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Abstract: The significant volume of sharing of digital media has recently increased due to the pan-
demic, raising the number of unauthorized uses of these media, such as emerging unauthorized
copies, forgery, the lack of copyright, and electronic fraud, among others. In particular, several appli-
cations integrate services or products such as music distribution, content management, audiobooks,
streaming, and so on, which require users to demonstrate and guarantee their audio ownership. The
use of acoustic fingerprint technology has emerged as a solution that is widely used to secure audio
applications. This technique extracts and analyzes certain information that identifies the inherent
properties of a partial or complete audio file. In this paper, we introduce two audio fingerprinting
hardware architectures with a feature extraction system based on spectrogram saliency maps (SSM)
and a brute-force search. The first of these conducts a search in 33 saliency maps of 32 × 32 pixels
in size. After analyzing the first algorithm, a second architecture is proposed, in which the saliency
map is reduced to 27 × 25 pixels, requiring 75.67% fewer hardware resources, lowering the power
consumption by 64.58%, and improving the efficiency by 3.19 times via a throughput reduction
of 22.29%.

Keywords: FPGA; audio fingerprinting; hardware architecture; SSM

1. Introduction

The aim of digital technology consists of transforming analog information to digital
information that can be interpreted by electronic devices. Thanks to this technology, thou-
sands of books, songs, and images can be stored, shared, and consulted. However, digital
technology also entails negative aspects that can affect the author’s interests regarding the
exploitation of their rights and works since unauthorized uses of their work can occur. In
addition to being economical and relatively simple, digital works retain their quality in the
generation of subsequent copies, which is attractive to the final consumer [1].

Nowadays, piracy is a problem that lurks in the digital world, affecting: (1) creators,
including the authors and holders of their related rights, because their primary source of
income is reduced; (2) workers from all industries due to the loss of their jobs; (3) industries,
which are not able to commercialize as many original products and thus suffer decreased
profits; and (4) the government, which receives fewer taxes, because piracy is carried
out outside the law. One of the technological methods used for copyright protection is
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fingerprinting, which is intended to identify and collect information about works; this
information can be used later to recognize pirates responsible for illegal copies [2].

Currently, users share audiovisual material that is not always protected, making illegal
traffic a common problem. However, there are two possible ways of preventing this: (1) a
priori protection with watermarking policing, in which a digital watermark is embedded
in the content, and (2) posterior forensics using fingerprinting that identifies an authorized
user or purchaser of the material. In addition, fingerprinting suffers from fewer technical
problems than watermarking since it does not require widespread key distribution [3].

Over the years, a significant amount of studies have proposed watermarking and
fingerprinting solutions to protect audiovisual material. For example, the authors in [4]
proposed a blind adaptive audio watermarking algorithm based on singular value de-
composition (SVD) in the discrete wavelet transform domain; this scheme showed low
error probability rates. The authors in [5] developed a perceptual audio hashing algorithm
based on the Zernike moment and maximum-likelihood watermark detection to enable
content-oriented searches in a database. The algorithm obtained smaller samples than
those in the conventional broadcast monitoring system based on a comparison of the whole
sample set.

Several algorithms can be used to obtain an acoustic fingerprint; however, not all resist
the compression and cropping attacks required by specific audio applications. Moreover,
they are usually composed of elementary keys, also known as sub-fingerprints, based on
small parts of the signal. Acoustic fingerprints are often composed of consecutive keys
used to identify any part of a signal [6].

The design and development of these security systems require highly complex opera-
tions, and they are usually implemented on non-specialized machines or general-purpose
processors. This situation occurs when the SSM algorithm is used, and it conducts searches
in large databases. Additionally, many computational resources are wasted because they
may not be used or are used in other processes. Today, some lines of research focus on
providing hardware architectures or new algorithms for improving performance results,
depending on the system’s requirements, the application, or the user. For example, one user
may need a system to display graphics quickly, whereas another may require the system to
search efficiently in a database, or they may require low power consumption.

Audio fingerprinting algorithms are commonly resource-consuming tasks, and they
are time-consuming when implemented in software running on non-specialized machines,
which can be executing other tasks necessary for operating systems or other applications.
For this reason, demanding operations such as the SSM algorithm or the requirements of
an extensive database search require high computational resources. In this way, different
hardware architectures are necessary due to the specialized needs of different systems and
users. For example, a collusion-resistant fingerprinting system was implemented in [7] and
was found to be suitable for a massive online music distribution applications.The authors
in [8] proposed a security technique (MixLock) based on logic locking of the digital section
of a mixed-signal circuit, which could be employed to mitigate reverse engineering and
counterfeiting. They proposeda device identification protocol that leverages the frequency
response of a speaker and a microphone from two wireless devices as an acoustic hardware
fingerprint. A device identification protocol uses an acoustic hardware fingerprint extracted
from the frequency response of a speaker and a microphone from two wireless devices, as
proposed in [9]. Furthermore, an audio fingerprint algorithm that balances the ideal amount
of data embedded to enable a comparison, while keeping the fingerprints lightweight for
manageable access, indexing, searches, and storage, was embedded on an ARM 7-LPC2148
device [10]. In [11], the design and testing of a music information retrieval algorithm was
conducted based on fingerprinting techniques implemented in a low-cost, embedded, and
reconfigurable platform. Different hardware can thus be implemented to satisfy different
requirements, such as a fast graphics display system, an efficient database search, or low
power consumption requirements.
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In this study, a robust method based on the saliency maps of the audio signal spec-
trogram [12] was implemented, proposing two hardware architectures on FPGA. After
analyzing the window size, the use of hardware resources decreases, memory requirements
are reduced, efficiency is increased, and power consumption is improved at the cost of a
slight loss in performance. In addition, the search of the acoustic fingerprint in a database
through correlation is presented. The architectures allow a significant parallelization of the
computations, which results in a higher efficiency by 3.19 orders of magnitude.

