
����������
�������

Citation: Lázaro, J.; Cabrejas, J.;

Zuloaga, A.; Muguira, L.; Jiménez, J.

Time Sensitive Networking Protocol

Implementation for Linux End

Equipment. Technologies 2022, 10, 55.

https://doi.org/10.3390/

technologies10030055

Academic Editor: Vijayakumar

Varadarajan

Received: 7 March 2022

Accepted: 20 April 2022

Published: 22 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Time Sensitive Networking Protocol Implementation for Linux
End Equipment
Jesús Lázaro 1,* , Jimena Cabrejas 2 , Aitzol Zuloaga 1 , Leire Muguira 1 and Jaime Jiménez 1

1 Electronics Technology Department, Faculty of Engineering of Bilbao, University of the Basque Country,
48013 Bilbao, Spain; aitzol.zuloaga@ehu.eus (A.Z.); leire.muguira@ehu.eus (L.M.);
jaime.jimenez@ehu.eus (J.J.)

2 Bytek, 48002 Bilbao, Spain; jimena@bytek.info
* Correspondence: jesus.lazaro@ehu.eus

Abstract: By bringing industrial-grade robustness and reliability to Ethernet, Time Sensitive Network-
ing (TSN) offers an IEEE standard communication technology that enables interoperability between
standard-conformant industrial devices from any vendor. It also eliminates the need for physical
separation of critical and non-critical communication networks, which allows a direct exchange
of data between operation centers and companies, a concept at the heart of the Industrial Internet
of Things (IIoT). This article describes creating an end-to-end TSN network using specialized PCI
Express (PCIe) cards and two final Linux endpoints. For this purpose, the two primary standards of
TSN, IEEE 802.1AS (regarding clock synchronization), and IEEE 802.1Qbv (regarding time scheduled
traffic) have been implemented in Linux equipment as well as a configuration and monitoring system.

Keywords: TSN; PTP; PCIe; SCADA

1. Introduction

Since Ethernet was standardized in 1983 [1], it has become the de facto link protocol
used in industrial fieldbuses and the aerospace, automotive, or transportation sectors. Most
applications in these critical sectors need to operate in real-time: data must be received
within tight deadlines. However, Ethernet does not work deterministically; i.e., it cannot
guarantee network latency times. Therefore, over the last 35 years, various conventional
Ethernet-based enhancements have been developed. Examples of these protocols are, for
instance, Profinet [2], EtherCAT (industry) [3], AFDX (aerospace) [4], or Time-Triggered (TT)
Ethernet (automotive) [5]. They are incompatible with each other and with conventional
Ethernet because they incorporate different mechanisms to guarantee determinism. This
heterogeneity means that the industry’s market for real-time Ethernet solutions is currently
highly fragmented.

In addition, the advent of Industry 4.0 and the digitalization process aims to obtain
greater productivity and effectiveness by proposing the interconnection of Operational
Technology (OT) with data networks or Information Technology (IT) (see Figure 1). This
concept is called the IIoT and consists of the interconnection of all the elements of the factory
(sensors, machinery, industrial computer) with external data centers. This interconnection
allows it to collect many operational data from the factory to analyze them using services.
Subsequently, a high level of automation is achieved to optimize factory control processes
and improve productivity and efficiency. The interoperability of both sides is a crucial
aspiration of IIoT.

Due to specific characteristics of each of the networks, the technologies in both worlds
(OT and IT) have been very different and generally not interoperable. For this reason, with
current technologies, this interconnection is not trivial since factory networks cannot di-
rectly access the Internet, as they are not compatible with conventional Ethernet. Therefore,

Technologies 2022, 10, 55. https://doi.org/10.3390/technologies10030055 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies10030055
https://doi.org/10.3390/technologies10030055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-7483-3609
https://orcid.org/0000-0002-6838-5504
https://orcid.org/0000-0002-8199-3117
https://orcid.org/0000-0002-9493-5872
https://orcid.org/0000-0002-3804-678X
https://doi.org/10.3390/technologies10030055
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies10030055?type=check_update&version=2


Technologies 2022, 10, 55 2 of 11

a standard Ethernet-based technology that can bridge the IT and OT worlds is needed. TSN
is a proposal for such an Ethernet-only-based solution.

