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Abstract: Efforts to develop high-energy laser (HEL) weapons that are capable of being integrated and
operated aboard naval platforms have gained an increased interest, partially due to the proliferation of
various kinds of unmanned systems that pose a critical asymmetric threat to them, both operationally
and financially. HEL weapons allow for an unconstrained depth of magazine and cost exchange
ratio, both of which are essential characteristics to effectively oppose small unmanned systems,
compared to their kinetic weapons counterparts. However, HEL performance is heavily affected by
atmospheric conditions between the weapon and the target; therefore, the more precise and accurate
the atmospheric characterization, the more accurate the performance estimation of the HEL weapon.
To that end, the Directed Energy Group of the Naval Postgraduate School (NPS) is conducting
experimental, theoretical and computational research on the effects of atmospheric conditions on
HEL weapon efficacy. This paper proposes a new approach to the NPS laser performance code
scheme, which leverages artificial neural networks (ANNs) for the prediction of optical turbulence
strength. This improvement could allow for near real-time and location-independent HEL weapon
performance estimation. Two experimental datasets, which were obtained from the NPS facilities,
were utilized to perform regression modeling using an ANN, which achieved a decent fit (R2 = 0.75
for the first dataset and R2 = 0.78 for the second dataset).

Keywords: high-energy laser; artificial neural networks; Naval Postgraduate School; laser
performance; atmospheric propagation modeling; atmospheric turbulence

1. Introduction

Since the 1960s, directed energy weapons and, in particular, high-energy laser weapons
have promised to add their unique capabilities to modern warfare; however, they have
consistently failed to fulfil these promises [1]. After many decades of research and develop-
ment efforts, and despite having spent billions of dollars, many laser weapon systems have
failed to mature enough to be used in the field. However, during the last decade, the focus
has switched from the strategic (i.e., airborne lasers, space-based lasers, etc.) to the tactical
level, resulting in several operational laser weapons (e.g., LaWS) [1]. The prospects of HEL
weapon deployment in the field include, but are not limited to, (a) the offer of a precise and
scalable non-kinetic weapon primarily for defensive applications, although perhaps also
for offensive applications in the future, (b) the offer of an excellent cost exchange ratio com-
pared to kinetic weapon counterparts and, while employed alongside them, an extension
to the depth of the magazine and an increase in platform survivability and (c) the provision
of operational flexibility in terms of the platforms into which they can be integrated and
the missions that they can execute, depending on their design parameters [1].
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The scope of this paper concerned HEL weapon systems that are integrated into
maritime platforms and, therefore, operate in maritime environments. The US Navy has
been developing solid-state lasers for quite a few years and, in 2014, achieved the integration
of the first HEL weapon (LaWS) aboard the USS Ponce. LaWS, which has a reported output
power of 30 kW, was initially tested on land against UAVs in different scenarios and has
subsequently been operationally evaluated during a deployment of the USS Ponce in the
Persian Gulf [2]. Another prototype, called the Maritime Laser Demonstrator (MLD), has
also been tested and has produced very encouraging results. Currently, the US Navy is
working on four separate programs and has already installed several systems into different
types of ships: (a) the Solid-State Laser Technology Maturation (SSL-TM) effort, which is
a 150-kW weapon system that offers new capabilities against asymmetric threats; (b) the
Optical Dazzling Interdictor, Navy (ODIN), which is a low-power system that provides
C-ISR capabilities to dazzle UASs and other platforms; (c) the Surface Navy Laser Weapon
System (SNLWS) Increment 1, also called HELIOS, which is a 60-kW system with the
potential to reach 150 kW and provide an integrated weapon and dazzler system against
small and soft targets; and (d) the High-Energy Laser Counter-ASCM program, which is a
high-power system that provides defense against anti-ship cruise missiles [2].