The paper is organized as follows: Section 2 presents the state of art in Fingerprinting,
Section 3 introduces two versions of the fingerprinting algorithm, while Section 4 presents
their hardware implementation. Section 5 describes analysis and implementation results of
the fingerprinting algorithms. Section 6 presents a discussion of the proposed architectures
and the main highlights of the analysis, whereas Section 7 compares the obtained results
with related works. Finally, conclusions and future work are discussed in Section 8.

2. Fingerprinting and SSM

Some technological measures of protecting digital documents require an effective
transmission and processing of the information contained in a protected work. In general,
there are two types of technological protection measures in the digital domain: (1) those
that manage the access, processing, and transmission of the work and (2) those that only
protect its integrity and transmission. The first type involves extending the control of the
digital use of files in an inter-operative manner. The second preserves the integrity and
protects copyright, preventing any non-authorized modification, alteration, or distribution
of the work.

Protection measures, such as anti-copying systems, encryption, and watermarking are
not entirely secure. For example, digital watermarks have been proposed as an efficient
solution to protect copyright and ownership of multimedia files (image, audio, or video), by
making it possible to identify their source. However, digital watermarks are based on the
code’s identification inserted directly into the content of the file, and it is possible to detect
them only by using a specific algorithm and a key. On the other hand, acoustic fingerprints
are used to identify audio, for search, navigation, monitoring, and other monetary purposes,
such as music recovery and video identification. Acoustic fingerprints are extracted from
audio, video, or images. However, they are not embedded in the file. Thus, the signal is
not altered before its transmission.

The most popular audio transformations are resampling, compression, noise addition,
recording, and temporal resynchronization [13]. Audio compression reduces the size of an
audio file, requiring smaller storage capacity. However, compressing an audio file many
times results in a low fidelity of sound. Noise is all unwanted sound, and recording consists
of D/A and A/D conversion or re-recording. Temporary desynchronization occurs when
audio is delayed or advancing in time. Therefore, an audio fingerprint algorithm used to
detect copies should be robust to these attacks.

An acoustic fingerprint is an identifier for audio files based on their content. With
them, it is possible to identify a pattern or signature in audio files which can then be recog-
nized from an audio database. In [6], it is mentioned that a fingerprinting system usually
consists of two components: (1) a mathematical process that calculates the fingerprint (i.e.,
fingerprint extraction) and (2) a search algorithm to scan a database of previously derived
acoustic fingerprints in search of similarities (i.e., fingerprint search).

2.1. Fingerprint Extraction

Several extraction algorithms can obtain an acoustic fingerprint from an audio file, but
not all of them resist compression and cropping. A few seconds of audio are needed to ex-
tract an acoustic fingerprint. A common technique is to divide the piece of audio into small
segments and extract their characteristics. There are numerous strategies for this division
process. The most common are the use of Fourier Coefficients, Cepstral Coefficients in Mel
Frequencies (CCMF), Linear Predictive Coding, and Mean and Variance of characteristics.
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The next step is to map the extracted characteristics into a more compact representation,
using Hidden Markov Models, Quantization, or other methods [14]. In addition, finger-
prints are usually composed of elementary keys (called sub-fingerprints) based on small
parts of the signal. Often, the acoustic fingerprints are composed of consecutive keys used
to identify any part of the signal. It is also possible to use the Spectrogram Saliency Maps
(SSM) algorithm as a fingerprint extraction method, representing an audio signal through a
spectrogram combined with a fingerprint extraction. The extraction of fingerprints is based
on the saliency maps of the audio signal spectrogram.

Fingerprints are not exclusive to human fingers. They also exist in documents, but
they must be extracted. For that extraction, there are many algorithms, such as Winnowing,
Karp–Rabin, All-to-all matching, and Shazam.

In [15], the Karp–Rabin algorithm for matching sub-strings is the first fingerprint version
based on k-grams. It consists of finding the matches of a particular string s of length k within a
longer string. On the other hand, Winnowing [16] presents an efficient local fingerprinting
algorithm that selects the minimum value of a hash window. If there is more than one hash
with the minimum value, the algorithm selects the rightmost occurrence. Then, all selected
hashes are saved as the fingerprints of the document. The authors in [17] propose that by using
an unknown audio’s acoustic fingerprint, a query can be made in a fingerprint database (from
an extensive library of songs) to identify the audio. This system requires a robust method of
fingerprint extraction, and a very efficient search strategy capable of working with limited
computer resources. A copy detection algorithm should have three properties: (1) blankness
insensitivity, (2) noise suppression, and (3) independent position. For the search of traces,
previous works describe some methods such as a hierarchical search, reduction in candidates,
and a search based on the tree.