Information TechnologyOperational Technology

Cloud IT
On-Premises

ITEdge Nodes
Sensors &

Actuators

Figure 1. The boundary between OT world (factories) and IT (data centers).

This proposal is not without its own challenges which range from practical ones to
technical ones. The initial high cost is one of the former, mainly because all switches and
elements of the network must be TSN-aware. Another one is the rapidly changing unfin-
ished standards that sometimes overlap. There is no current ability to verify conformance
and interoperability. Cybersecurity and other security issues are also a challenge, mainly
because TSN is strongly dependent on robust synchronization and configuration that can
be targeted [6]. TSN configuration is, as well, another issue due to the lack of a standard
data model.

In this direction, this paper describes the implementation of two of the primary
standards of TSN, IEEE 802.1AS (regarding clock synchronization) and IEEE 802.1Qbv
(regarding time Scheduled traffic (ST)), establishing an end-to-end TSN network. The
main contributions can be summarized as: (a) Setup and configuration of the Linux kernel
to extend the TSN slot configuration up to the Operating System (OS). (b) Setup of the
dedicated hardware within Linux. (c) Implementation of a dedicated software tool to
configure easily all different parameters. (d) A visualization tool that shows packets in
their slots to check its correct behaviour.

The rest of the paper is organized as follows: Section 2 analyzes the TSN-related
standards, Section 3 gives an overview of the related work, Section 4 describes the proposed
solution, Section 5 shows the set-up results, and Section 6 summarizes the main conclusions
of the work.

2. Related Standards

TSN is a set of standards developed by the IEEE Time-Sensitive Networking Task
Group [7]. This task group was formed in 2012 from the existing Audio/Video Bridging
(AVB) Task Group. AVB is a standard developed for synchronized audio and video data
transmission over LANs. The idea of the TSN group is to migrate and adapt the technical
solutions provided by the AVB initiative to other sectors and for sending all types of data.
It should be noted that TSN is not a communication protocol per se but an evolution
of Ethernet. All the TSN-related standards are part of the IEEE Ethernet standard. For
example, advanced TSN features such as preemption are part of the 802.3.

With the advent of TSN, deterministic data transmissions can be achieved with con-
ventional Ethernet. TSN enforces bandwidth and time slots, thus increasing the isolation.
It allows critical data to be sent over the same communication link as the rest of the traffic
without causing delays or disturbances, thus eliminating the need to create industrial
networks independent of each other. These traffic classes facilitate data exchange between



Technologies 2022, 10, 55 3 of 11

production sites and enterprises by fully interoperating factory networks with the Inter-
net [8]. All the switches must be TSN-aware to take advantage of TSN. The main reason
behind this requirement is the needed advanced synchronization. On the other hand,
cabling and Ethernet cards of non-real-time nodes will be unchanged. Since it is an open
standard, different vendors can achieve interoperability without the problems of propri-
etary protocols. This technology can be used in almost all industrial applications thanks to
its flexibility in meeting different latency, jitter, or error tolerance requirements.

As mentioned before, TSN is not a single standard but a set of standards to make
Ethernet more deterministic. Every standard develops at different rates depending on the
evolution of the market and its needs. Some of these standards are already thoroughly
tested and implemented, and others are still in the early stages of development (draft
versions) [9].

Two of the base standards are:

• IEEE 802.1ASrev: This standard defines the IEEE 802.1AS protocol, used for clock
synchronization. Through this many, advanced features of TSN can be achieved.

• IEEE 802.1Qbv: This standard defines the IEEE 802.1Qbv protocol, used for ST. It
leverages network synchronization to divide the bandwidth and time slots.

