xw
Yw
Zw
1

 (1)

where (u, v) is the pixel coordinate, (u0, v0) is the pixel coordinate of the optical center,
fx and fy are the normalized focal lengths in the x and y axes directions of the camera,
respectively, where the unit is pixels, R represents the three-dimensional rotation matrix, T
represents the three-dimensional translation vector, M2 is the camera’s internal parameter
matrix, and M1 is the camera’s external parameter matrix.

As shown in Figure 3, Oc −XcYcZc is the camera coordinate system, and OR −XRYRZR
is the millimeter-wave radar coordinate system. The millimeter-wave radar has a distance
of ZRC from the camera in the Z axial direction, and a distance of YRC from the camera in
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the Y axial direction. The transformation relationship between the millimeter-wave radar
coordinate system and the camera coordinate system is shown in Formula (2).

 XC
YC
ZC

 =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0




XR
ZR
1
1

+


0

−YRC
ZR
1

 (2)

By combining Formulas (1) and (2), the conversion from the radar coordinate system to
the pixel coordinate system can be completed. The position information of a point detected
by the radar in the three-dimensional world can be mapped to the pixel coordinate system,
thus achieving coordinate fusion between sensors.
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2.2. Acquisition of Millimeter-Wave Radar Region of Interest

The acquisition of the region of interest includes the determination of the location
and size of the region. As shown in Figure 4, the millimeter-wave radar consists of one
transmitter (TX) and four receivers (RX), and the three-dimensional coordinates and speed
of the front target are obtained according to the reflected waves of different phases. The
three-dimensional coordinates (XR, YR, ZR) of the target are used as the center point of the
region of interest. Specifically, Formula (2) is used to complete the conversion from the
millimeter-wave radar coordinate system to the camera coordinate system and combined
with Formula (1), the center point is projected onto the image (the red point in Figure 5),
and the center position of the region of interest is completed.

Technologies 2022, 10, x FOR PEER REVIEW 5 of 15 
 

 

point is taken as the center of the rectangular frame. The size of the rectangular frame is 
determined according to the perspective transformation of the camera. Figure 6 is a 
schematic diagram of a perspective transformation where L  is the distance from the 
camera to the vehicle, H  is the vehicle height, W  is the vehicle width, cH  is the height 

of the field of view, cW  is the width of the field of view, β  is the vertical angle of view, 

α  is the horizontal angle of view, bX  is the width of the captured image, bY  is the 
height of the captured image, w  is the width of the vehicle in the image, and h  is the 
height of the vehicle in the image. 

 
Figure 4. Millimeter-wave radar antenna principle. 

 
Figure 5. Radar detection target is projected on the image. 

 
Figure 6. Schematic diagram of perspective transformation. 

Figure 4. Millimeter-wave radar antenna principle.



Technologies 2022, 10, 97 5 of 15

Technologies 2022, 10, x FOR PEER REVIEW 5 of 15 
 

 

point is taken as the center of the rectangular frame. The size of the rectangular frame is 
determined according to the perspective transformation of the camera. Figure 6 is a 
schematic diagram of a perspective transformation where L  is the distance from the 
camera to the vehicle, H  is the vehicle height, W  is the vehicle width, cH  is the height 

of the field of view, cW  is the width of the field of view, β  is the vertical angle of view, 

α  is the horizontal angle of view, bX  is the width of the captured image, bY  is the 
height of the captured image, w  is the width of the vehicle in the image, and h  is the 
height of the vehicle in the image. 

 
Figure 4. Millimeter-wave radar antenna principle. 

 
Figure 5. Radar detection target is projected on the image. 

 
Figure 6. Schematic diagram of perspective transformation. 

Figure 5. Radar detection target is projected on the image.