On the one hand, Ref. [18] describes a system of acoustic fingerprints consisting of a
generation algorithm and the searching algorithm to find the matches of the fingerprints
in a database. In addition, the fingerprint extraction includes a front-end where audio is
divided into frames, and a series of robust discriminating features are extracted in each
frame. Subsequently, these features are transformed into a fingerprint by a modeling unit
that compacts the representation of fingerprints. On the other hand, Ref. [19] presents an
audio detection system robust to various attacks, such as pitch and tempo change. In that
work, a two-dimensional representation is proposed for audio signals called chroma time
images. A pitch change in the audio signal appears as a circular shift along the chroma axis
of that image, and a change in tempo in the audio signal appears as a scale change along the
time axis of that image. In [20], the authors consider chromatic characteristics and compare
the performance of the systems based on them, with the use of the timbral characteristics in
the same experimental frame. When making system classification based on the equal error
rate, they conclude that the best audio segmentation uses detectors grouped by octaves and
sub-bands for music and noise. For the voice, the timbral characteristics use the CCMF-SDC
(Cepstral Coefficients in Mel Frequencies–Shifted Delta Coefficients).

In [21], the Shazam algorithm is described, which is based on local acoustic fingerprints,
and uses the peaks observed in the spectrogram of the audio signal as the points of
local characteristics. This algorithm is resistant to noise and distortion, is efficient and
scalable, and it is able to quickly identify a segment of music captured through the phone’s
microphone from a base of more than one million songs. Furthermore, the algorithm uses a
combinatorial method of time-frequency analysis for the audio constellation, producing
unusual properties such as transparency, in which several mixed tracks can be identified.

2.2. Fingerprint Search

An essential point for the usability of a fingerprint system is how to make comparisons
between unknown audio and, possibly, millions of fingerprints. In general, the methods
depend on the representation of the fingerprint [2].

In this regard, the search is an important operation since it allows recovering previously
stored data. The search result is successful if the information is found, or unsuccessful if it
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is not found. The search can be applied to ordered or unordered elements. Additionally,
Ref. [22] describes that search methods can be classified as follows: (1) Sequential. This
method consists of reviewing the data structure element by element, until the data that are
being looked for are reached. This method works for ordered or unordered data. (2) Binary,
where the method divides the total of the elements in two, comparing the searched element
with the central one. This method only works if the data have been previously sorted.
(3) Hash. The key transformation method increases the search speed without requiring the
elements to be previously ordered. This method allows access to the data by a key that
directly indicates where the searched data are stored.

There are also searching systems based on the Index of Inverted File. For example,
Ref. [23] describes a system that uses a look-up table (LUT) of possible entries of sub-
fingerprints, with pointers to fingerprints in the base of data. The applicability depends
on the alphabet and the size of the sub-fingerprint. It may be feasible to generate a list
containing all possible entries and corresponding pointers. The index uses code words
extracted from binary sequences representing the audio. In addition, in [17], an index of
possible track pieces that point to positions in the songs is proposed. Since a piece of the
candidate track is free of errors (exact match), a list of candidate songs can be efficiently
obtained to exhaustively search in.

On the other hand, the filtering of unlikely candidates is proposed, where [24] de-
scribes an effective way to reduce the search space using a simple similarity measure to
quickly eliminate many candidates, ensuring that false rejections do not occur. During the
comparison process, candidates with the worst score can be excluded.

There are methods based on a hierarchical search; for example, Ref. [25] presents
a hierarchical search using an abstract version of the problem to dynamically generate
heuristic values. In addition, there is a regressive switchover, which reduces the number of
expansions and, therefore, the execution time.

Finally, some methods use a tree-based search since, in essence, the search for a
fingerprint is similar to the search for the nearest neighbor. Often, trees are used to
locate the nearest neighbor. Authors in [26] propose an algorithm in which, every 5 s, a
binary fingerprint block (8192 bits) is considered as a point in the fingerprint space. The
fingerprint block is divided into 1024 8-bit patterns. The value of each consecutive 8-bit
pattern determines which of the 256 possible children descends. A path from the root
node to a leaf defines a block of fingerprints. When a query fingerprint is consulted in
the database, each 8-bit pattern is compared with the tree elements; the error between the
query fingerprint and the best sheet is estimated at each tree level. As soon as the error is
estimated, the best result is found, and the search stops.

3. Algorithm and Analysis

This section describes two key elements: (1) the audio fingerprinting algorithm, which
has two different versions of the searching module, depending on their storage: the brute-
force search and the optimized brute-force search; (2) the analysis necessary to reduce the
window size, optimize the storage, and, consequently, the search process. The two versions
of the algorithm are implemented on hardware in the next section.

3.1. Audio Fingerprinting Algorithm

The audio fingerprinting algorithm uses fingerprint extraction and the searching
process in the database. The searching procedure has two versions depending on the
storage. However, the algorithm simultaneously exposes the SSM algorithm as a fingerprint
extraction method, and the correlation as a searching process. The first version is based on
brute-force searching. The other is based on an optimized search, with a reduced window
size, which results in an improvement in several performance characteristics.

Figure 1 shows the general diagram of the algorithm proposed by [12], where the audio
signal is represented by a spectrogram, combined with a fingerprint extraction method
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based on the saliency maps of the audio signal’s spectrogram. On the other hand, the
correlation function is used to search the acoustic fingerprint in the audio database.