2.1. IEEE 802.1Qbv (Enhancements for ST)

With IEEE 802.1Qbv, packet transmission is scheduled end-to-end in a repeating cycle.
Qbv allows packets’ deterministic arrival, giving latency guarantees, extremely low jitter,
and no packet loss. Three basic types of traffic are defined in TSN: ST, Best-Effort traffic
(BE), and RE. ST is appropriate for critical messages with strict real-time requirements. BE is
general Ethernet traffic that does not require any QoS. Moreover, Reserved Traffic (RT) is for
frames that need to reserve specific bandwidth and have soft real-time requirements [10].

A Time-Aware Shaper (TAS), defined in IEEE 802.1Qbv [11], is a gate that enables
or disables the frame transmission depending on the scheduling algorithm. TAS divides
Ethernet communications into fixed-length, continuously repeating cycles. These cycles are
divided into time slots, and in each time slot, one or more of the eight priorities are assigned.

The number of time-slots in each cycle, their duration, and which priorities can be
transmitted in each one are fully configurable by the application. Thanks to this operation,
ST can have dedicated time slots, which ensures the deterministic operation of this traffic
over a conventional Ethernet network. On the other hand, the reserved and BE is accommo-
dated in the remaining time slots in each cycle. RT is guaranteed a dedicated bandwidth,
while BE can use the remaining bandwidth. An example 802.1Qbv configuration is shown
in Figure 2.

VLAN 2

VLAN 3

VLAN 0,1,4,5,6,7

Cycle n

Slot 1 Slot 2

Scheduled

Traffic

Reserved & Best Effort

Traffic

VLAN 2

VLAN 3

VLAN 0,1,4,5,6,7

Cycle n+1

Slot 1 Slot 2

Scheduled

Traffic

Reserved & Best Effort

Traffic

Figure 2. Time-slots division. Slot 1 is reserved for ST; no other traffic is present during the slot. Slot
2, on the other hand, is used by Reserved and Best Effort Traffic. The main difference is that RT is
guaranteed minimum bandwidth.

Since the operation of TSN is based on sending different types of traffic at different
time intervals, all network equipment must be synchronized in the nanosecond range.



Technologies 2022, 10, 55 4 of 11

2.2. IEEE 802.1ASrev (Timing & Synchronization)

It was the first standard to be published, making it the most widely implemented TSN
standard today [12]. With IEEE 802.1ASrev, network end devices and switches have a com-
mon clock, allowing synchronization with an accuracy of less than 1 µs. Synchronization is
possible over long distances without affecting the packet propagation delay.

The Precision Time Protocol (PTP) defined in IEEE 1588 [13] is used to synchronize
the devices’ clocks in a network with microsecond precision. The Generic Precision Time
Protocol (gPTP), also known as IEEE 802.1ASrev—the successor of 802.1AS—, is a profile of
PTP that includes features that significantly improve the accuracy of clock synchronization.
gPTP has some changes that make the two protocols not compatible.

The synchronization and establishment of the clock domain in gPTP occurs in four
phases: (a) Determine whether the other equipment on the link (peer) is capable of sup-
porting gPTP. (b) Determine the link latency and the clock frequency of the peer. (c) Select
the best clock in the network as the master (MasterClock). (d) Synchronize all nodes in the
network to the MasterClock.

3. Related Work—TSN Implementation

TSN implementation has been extensively proposed and analyzed in different sectors
and applications. Deterministic latency is accomplished through time synchronization
and the application of a global schedule, corresponding to IEEE 802.1AS and 802.1Qbv
TSN standards, respectively [14]. So, principally, critical traffic can be scheduled more
deterministically using these two standards [15]. Experimental procedure in [16] demon-
strates that if requirements of latency and jitter are very low, IEEE 802.1Qbv scheduling
must be combined with clock synchronization mechanisms. Including IEEE 802.1ASrev
clock synchronization with IEEE 802.1Qbv standard is a challenging case study [17]. For
example, in networks containing many flows, it can be complex to decide how to schedule
them [18]. This section reviews the implementation of these two TSN standards, comparing
the research literature to the proposed solution.

In [14], some IEEE 802.1AS design decisions motivated by specific application re-
quirements are explained. A survey of the synchronized time utilization by software and
other applications running at network edges is performed. They emphasized the need to
continue improving the PTP and related standards and precision time software support
and OS for end stations running the synchronized time applications.