The Directed Energy Group (DEG) of the Naval Postgraduate School conducts sys-
tematic research activities on the design, development, integration and operation of high-
energy laser weapons in maritime environments. To support this experimental work, a
MATLAB-based code (i.e., ANCHOR) has been developed to simulate engagement sce-
narios at the tactical level and produce estimates of the weapon performance. This code
has been upgraded ever since in order to account for different aspects of HEL research.
In [3], different energy storage solutions to power a HEL weapon aboard a naval ship
were investigated at three different output power levels. The proposed solution included
lead acid and lithium-ion batteries. The latter were found to provide a more effective,
albeit more dangerous, solution. The feasibility in terms of size, weight and power (SWaP)
requirements, as well as the resulting performance of a HEL weapon deployed from a
UAV, was studied in [4,5]. Alternative HEL designs were identified to achieve equivalent
results under certain conditions and their corresponding weights were estimated. In [5],
an advanced experimental design analysis was applied to identify the most significant
parameters of a laser, as well as their interactions. A systems engineering approach was
followed in [6] in order to identify the integration trade space of a HEL weapon within an
LPD 17 class ship. Priority was given to the location of the weapon to account for certain
SWaP limitations and requirements. This study designated eight potential locations for a
HEL weapon. In [7], the effects of rain and haze on the performance of a HEL weapon in
maritime environments were studied to investigate changes in the extinction coefficient
that are caused when such conditions occur.

The characterization of the atmosphere and its corresponding effects on laser beam
propagation have been thoroughly examined for years [8], yet new and more efficient ways
to model and predict various atmospheric phenomena are required in order to achieve more
accurate laser performance estimations. The primary focus of this paper was to present a
new approach to laser weapon performance modeling through optical turbulence modeling
utilizing machine learning (ML) algorithms and, specifically, ANNs. A comprehensive
integrated model flow was proposed, which elaborated a previous “traditional” approach.

2. Materials and Methods
2.1. Atmospheric Effects on Laser Beam Propagation in Maritime Environments

A number of atmospheric phenomena exist that seriously affect laser propagation
through random media, including the following [9]: (a) diffraction; (b) atmospheric at-
tenuation; (c) atmospheric turbulence; (d) thermal blooming. The first two phenomena
can be assumed to be system-dependent, whereas the latter mostly affects laser beams of
very high power (>150 kW); therefore, the laser applications community has paid special
attention to optical turbulence.
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Quite a few software packages have been used to model the beam attenuation of
certain wavelengths (e.g., MODTRAN, HITRAN, PCLNWIN, etc.), whereas diffraction can
be modeled using the known relationship of a beam’s divergence angle [9]:

θB ∼=
λ

πWB
(1)

Optical turbulence effects are caused by random fluctuations in the refractive index,
which are caused by temperature differences at the microscopic level and are mathemati-
cally produced by the structure function of the refractive index, as follows [10]:

Dn(rn) = C2
nr2/3 (2)

where C2
n is the refractive index structure constant, which physically represents the strength

of the refractive index fluctuations. Extended research efforts have been conducted to
model C2

n in different locations around the world and over various terrains. Although
microscopic meteorology is required for this task, many models exist that are based on
local macroscopic parameters, such as wind, temperature, humidity, air pressure, etc.
Some of these are simple regression models that capture the overall trends of turbulence
strength; however, they cannot explicitly model the highly non-linear C2

n variations and
are constrained to upper and lower parameter values [10]. Maritime environments exhibit
different characteristics compared to terrestrial environments; therefore, special attention
needs to be paid [11]. Conducting direct measurements of atmospheric parameters in
maritime environments is not an easy task due to the sensitivity of sensors, flow distortion
and thermal contamination on ships. This difficulty calls for a model that utilizes easily
obtained macroscopic atmospheric parameters.

The meteorological department of NPS developed the Navy Atmospheric Vertical
Surface Layer Model (NAVSLaM), based on the Monin–Obukhov similarity theory (MOST),
to compute vertical C2

n profiles over the ocean up to 50–100 m above the surface. The
NAVSLaM model is valid for wavelengths in the range of 0.3–14 µm and requires the wind
speed, air and sea temperature, humidity and pressure as inputs. The expression of the
NAVSLaM model is given by [12]:

C2
n =

f (ξ)k2[A2∆T2 + 2ABrTq∆T∆q + B2∆q2]
z2/3

[
ln
(

z
zoT

)
− ΨT(ξ)

]2 (3)

where A and B are the partial derivatives of the refractive index with respect to tempera-
ture and specific humidity, respectively, f(ξ) is an empirically determined dimensionless
function, z is the height above the surface, k is the von Kármán constant (≈0.4), g is the
gravitational acceleration, Ψ is the integrated form of the respective dimensionless profile
function, zoT is the height at which the log-z profile T reaches its surface value and rTq
is the temperature-specific humidity correlation coefficient. A detailed derivation of the
NAVSLaM model was not within the scope of this paper and can be found in [12].