Figure 1. General diagram of the SSM algorithm.

3.1.1. Fingerprint Extraction

Fingerprint extraction is based on the SSM algorithm [12] and consists of three funda-
mental steps:

• Decreasing the resolution of the audio signal.
Subsampling the signal means keeping each N − th sample and eliminating the
remaining samples. Compact Discs (CD), most FM radio stations, TV channels, and
satellite TV all transmit stereo audio signals. The purpose of recording the sound
in stereo is to recreate a more natural experience when listening to it. Although the
term commonly refers to two-channel systems (left and right channels), it can also
be applied to any system that uses more than one channel. On the other hand, the
mono-aural sound is the one that is defined by a single channel. A mono-aural file
requires half the space occupied by a stereo file, since it only contains one track, while
a stereo file contains two (one for the signal on the left and one for the signal on the
right). That is why the conversion from stereo to mono-aural sound is realized, as
shown in Figure 2.

Figure 2. Conversion from stereo to mono-aural sound.

As far as down-sampling is concerned, it refers to decreasing the frequency by the
factor of an entire number, as shown in Figure 3.

Figure 3. Downsampling: (a) Original Signal and (b) decreased frequency.

• Change the signal to the frequency domain.
When the signal is changed to the frequency domain, a spectrogram is created, see
Figure 4. A spectrogram consists of the graphic representation of the frequency spec-
trum or amplitude modulations and their variation over time. Usually, a spectrogram
represents time on the horizontal axis, frequency on the vertical axis, and the ampli-
tude is represented by gray-scale or colors. In this sense, a saliency map is a kind of
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global feature that represents the most prominent visual regions of an image; that
is, this mechanism filters the interesting information and ignores the irrelevant [27].
The spectrogram’s creation consists of two fundamental steps: (1) frame analysis and
(2) selecting a window to choose the limited number of samples to process. This window is a
compromise between the size of the spectrogram, the process, and the signal analysis.

Figure 4. Example of a spectrogram.

• Extracting fingerprints.
The saliency maps are used to extract the fingerprints. Figure 5 illustrates how they
are generated. First, the image is decomposed into different channels (color, intensity,
and orientation). Then, the main characteristics of each channel are extracted, and at
the end, the features are added into a single image (saliency map).

Figure 5. Creation of saliency maps.

Figure 6 shows the fingerprint storage. First, the audio signal is fixed by from stereo
to mono-aural, down-sampling, and dividing it into segments. Next, the signal is
changed to the frequency domain by converting it into a spectrogram. Then, the
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spectrogram is treated as an image, and the saliency map is obtained, which will
finally be saved in a database.

Figure 6. Storing of the fingerprints based on saliency maps.

3.1.2. Search Process

The search process consists of two sub-processes: (1) extracting the fingerprint and
(2) matching. The extraction has been described previously, but instead of performing it
from the complete audio, it is performed from segments of the query audio. Later, a
matching process based on correlation is applied to compare the query track and the tracks
stored on the database. See Figure 7.

Figure 7. Search or matching system.

The brute force search presented in [12] consists of comparing between unknown
audio and possibly millions of fingerprints using correlation. Algorithm 1 presents the
pseudo-code for this process. Its main operation is the correlation function named corr(),
which is described by Algorithm 2.

Algorithm 1 Brute Force Search.

Require: I binary edge image
Input MDB, MTT
Output MDB[index], Corrmax

for each track MDB(i) do
C = corr(MDB, MTT)
if C > Corrmax then

Corrmax = C
index = i
return MDB[index]

else
end if

end for
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Algorithm 2 Correlation Function corr().

Require: I binary edge image
Input MDB[][], MTT [][]
Output MDB[index], Corrmax

for i < 32j < 32 do
Atemp = Atemp + A[i][j]
Btemp = Btemp + B[i][j]
count = count + 1

end for
for i < 32j < 32 do

A[i][j] = A[i][j]− Amean
B[i][j] = B[i][j]− Bmean

end for
if i < 32j < 32 then

AB[i][j] = A[i][j] ∗ B[i][j]
A[i][j] = A[i][j] ∗ A[i][j]
B[i][j] = A[i][j] ∗ B[i][j]

end if
for i < 32j < 32 do

countAB = countAB + AB[i][j]
countB = countB + A[i][j]
countB = countB + B[i][j]

end for
CORR = countAB/sqrt(countA ∗ countB)
return CORR

3.2. Sample Size Analysis

The analysis focuses on identifying the correlation between the song and its sample,
including the amount of data in each data set register. Each saliency map is of a 32 × 32 size,
and each datum is 8 bits long. The data set is made up of 33 songs of 10 seconds each
(tracks T1, T2, ..., T33), where each song is divided into three parts: (1) the first 5 s (segment
Tn 1), (2) the last 5 s (segment Tn 2) and (3) from second 2.5 to second 7.5 (segment Tn 3).
For each segment, the saliency map is obtained, so the data set has 99 records or saliency
maps, 5 s each segment. The 32 × 32 salience map can be observed as an array with indices
(1:32, 1:32), the first index for rows, and columns. More details about the algorithm design
and parameters are found in [12,13].