Considering that the vehicle outline is roughly rectangular, a rectangular region of
interest is established with the projection point of the radar detection target as the center.
After acquiring the mapping point of the millimeter-wave radar data in the image, the
point is taken as the center of the rectangular frame. The size of the rectangular frame
is determined according to the perspective transformation of the camera. Figure 6 is a
schematic diagram of a perspective transformation where L is the distance from the camera
to the vehicle, H is the vehicle height, W is the vehicle width, Hc is the height of the field of
view, Wc is the width of the field of view, β is the vertical angle of view, α is the horizontal
angle of view, Xb is the width of the captured image, Yb is the height of the captured image,
w is the width of the vehicle in the image, and h is the height of the vehicle in the image.
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Since the camera imaging model follows the ideal pinhole imaging principle, the
similar triangle principle can be used, and the rectangular frame size of the vehicle in the
image can be calculated according to Formula (3):

H
h = 2Hc

Yb
Hc ≈ L tan β

2 H =
2L tan β

2
Yb

h

W
w = 2Wc

Xb
Wc ≈ L tan β

2 W =
2L tan α

2
Xb

w
(3)

According to the relevant laws and regulations of road traffic and the national standard
of China GB 1589–2004 “Road Vehicle Outline Dimensions, Axle Loads and Mass Limits”
regarding vehicle dimensions, the vehicle height is 1.6 times that of the width. To ensure
that the region of interest can completely reflect vehicle information, a rectangular frame
with a width of 2.6 m and a height of 4.2 m is used as the region of interest of the radar, and
the region of interest is mapped onto the image using perspective transformation based on
Formula (3) to complete the size determination of the region of interest.
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According to the radar data map shown in Figure 7, combined with the position and
size of the region of interest, the initial radar region of interest, that is, the red box region in
Figure 8, can be determined.
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Figure 8. Initial radar region of interest.

In the actual detection of the millimeter-wave radar, the target signal reflected by its
beam is not necessarily at the center of the vehicle, and the vehicle is affected by road
conditions and working conditions during driving, resulting in the deviation of the radar
target. Hence, the initial region of interest will be corrected below to obtain a more precise
location.

3. Feature-Based Vehicle Recognition
3.1. Image Preprocessing

After the initial vehicle region of interest is determined, the features in the region need
to be analyzed to determine the best identification region, and before that, the image should
be preprocessed. As shown in Figure 9, the original image is converted into a grayscale
image. Since the grayscale image has less information than the color image, it can increase
the running speed without losing the image texture information.

The noise in the image can be removed by using 3 × 3 Gaussian filtering for the
smoothing of the grayscale image; the edge part of the image is more prominent after
smoothing, meaning it is ready for the following edge detection.
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(3) The gradient direction can be calculated according to Formula (6): 
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3.2. Operator-Based Edge Detection

In digital image processing, it is considered that pixels at the edge have relatively
severe grayscale changes, so the Sobel operator [10] is used to calculate the grayscale
gradient in the x and y directions between adjacent pixels, and the magnitude and direction
of the gradient are used to indicate the grayscale change for image edge detection. The
specific detection steps are as follows:

(1) Define the Sobel convolution factor, as shown in Formula (4). The operator includes
two groups of 3 × 3 matrices, representing the vertical and horizontal directions,
respectively: −1 0 1

−2 0 2
−1 0 1

  1 2 1
0 0 0
−1 −2 −1

 (4)

(2) Use the Sobel convolution factor to perform the convolution of the image [11] so the
gray gradient approximation GX , GY in the two directions can be obtained. The pixel
gradient size G is calculated by Formula (5):

G =
√

GX2 + GY
2 (5)

(3) The gradient direction can be calculated according to Formula (6):

Θ = arctan
(

GX
GY

)
(6)

(4) After calculating G and Θ, according to the structural characteristics of the driving
scene, the maximum pixel gradient size Gmax is set to 0.5, the minimum pixel gradient
size Gmin is set to 0 as the threshold, and the pixels located at the edge are extracted.
Figure 10a shows the edge detection result using the Sobel operator. It can be seen
that a significant vehicle contour curve can be plotted.

Canny edge detection [12] is used to suppress the magnitude of non-maximum values
according to the gradient direction based on the Sobel operator, which uses the double
threshold algorithm to connect the pixels between the thresholds and locate more accurate
edge pixels, thus effectively suppressing false edges. Figure 10b shows the result of Canny
edge detection. It can be seen that Canny edge detection can obtain more accurate vehicle
edges than the Sobel operator.
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Figure 10. Operator edge-detection results. (a) Sobel edge detection. (b) Canny edge detection.

3.3. Vehicle Contour Line Fitting

When the vehicle is driving in a structured scene, the gray value of the surrounding
contour of the vehicle is quite different from that of the environment, which is helpful to
extract the vehicle contour. Firstly, the edge-enhanced image is obtained by Canny edge
detection performed on the radar region of interest, then the global threshold of the image
is obtained by using the maximum interclass variance of pixels [13], which is transformed
into a binary image. Finally, the vehicle contour information is fitted by the probabilistic
Hough transform.