2.2. NPS Experimental Sites

Of particular interest for the NPS DEG is atmospheric characterization and its effects
on the performance of HEL weapons in maritime environments. For that reason, two
experimental sites have been set up: one at the NPS campus and the other within the
broader Monterey Bay area. At these sites, various atmospheric parameters are measured,
focusing on the modeling of optical turbulence effects on laser beam propagation in coastal
environments [13].

The NPS campus site includes a tripod, which is located on the roof of Spanagel
Hall (Figure 1), with four devices: an IRGASON (Integrated CO2/H2O Open-Path Gas
Analyzer and 3D Sonic Anemometer); an infrared radiometer; a net radiometer; and a GPS
receiver. The data collection period spanned almost a year (the end of January to the end
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of November 2021) and included measurements of air temperature, ground temperature,
solar flux, wind speed and water vapor concentration (almost 550,000 data points).

Figure 1. The NPS experimental site with the exact location of the sensors.

The estimations of optical turbulence strength (C2
n) were extracted from the wind

velocity and sonic temperatures by utilizing the Kolmogorov theory. Thus, the power
spectral density (PSD) of the sonic temperatures was used over ~40-s intervals (acquired at
50 Hz) to calculate C2

n, whereas average values for all other measurements were calculated
over the same time interval.

The Monterey Bay site includes an MZA DELTA (Figure 2), located in the south-west
part of the bay (Coast Guard Pier), and observes a target board that is 1563 m away and
located in the south-east part of the bay, close to the sea on a coastal bluff. The DELTA
produces path-resolved estimates of C2

n by tracking the turbulence-induced jitter of image
points within frames from a video of the target board. A major part of the optical path
(~95%) is over water (Figure 3). Additional measurement instruments include a portable
weather station (WS-2000), which measures macroscopic environmental parameters, such as
wind speed, pressure, relative humidity, solar flux, air temperature, dew point and rainfall
rate. A National Oceanic Atmospheric Administration (NOAA) weather station that is
located few meters south (Municipal Pier) provides additional real-time data. During our
MZA DELTA measurements, two CSAT3 sonic anemometers and a fine wire thermocouple
were also deployed as a different method to measure turbulence strength.

Figure 2. The laser propagation path over Monterey Bay, CA. The MZA DELTA transmitter is located
on the Coast Guard Pier (upper left) and the target board is on a coastal bluff.
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Figure 3. The laser propagation path over Monterey Bay, CA. The MZA DELTA transmitter is located
on the Coast Guard Pier (upper left) and the target board is on a coastal bluff.

3. Results

The accurate prediction of atmospheric turbulence strength is of great importance
for many laser applications, such as directed energy weapons (DEWs), because it could
allow for better performance estimation. The performance of a DEW is highly affected by
several atmospheric phenomena and the resulting effects on certain targets could vary for
different atmospheric conditions. One way to measure optical turbulence strength is to use
special instruments (i.e., scintillometers); however, it is not practical to deploy these on
moving platforms. Therefore, being able to predict optical turbulence strength based on
meteorological parameters would offer significant flexibility, since these parameters can be
easily measured from any platform or location. For that reason, several empirical models
have been constructed to predict the C2

n parameter using macroscopic meteorological
parameters [14]. The most popular methods are MOST-based methods and a representative
example is the NAVSLaM model. However, the constraints that these models face in
order to be valid require a new class of models that are unconstrained by their input
parameter values.

3.1. Research on Artificial Neural Networks

This paper adopted machine learning-based algorithms (i.e., ANNs) to model and
predict optical turbulence and proposed the integration of such methods into the NPS laser
performance code for accurate and near real-time C2

n prediction. A growing number of
research papers have already demonstrated the prediction capabilities of ML algorithms
and their superiority compared to traditional empirical models [15–20].