The hypothesis used to perform this analysis is that not all data from the 32 × 32 matrix
are necessary. Therefore, the number of operations in the correlation process can be
reduced, benefiting the search process and the architecture’s performance. Table 1 shows
the correlation between saliency maps of different sizes and one of three segments of
the saliency map stored in the dataset. For example, T1/T1_3 refers to Track 1 (T1) and
segment 3 of Track 1 (T1_3). On the other hand, the first column (16:32, 8:24) means that
the saliency map sample is extracted from rows 16 to 32 and from columns 8 to 24 of the
original to reduce the 32 × 32 original size map. In this way, the highest (cells in green) and
lowest (cells in yellow) correlation indices are identified.

Figure 8 shows the regions where the three sample maps with the best success averages
intersect. These are (8:32, 1:24) in green, (2:28, 4:28) in white, and (8:28, 4:24) in gray; all of
them obtained from the complete map colored in the common region: (2:28,4:28).

After computing the average accuracy, it is determined that the slice of the main map
(2:28, 4:28) obtains the same accuracy when comparing it with the complete map, 95.27%
with the same data set, while other settings have lower results. For example, Figure 9
shows the complete map (32 × 32) on the left, and the smallest map (27 × 25) on the right
is framed in yellow. Therefore, the accuracy is not affected while significantly reducing
the number of required calculations, both temporal and spatial, as demonstrated with the
implementation in the next section.



Technologies 2022, 10, 86 10 of 19

Table 1. Correlation between samples.

Window T1/T_1_1 T1/T_1_2 T1/T_1_3 T2/T_2_1 T2/T_2_2 T2/T_2_3

(1:32, 1:32) 0.98630806 0.98500662 0.98745433 0.87798847 0.93625615 0.98640428
(1:16, 1:16) 0.98079073 0.98635301 0.98646834 0.87286297 0.89285985 0.98660328
(8:24, 8:24) 0.98538054 0.95933728 0.98853678 0.85405802 0.91543184 0.98890805
(16:32, 16:32) 0.9944561 0.98415072 0.99835338 0.98424574 0.9127887 0.99766129
(1:16, 16:32) 0.98226984 0.98417877 0.97647128 0.96208663 0.93775528 0.98172735
(16:32, 1:16) 0.9952343 0.99794383 0.99853883 0.97165405 0.97768967 0.99959274
(12:20, 12:20) 0.9798889 0.95821871 0.96536814 0.90881263 0.96118717 0.99199828
(16:32, 1:32) 0.99479573 0.98556999 0.99836617 0.97555804 0.93672673 0.99830267
(16:32, 8:24) 0.99396493 0.98424148 0.99830195 0.97834078 0.96649479 0.99798179
(1:16, 1:32) 0.98126411 0.97477707 0.98091944 0.79509093 0.90298747 0.97811535
(1:32, 1:16) 0.98589129 0.99090808 0.99086538 0.91667433 0.93281902 0.99136852
(8:32, 1:24) 0.99100237 0.98236547 0.99451482 0.90180133 0.94759758 0.99398419

Figure 8. Intersection of selected saliency maps.

Figure 9. Results on maps according to the analysis: (a) original size of 32 × 32 pixels and (b) subim-
age (yellow box) with a smaller size of 27 × 25 pixels. Note: Saliency maps have few pixels, that is,
they have low resolution.
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A contribution of this work is demonstrating that most of the samples obtained from
the SSM algorithm have relevant information in the center of the fingerprint, obtaining the
same accuracy and reducing the searching time, with less computational complexity in
software and hardware implementations.

4. Hardware Implementations

In this section, the design of hardware architectures for the search and the correlation
modules is presented. The hardware designs of the architecture were implemented in the
System Generator. It is essential to highlight that the two hardware proposals use brute-
force search, although the second one utilizes an optimized process in the search based on
its generation and storage.

4.1. Search by Brute Force

The implementation of the hardware architectures for the search consists of two
deterministic finite automata. The first one is used to control the search and the second to
perform the correlation. In addition, it uses a module that acts as a voting system under
the condition of keeping the record of which saliency map has the highest correlation.

Figure 10 shows the complete architecture of the Search System: the Signal Builder that
generates a signal, a block called MCode that performs the function of automaton, then two
counters and two ROMs, where memory A0 symbolizes the audio or unknown saliency map
and B0 the database. Finally, there are two modules. The first one was named Correlation
Function, and the second one was named Comparison.

This proposed hardware architecture can be used for map sizes presented on the
analysis, 32 × 32 and 27 × 25, with 1024 and 675 elements, respectively.

Figure 10. Proposed hardware architecture.

4.1.1. Correlation Function

The Correlation Function is one of the most critical modules; its output is essential for
the system’s functionality. In this case, the correlation function is the search criteria; its
hardware architecture design is presented in Figure 11. The module of this function contains
three inputs and one output. The first input corresponds to the start signal sent from the
MCode1 block, and the other two correspond to the used saliency maps. This function
is composed of an automaton that coordinates and synchronizes the data and several
subsystems (Data Input, Mean, Multiplication, Accumulator, and Correlator), and blocks with
different functionalities, such as store, accumulate, or multiply data. Additionally, two
multiplexers reset the RAM values used in the first subsystem called Data Input, the output
of which will be the saliency map.
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Figure 11. Block diagram for the Correlation Function.