In this paper, the probabilistic Hough transform [14] is used to detect the contour line
of the vehicle shape by voting. The transformation process takes place in the parameter
space. By calculating the local maximum value of the accumulated result, a set conforming
to the specific shape is established as a result of the Hough transform. Figure 11b is
determined after edge detection and the binarization of the radar identification area in
the red frame in (a), then the Hough transform is performed to fit the vehicle contour line.
By setting the accumulated plane threshold, the minimum straight-line length and the
maximum interval of the line segment, as shown by the red line in (c), the vehicle contour
with straight-line characteristics can finally be fitted, and the coordinates of each pixel in
the fitted line can be determined.
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4. Vehicle Symmetry Detection
4.1. Sliding Window Detection

In vehicle symmetry detection, it is very important to judge whether the vehicle in the
region is symmetrical and find the best recognition frame according to the region of interest
identified by the radar. Therefore, this paper adopts sliding window technology [15], takes
the center point of the region of interest of the initial millimeter-wave radar as the starting
point, translates 20 pixels to the right and left, respectively, and sets the sliding step as four
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pixels. As shown in Figure 12, the sliding window range covers the recognition frame with
the highest vehicle symmetry.
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4.2. Vehicle Symmetry Analysis

In symmetry analysis, the concept of symmetry is introduced [16]. Firstly, the straight
line of the vehicle contour fitted above is analyzed, as shown in Figure 13a. Since there is a
good boundary between the roof and the environment, this paper firstly uses the roof fitting
line as the detection standard, then calculates the horizontal distance Ule f t between the left
endpoint of the roof line and the image origin. Following this, the horizontal distance Uright
between the right endpoint and the image origin, and the horizontal distance between
the middle point of the roof line and the image origin, can be calculated according to
Formula (7).

Umid =
Uright − Ule f t

2
+ Ule f t (7)

Finally, the difference between the center point of the roof line and the image center
point Q in the horizontal direction of the image can be calculated, and this difference is
used to measure the symmetry sym of the vehicle position in the detection frame, as shown
in Formula (8):

sym =
∣∣UQ − Umid

∣∣ (8)

where UQ is the horizontal distance between the image center point Q and the origin.
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The symmetry problem can be converted into the solution of the minimum value
symmin of the symmetry degree by Formulas (7) and (8). As shown in Figure 13b, the
symmetry curve formed by the sliding window at different positions exhibits a single peak
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characteristic, and the detection frame with the minimum symmetry degree is the detection
frame with the optimal vehicle contour symmetry.

5. Experimental Results
5.1. Internal and External Parameter Calibration

To verify the performance of the vehicle symmetry detection algorithm, the camera is
first calibrated. As shown in Figure 14, this paper uses an 11 × 8 checkerboard diagram,
in which the side length of the small square is 20 mm. The internal parameters are cali-
brated according to 20 multi-position and multi-angle chessboard diagrams taken by the
fixed camera.
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After the camera’s internal parameter calibration, the external parameter matrix of
the camera and the radar can be calculated by using a laser rangefinder to measure the
vertical and horizontal distances between the radar and the camera, and at the same time,
measure the height of the radar from the ground. Table 1 shows the external parameter
calibration of the camera. The transformation of different spaces can be realized according
to the camera’s internal parameters, rotation matrix, and translation matrix.

Table 1. Calibration table of camera parameters.

Calibration Parameters

camera’s internal
parameters K =

2364.5 0 901.5 0
0 2364.5 518.3 0
0 0 1 0



rotation matrix R =


−1 −0.0011 0.0024 −18.64

0.0009 −0.8732 −0.034 12.3652
0.0024 −0.034 0.8732 3125.6

0 0 0 1


translation matrix T =

[
241.6 489.3 1278.17

]
5.2. Real Vehicle Experiment and Visualization

After the coordinate conversion between the camera and the radar, this paper collects
the camera and radar data on a campus road based on the built experimental platform. The
algorithm is written in Python, with radar frequency band 77 GHz and camera resolution
1280 × 720. Figure 15 shows the best symmetry recognition results at different distances.
Figure 15a is the radar’s initial region of interest. It can be seen that this region does not
completely contain the entire vehicle. Figure 15b shows the optimal detection region cor-
rected by the algorithm. It can be seen that the vehicle has good symmetry characteristics in
this region, and analysis of the experimental results shows that the single-frame processing
speed of the algorithm is as fast as 28 ms, which means that the algorithm has a faster
processing speed.
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Figure 15. Comparison of vehicle recognition regions. (a) Initial radar identification region.
(b) Identification region after improvement.