The NPS DEW group developed a laser performance code (ANCHOR) to assess
atmospheric effects on the performance of HEL weapons at the tactical level. It uses
well-known and experimentally validated atmospheric propagation scaling laws and it
is many orders of magnitude faster than full-scale wave equation propagation codes. As
shown in Figure 4, ANCHOR is fed by three main sets of input parameters: the Laser
Environmental Effects Definition and Reference (LEEDR) and NAVSLaM models are used
for the atmospheric and weather data inputs and the design scenario parameters, such as
output power, platform jitter, beam director, beam quality, geometry of engagement, etc.;
the LEEDR model is an Air Force Institute of Technology (AFIT) line-by-line (or 1 cm–1 band
model) atmospheric characterization code that captures the effects of wavelengths from
200 nm to 8.6 m. The capabilities of LEEDR include the creation of physically realizable
horizontal and vertical profiles of meteorological and weather event data and the associated
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radiative effects (i.e., optical extinction, path radiance, etc.), aerosol and surface observation
climatology, numerical weather forecasts and profiles of optical turbulence [21]. The
Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) is also utilized for
actual weather data predictions for a given location and date. The output of the performance
code is the figures of merit of the HEL weapon, including irradiance on target, power in
bucket and dwell time [22].

Figure 4. The NPS laser performance code scheme.

To improve the prediction accuracy, as well as transform this code into a near real-time
system, we proposed the integration of an ML algorithm-based model to predict C2

n and
a weather sensor to provide macroscopic atmospheric parameters as inputs, as shown in
Figure 5. Therefore, a weather sensor located in a certain place (i.e., a naval platform) could
feed the ML algorithm with parameters, on which it has already been trained, to output the
refraction index structure parameter. The proper conversion of C2

n estimates into heights
(other than those measured) could involve the Tatarski and LeClerc approaches [23]:

C2
n(h) = C2

n(h0)

(
h
h0

)n
(4)

where C2
n(h0) is the reference height-measured C2

n and n = −4/3 (Tatarski) or n = −2/3
(LeClerc). Both approaches have been validated but the −2/3 approach has been found to
yield estimations that are closer to the measured values.

Another model that produces the vertical dependence of the refractive index structure
parameter and is widely used is the Hufnagel–Valley model [24]:

C2
n(h) = 8.2 × 10−26W2h10e−h + 2.7 × 10−16e−h/1.5 + Ae−h/0.1 (5)

where h is the height above the ground in kilometers, W2 is the squared average of the
wind speed at a height of 5–20 km and A is a constant with a typical value of 1.7 × 10−4.
A modified version of this model was introduced by Hufnagel, Andrew and Phillips
(HAP) [24]:

C2
n(h) = 0.00594

(
W
27

)2(
10−5h

)10
exp
(
− h

1000

)
+ 2.7 × 10−16exp

(
− h

1500

)
+ C2

n(h0)

(
h0

h

)4/3
(6)

The ML-based C2
n estimates directly feed the ANCHOR code, along with the LEEDR

model that provides the laser extinction coefficients.
A representative ML-based algorithm that can be utilized for C2

n estimation is the
artificial neural network (ANN), which is a model that imitates the main functions of
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a human brain [15] using either single-layer or deep neural networks. The principal
component of an ANN is the perceptron, which receives a weighted input signal with a
certain bias that is added through a summation junction and passed through an activation
function f to provide the final output [15]. This complex structure allows for the modeling of
highly non-linear relationships, such as those between macroscopic atmospheric parameters
and the corresponding refractive index structure parameter, for example. To validate the
modeling performance of the ANN algorithm, we developed a single-layer perceptron
model (Figure 6) that used the values of seven macroscopic atmospheric parameters as
inputs, which were measured by the WS-2000 weather station, with a targeted output the
corresponding C2

n value for the same instance. During training, an early stopping technique
was applied to avoid overfitting, i.e., when the error on the validation dataset typically
begins to rise. When that error increased for a specified number of iterations, the training
stopped and the weights and biases at the minimum of the validation error were returned.
The software utilized to execute this neural network model was the built-in neural network
application on MATLAB.