DataInput is a data buffer, which stores data inputs according to the counter controlled
by the Finite State Machine (FSM) and outputs the saliency maps. Then, in the Mean
module, saliency maps are added and divided by their number of elements, obtaining the
mean, subtracting them from each of the saliency map data (see Figure 12). This result will
be the subsystem output and the entrance to the Multiplication subsystem, which performs
the multiplication of the maps among themselves and with each other, having three outputs,
that the Accumulator subsystem will return. Finally, the Correlation Function delivers one
output datum that corresponds to the correlation value.

Figure 12. Block diagram for the Mean submodule.

4.1.2. Comparison Module

The second important module in the Search System is called Comparison (see Figure 11),
which records the highest value that determines the corresponding audio on the database.
The Comparison module comprises a relational block that decides whether the input datum
is higher than the one stored in the record. If that is the case, it sends a signal indicating in
which register the new datum should be saved.
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To obtain the correlation value requires comparing two saliency maps according to
(a) the audio that we are trying to determine if we have it stored and (b) each audio of
the data set so that only a correlation value is generated in a given time. In this way, it is
only necessary to store the audio data where the correlation is the highest. There are two
possibilities in the Comparison module while comparing the new correlation value with the
stored one. First, if the new value is higher than the stored one, the index is updated with
the latter. Second, if the new correlation value is smaller or equal to the stored one, then it
is unnecessary to update the data, and the previous index is maintained.

Both proposed architectures are constructed from the modules previously described,
where the analysis of the saliency map size demonstrates that there are improvements in the
optimized hardware architecture while maintaining the accuracy, which will be explained
in the next section.

4.2. Optimized Brute-Force Search

It is important to highlight that both proposed architectures use brute-force search,
and the analysis enables reducing computational complexity through modifying the map
size. In this way, the optimized brute-force search uses the same design as the brute-force
search previously described. The variant occurs when processing the saliency maps of size
27 × 25, i.e., processing 675 elements, only 65% of the original map. For example, Figure 9
shows two bars: the left one exemplifies the 1024 data contained in the 32 × 32 saliency
map, representing 100% of the map, while the bar on the right represents only 65% of the
data, delimited by the yellow box in the saliency map on the right.

The architecture is optimized in computational complexity since the analysis shows a
similar performance when working with 27 × 25 maps than with 32 × 32 maps. Further-
more, this reduction in the map size decreases the number of floating-point operations,
where 675 elements are now evaluated instead of 1024 elements. This improves the whole
process because the algorithm must evaluate and analyze each fingerprint track within the
database to find if it is registered. There is also an improvement concerning track storage,
which is reflected when processing the entire set of tracks. More details of the advantages
are found in the next section about the area, efficiency, and throughput.

5. Analysis and Results

In this section, the obtained results are presented, with a comparison between the
brute-force and the optimized methods. The data obtained by each implemented module
are reported separately, describing the number of required LUTs, FFs, and BRAMs, among
other blocks. The designs are implemented using the Xilinx Vivado v2015.2 software in a
xc7v2000tflg1925-1 FPGA. The operation of each design is observed, including the state of
the state-machines, the percentage of correlation that exists between two maps, and which
track has a higher correlation compared to the other tracks.

Table 2 shows the results of the hardware implementation for individual modules.
It is observed that the ROM module uses approximately 77% of the total LUTs in the
entire system because it is the input of all data used by the system. On the other hand,
the block that uses most of the FFs is the Accumulator, a sub-block of the Correlation
module, with 40% of the total FFs. In addition, the only segments that use RAM blocks
are Correlation_DataEntry and Correlation_Multiplication, where all processed information
is stored. Finally, the segment that consumes the most power is the Correlation_DataInput,
followed by the Counters.

These results show that most of the resources are used for the storage of the track
samples used to evaluate the system, see Table 2. In the future, it is necessary to examine
RAM memories or external memories, where the first ones occupied specialized resources
and the second ones increased the critical path. In the reported case, excluding the use of
the ROMs allows for evaluating the hardware resource requirements of the other modules.
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Table 2. Hardware implementations of the individual modules.

Module Name LUT FF BRAM DSP Power
(W)

Minimum
Period (ns)

State Machine 1 22 2 0 0 0.636 1.335
Counters 2 26 0 0 0.712 1.408
ROM Memories 17,059 59 0 0 0.636 -
Correlation_Cast_Counter 2 25 0 0 0.66 1.300
Correlation_StateMachines 8 1 0 0 0.636 1.088
Correlation_DataEntry 0 0 2 0 0.756 2.183
Correlation_Mean 2798 128 0 0 0.636 40.244
Correlation_Multiplication 0 0 2 3 0.636 3.229
Correlation_Accumulator 998 192 0 0 0.636 11.131
Correlation_Correlation 1385 80 0 1 0.636 42.917
Comparison 8 16 0 0 0.642 2.195

Total 22,282 529 4 4 7.222

Table 2 shows results of the implementation provided by the Vivado tool, but it is
important to have metrics of the behavior of the complete architecture, which are described
next. In order to compare the obtained results some equations are applied:

Throughput = bits_o f _data_block/(latency × minimum_period), (1)

Processing_time_per_track = latency × minimum_period, (2)

Maximum_ f requency = 1/minimum_period, (3)

Table 3 shows a 4x difference in terms of LUTs between the search by brute force
and the optimized search. Furthermore, the BRAMs are reduced by 50% in the optimized
search; the number DSP and FFs are maintained, the period increases by 48%, and the
power decreases by 65%. New architectures for the optimized search must be designed,
which could increase the performance of this compact architecture.