To verify the robustness of the proposed method, we select a night-time scene with
poor lighting for qualitative analysis. As shown in Figure 16, an initially inaccurate sliding
window can be generated in the image from the raw radar detection points. When we
use the 225 × 255 window (blue box), commonly used during the day for correction, the
right endpoint (yellow dot) of the roof is wrongly positioned on other targets on the road,
and it cannot be accurately translated to the symmetrical area of the vehicle, resulting
in detection failure. We further reduce the size of the sliding window and find that the
window size of 180 × 180 (green box) does not greatly affect the performance of the Canny
edge detection; more importantly, it can effectively overcome the interference of irrelevant
factors. Therefore, selecting sliding windows of different sizes is a solution to adapt to
scenes of different levels of complexity.
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5.3. Experimental Results’ Analysis

To verify the recognition accuracy of the algorithm in this paper, the initial video
of the camera and the raw data of the millimeter-wave radar are collected. Figure 17a
shows the front target-detection results of the millimeter-wave radar at different times,
representing the distance between the target and the x and y directions of the radar, and the
azimuth angle between the target and the radar. Figure 17b shows the visual interface of
radar detection, which helps us better understand the relative position between the target
and the radar at the current moment. The interface includes the target information, target
properties, radar status, number of targets, and number of filters.
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The 520 frames of the collected video and the radar data at the corresponding moment
are selected, and we project them onto the image (as shown by the red dots in Figure 18).
LabelImg software is used to label the vehicle in the image (green box in Figure 18),
ensuring that the labeled boxes completely and symmetrically surround the entire vehicle
area, where the center point of the area is taken as the real center point. It is worth noting
that for a fair evaluation of the performance of the proposed method, we do not label the
false and missed targets of the radar (the yellow area in Figure 18). This is because the false
detection object lacks the image features of the vehicle, and the missed detection object
lacks the position information provided by the millimeter-wave radar. After labeling, the
accuracy of the initial radar recognition area and the recognition area generated by the
algorithm in this paper are verified, respectively, as shown in Formula (9). The mean square
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error Loss is used to measure the error between the recognition area and the real area in the
horizontal direction of the image:

Loss =
∑ (xt − xp)

2

n
(9)

where xt is the x direction coordinate value of the real center point, xp is the x direction
coordinate value of the center point of the recognition area, and n is the number of detection
samples. As shown in Figure 19, the blue point indicates the projection point error of the
raw radar data, and the yellow point indicates the projection point error after improvement
of the algorithm in this paper. It can be seen that using image information to correct the
raw radar data can greatly reduce the shift of the original detection frame in the horizontal
direction. Compared to the raw radar data Loss = 32.9, the Loss in this paper is 19.5,
with the error reduced by 13.4, which proves the effectiveness of the radar and the camera
information’s fusion in this paper.
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6. Conclusions

In this paper, a vehicle recognition method was proposed based on the fusion of radar
and machine vision. The following conclusions can be drawn:

(1) The algorithm first uses the camera’s extrinsic and intrinsic parameters to realize the
spatial fusion of the radar and the image, then projects the vehicle-recognition target
point onto the camera image. Next, it further uses image smoothing, Canny edge
detection, and probabilistic Hough transform to fit the roof contour line. Finally, a
sliding window and symmetry function are established to detect the symmetry of
vehicles in the region of interest, and in that way, we dynamically find the optimal
recognition region;

(2) The experimental results show that the algorithm has better accuracy and a faster
processing speed; the mean square error of the algorithm is reduced by 13.4 and the
single-frame detection time is reduced to 28 ms, which can meet real-time require-
ments in low-computing-power scenarios. In the end, we analyzed the influence of the
size of the sliding window on the detection performance under different illuminations,
and determined that the optimal, small 18 × 18 window can effectively reduce the
interference of background pixels;

(3) In this paper, only the fusion of a monocular industrial camera and millimeter-wave
radar was attempted. In the future, we will consider using more types of sensors to
extend this approach to the fusion of time-of-flight cameras and infrared cameras.
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