Figure 5. The improved ML-based NPS laser performance code scheme.

Figure 6. The single-layer perceptron network architecture for the prediction of the refractive
index parameter.
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3.2. Regression Analysis

A preliminary dataset, which was obtained from the Monterey Bay site during Septem-
ber to October 2020, included 6042 data points and was split accordingly in order to train
(70%), validate (10%) and test (20%) the model using a standard Levenberg–Marquardt
backpropagation algorithm. The optimum number of nodes in the hidden layer was found
to be thirty, as higher numbers of nodes did not result in a better fit, as measured by the
coefficient of determination R2. The higher the value of R2, the better the performance (i.e.,
accuracy) of the regression model. The R2 metric has the form:

R2 = 1 − SSres

SStot
(7)

where SSres is defined as ∑N
i=1(xi − x̂i)

2 and SStot is ∑N
i=1(xi − xi)

2, where xi represents the
mean value of the C2

n observations.
The results after 178 epochs, which took approximately five minutes, showed that

the model achieved a very good estimation of the extremely non-linear refractive index
structure parameter values (R2 = 0.75), as shown in Figure 7. All ANN regression analyses
were executed in MATLAB.

Figure 7. The ANN regression plot for the observed LogC2
n values against the predicted values for

the Monterey Bay dataset.

Another dataset, which was much larger than the previous dataset, was obtained
from the NPS campus site during January to November 2021. This dataset included almost
550,000 data points and was split in the same way (70% for training, 10% for validation and
20% for testing) using a standard Levenberg–Marquardt backpropagation algorithm. The
optimum number of nodes in the hidden layer this time was found to be fifty. Once more,
after 213 epochs, which took approximately seven minutes, the model achieved an even
better fit to the measured data (R2 = 0.78), as shown in Figure 8.

Figure 8. The ANN regression plot for the observed LogC2
n values against the predicted values for

the NPS site dataset.
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4. Discussion

In the previous section, we demonstrated the capabilities of machine learning algo-
rithms and, specifically, artificial neural networks for the prediction of complex parameters.
The existing mathematical models are unable to predict C2

n to an acceptable degree of
accuracy [25,26]. In comparison to existing research works on this topic, we can state that
the accuracy achieved in this work was significant [18,24]. At the same time, the integration
of this model into an integrated model for laser weapon performance prediction could
result in a very impressive prediction tool within a near real-time framework.

Over the past decade, the Hellenic Naval Academy (HNA), Piraeus, Greece, has been
conducting focused applied research on optical turbulence characterization and modeling,
along with analyses of laser communication systems [10,27]. A variety of measurement
sensors are located on the roof of the Hellenic Naval Academy (HNA) and the lighthouse of
Psitalia island, which are 2958 m apart and 35 m above sea level. The collected data include
the bit rate and received signal strength (RSSI) of laser communication systems, various
atmospheric parameters (such as air pressure, temperature, wind speed and direction,
rainfall rate, dew point, solar flux and relative humidity) and, finally, the refractive index
structure parameter (C2

n), the structure parameter of the temperature fluctuations (C2
T),

the sensible heat flux, the scintillation index, the intensity and the Fried parameter. All
these data could feed efficient and novel machine learning and deep learning algorithms to
provide more accurate C2

n predictions. These predictions could then be evaluated against
real values that are measured by the scintillometer (BLS-450) that is co-located in the
FSO terminal.

5. Conclusions

The paper presented a new approach to modeling and estimating the performance of a
laser weapon. This approach leverages the capabilities of artificial neural networks to model
optical turbulence in the atmosphere based on macroscopic meteorological parameters and
estimate the refractive index structure parameter. Therefore, a near real-time predictive
tool for HEL weapon performance could be achieved. Two experimental datasets were
obtained from NPS facilities and utilized to perform regression modeling using an ANN,
which achieved a decent fit (R2 = 0.75 for the first dataset and R2 = 0.78 for the second
dataset). This accuracy was pretty decent for the highly complex parameter of C2

n, which
indicates the improved capabilities of ANNs.
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