Table 3. Results comparison of searching method.

Search LUTs FFs BRAMs DSP
Minimum Period Power Performance Efficiency
(ns) (W) (Mbps) (Kbps/LUT)

Brute Force 22,538 720 8 12 44.703 1.796 361.34 16.03
Optimized 5484 717 4 12 61.209 0.636 280.80 51.20

LUT: Look-up table, FF: flip flop, BRAM: Block random access memory, DSP: Digital signal processor, W: Watt.

Additionally, a software implementation was carried out in Matlab (running on Intel
Core i7-7500U at 2.7 GHz, two cores, 16 GB SDRAM, and Windows 10) using the same
algorithm used in the hardware implementations of the brute-force and the optimized
searches, using saliency maps of 32 × 32 and 25 × 27, respectively, and a database with 33
tracks. As a result, the brute-force search took approximately 11.53 ms, while the optimized
search was 9 ms, as shown in Table 4.

Table 4. Results comparison software–hardware.

Hardware Software

Brute-Force Search 2.99 ms 11.53 ms
Optimized Brute-Force Search 2.54 ms 9.00 ms
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It can be observed that the hardware implementation is 3.85 times and 3.54 times faster
than the software implementation for the brute-force and optimized search algorithms,
respectively. This will change, however, when evaluating with hardware platforms of
different specifications. Nevertheless, these results still represent valid reference values.

Until now, the designs, an optimization analysis, the implementations, and a compari-
son between the proposed architectures have been reviewed. Comparisons with related
work are presented below.

6. Comparisons

In this section, a comparison with related works is presented in Table 5. The com-
parison is not equivalent, because different algorithms, models, processes, and FPGA
technologies were used, but it still provides essential elements of evaluation about hard-
ware architectures. Due to the diversity of the used platforms, the analysis is based on the
works implemented in FPGAs.

Table 5. State-of-the-art comparison.

Work—Design Technique Hardware Resources Technique Platform

[7]

Without Pipeline
2056 LUTs, 549 FF,
549 Slice Registers,
80 DSP48

MCLT FPGA
XC7VX330T-1FFG1157Pipeline 2056 LUTs, 1227 FF,

1672 Slice Registers,
80 DSP48

[10] Without Pipeline
7949 LUTs, 24800 FF,
11 BRAM, 25 DSP

FFT,
48 Filter Banks,
Square Root

FPGA
XC7A35T-1CPG236C

[28]
Embedded system
(software)

32-bit finger-
print, 60 MHz
Laptop, Board

Random
LSB
coding

Device LPC2148
with ARM7 core
on MCB2140 board

[29] Software Not provided
DWT,
locally linear
embedding

Not provided

This work—Without Pipeline

22538 LUTs, 720 FF,
8 BRAM, 12 DSP

Brute Force
Search FPGA

XC7V2000T-FLG19255484 LUTs, 717 FF,
4 BRAM, 12 DSP

Optimized
Search

FPGA: Field programmable gate array, LUT: Look-up table, FF: flip flop, BRAM: Block random access memory,
DSP: Digital signal processor, FFT: Fast Fourier transform, MCLT: Modulated complex lapped transform.

Table 5 shows that some hardware implementations for audio fingerprinting have
been proposed already. For example, Ref. [7] presents a fingerprinting system resistant to
collision, based on a spread spectrum algorithm in the modulated complex lapped trans-
form domain. In addition, authors in [28] present the implementation of the windowing,
FFT, filter banks, and square root functions as parts of the feature extraction. Next, three
points are described for comparison.

First, in the included works, three iterative architectures and one pipeline architecture
are presented. In general, a pipeline architecture allows multiple blocks to be processed si-
multaneously, which should increase performance while at the same time increasing power
consumption and operating frequency. On the other hand, non-pipelined architecture work
iteratively across tracks, using fewer hardware resources, but reducing the throughput.

Second, considering the brute force search, the architecture proposed in this work
requires considerable hardware resources. The proposed architecture stores different finger-
prints (it stores the database of the fingerprints). The proposed optimized brute force search
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reduces the required amount of hardware resources because fewer blocks are required for
storage and processing. The resource reduction is approximately 75.66%, an additional
advantage to that mentioned in Section 4.2. According to Table 2, the database requires
17,059 LUTs, and the rest of the hardware architecture requires 22,282 − 17,059 = 5223 LUTs,
which is similar to the related works. Related works [7,28] report that they had to create
specialized modules for their architectures and operations, which is the same situation in
our case: several different specialized modules were designed for the architecture proposed
in this article. Additionally, the DSP and FF amounts are similar but show the consumption
of state-of-the-art hardware resources.

Third, the throughput seems to affect the proposed optimized search technique. How-
ever, in the optimized case, the data amount of the map has to be 25 × 27 32-bit, single-
precision floating-point numbers, that is, 25 × 27 × 32 = 21,600 bits, while the brute force
implementation requires 32 × 32 × 32 bits = 32,768 bits. Additionally, if the difference
of 2.54 ms (optimized search) versus 2.99 ms (brute-force search) is considered, then the
amount of bits processed per unit of time is reflected in a lower throughput in the optimized
search. It is important to highlight that the optimized search processes a small amount of
data and requires a short processing time, reducing it from 2.99 ms to 2.54 ms and reporting
an improvement in the processing time of 15.05%, which is reflected in the output for the
user. Then, the optimized architecture is faster than the brute-force search architecture.
However, it processes less data (the key point of the proposal), leading to faster processing
of large sets of tracks to determine if the track in evaluation has been found.

7. Discussion

The analysis, design, and implementation of the hardware architectures gave a set of
results and discussion elements, which will be described below. Three types of results and
contributions can be highlighted:

• Proposals for both the non-optimized and optimized hardware architectures, in which
specialized modules are designed to carry out the brute-force search and to correlate
the saliency maps of the track sample with each saliency map of the stored map set.
The correlation factor allows identifying, locating, and pointing to the index (address)
with the highest correlation value (pointing to the ROM address) between the saliency
maps of the query input with some saliency map in the set of maps in the ROMs.

• An analysis focused on the sample size, where the saliency maps are reduced, requiring
fewer pixels and decreasing the computational complexity. That is, fewer operations
are performed in the correlation, only 65% of the pixels are stored, and fewer hardware
resources are required. This was achieved without affecting the average accuracy
of 95.27%. Therefore, the analysis leads to the design and implementation of an
optimized hardware architecture that improves various parameters. However, future
research is still necessary to reduce the critical path and, consequently, to improve
performance and efficiency.

• Finally, two comparative analyses were conducted. The first one focused on the
optimized and non-optimized architectures, whose results are adequate according to
their design, platform, and architecture. The second comparative analysis focused
on examining architectures proposed in related works. Although different platforms,
devices, and architectures were used in previous works, this comparison still enables
reporting reference values. On the one hand, the first comparative analysis shows a
reduction in hardware resources, such as LUTs, FFs, and RAMs. This is because fewer
data in the database or set of saliency maps must be stored, requiring only 76.55%
of the LUTs. On the other hand, the second analysis shows that there are various
algorithms that can be implemented for audio fingerprinting, and that our proposed
architecture has a competitive consumption of hardware resources according to the
optimized version.

Two limitations of the proposed architectures are described next. The first limitation
focuses on the critical path time, where the throughput and efficiency of the optimized
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hardware architecture are affected because they depend on the minimum period or critical
path time (this determines maximum frequency). Related works show that it is necessary
to explore other design techniques such as pipelining for improving throughput (efficiency
will be consequently improved because it is related to the throughput). This technique
generally reduces the critical path and increases the processing capacity, thus improving the
throughput which is one of the metrics that must be increased in our optimized architecture.
The second limitation is found in the growth of the dataset. Since the resources of the FPGA
are limited, large size tracks cannot be stored in this device, so other alternatives such as
embedded RAM memory and external RAM memories must be explored.

8. Conclusions

Three main contributions are presented in this paper. The first one is the hardware
implementation of a fingerprint extraction algorithm, which has two searching versions
depending on their storage: (1) the brute-force search and (2) the optimized brute-force search.
This means that the searching module (generation and storing of the fingerprinting) is
different for both versions. Second, this paper presents the analysis that allows reducing the
window size and optimizing the storage and, consequently, the search module. Third, two
comparative analyses for reference are described, using our hardware architectures and
related works for evaluating different metrics and showing advantages (fewer hardware
resources and operations to execute) and disadvantages (larger critical path and fewer
throughput).

It is demonstrated that the results of a 32 ×32 map and a reduced map of 27 × 25
have similar accuracy, errors, and success rates. Furthermore, with the reduction in the
saliency map, both the number of operations and the storage space are decreased. In the
hardware implementation, ROM blocks are reduced to 50%, and the number of clock cycles
decreases. In general, fewer resources are used, less power is consumed, and there is a
decrease in processing times. Furthermore, the hardware implementation is approximately
3.85 times faster than the software implementation, where the software can hardly be
improved. In contrast, there are still several techniques that can be used to improve the
hardware implementation, such as increasing parallelization and improving the individual
modules’ design, among others.

Future work will focus on using other hardware design techniques such as pipelining,
which it is expected to improve the throughput, by reducing the critical path time. Pipelin-
ing accomplishes this time requirement, in addition to increasing the processing capacity.
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Abbreviations
The following abbreviations are used in this manuscript:

A/D Analog to Digital
bps Bits per second
BRAM Block RAM
BRMA Block-Recursive Matching Algorithm
CCMF Cepstral Coefficients in Mel Frequencies
CD Compact Disc
D/A Digital to Analog
DSP Digital Signal Processor
DWT Discrete Wavelet Transform
FF Flip Flop
FFT Fast Fourier Transform
FM Frequency Modulation
FPGA Field Programmable Gate Array
FSM Finite State Machine
GTCC GammaTone Cepstral Coefficients
LUT Look-Up Table
MCLT Modulated Complex Lapped Transform
ms Millisecond
ns Nanosecond
RAM Random-Access Memory
ROM Read-Only Memory
SDC Shifted Delta Coefficients
SSM Spectrogram Saliency Maps
SVD Singular Value Decomposition
TV Television
W Watt
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