Regarding scheduled transmission defined in IEEE 802.1Qbv, standard alternative
queuing algorithms defined by IEEE 802.1 are discussed in [19]. Besides, routing impact
over TT traffic schedulability is also explored in [20]. They discussed the need for special-
ized routing algorithms for such traffic and proposed two Integer Lineal Programming
(ILP)-based routing algorithms for improving TT traffic schedulability. Ref. [15] gives
an improvement providing a combination of the TT and the priority-based scheduling,
broadening the solution for the Gate Control Listss (GCLs). On the other hand, Ref. [21]
proposes using a GCL synthesis approach based on a Greedy Randomized Adaptive Search
Procedure to schedule TT flow.

The simulation framework has crucial importance, allowing extracting system per-
formance at the development phase stages [15,22,23]. In order to evaluate the TSN-based
system’s global time base reliability, Ref. [22] presents a simulation framework for IEEE
802.1ASrev. In contrast to existing clock synchronization simulation frameworks, it con-
siders faults and dynamic changes in real-time systems. For TSN network simulation and
IEEE 802.1Qbv scheduling mechanism analysis, Ref. [23] presents TSN-specific extensions
to OMNeT++/INET framework. Conversely, Ref. [15] presents a method based on network
calculus for evaluating TSN critical communications where the GCLs have been previously
generated.

Another significant challenge is the integration of initially non-TSN-capable devices
in TSN networks [24]. For example, most of the analyzed implementations are based on
Linux OS, such as [14,24]. Linux also has uncertainty sources for real-time performance,



Technologies 2022, 10, 55 5 of 11

such as preemption or interruptions [25], but it includes many mechanisms to achieve
better reliability. A clear timeline in [26] shows the evolution of Linux regarding real-
time performance.

4. Proposed Solution

As seen in previous sections, synchronization poses several challenges. These chal-
lenges are increased when we seek to use slots and shape the traffic in the wire. Our solution
is based on specialized TSN capable PCIe network cards — RELY-TSN-PCIe. These cards
are TSN capable and based on an Field Programmable Gate Array (FPGA) and an Intel i210
chip. The Intel i210 is TSN capable, while the FPGA provides multiple paths —embedded
Ethernet switch— and real-time capabilities. This combination allows using standard
drivers in the PC, which is crucial when the OS lacks TSN support. At the same time, it
also allows advanced scheduling not supported by the Intel chip. The RELY-TSN-PCIe card
is the first known solution for TSN that allows the deployment of a deterministic Ethernet
network abstracting from the user’s end equipment and the application for which it will
be used. In other words, it can be used in different end equipment (Supervisory Control
And Data Acquisition (SCADA), IoT gateway) and thus introduces TSN technology in the
equipment and integrate it into the deterministic network [27]. The insertion is transparent
from the OS perspective since it only detects a standard Ethernet Card. If the OS wants to
use advanced scheduling, this introduction becomes less transparent, but the TSN network
operation does not require such changes. The solution has been developed in an Ubuntu
20.04 LTS.

4.1. IEEE 802.1ASrev Implementation

For implementing the 802.1ASrev Timing and Synchronization for Time-Sensitive
Applications standard, the network clocks that have to participate in the standard were
first identified. Figure 3 shows the identified clocks and synchronization links. As can be
seen, six different clocks can be distinguished.

It is necessary to distinguish between the way to synchronize all the clocks. There are
two types of synchronization: (a) network synchronization (b) device-network synchroniza-
tion The network synchronization is based on synchronizing the four PTP hardware clocks
(PHC) of the I210 and the PCIe; for this, the ptp4l command included in the linuxptp [28]
package will be used. linuxptp is an implementation of the PTP for Linux. ptp4l imple-
ments Boundary Clock (BC) and Ordinary Clock (OC). On the other hand, the system clock,
which is software, gets its time from the Internet using NTP or GPS for the device-network
synchronization. Nevertheless, in this case, the system clock will get its time from the
TSN network through the phc2sys command included in the linuxptp package instead of
directly using gPTP, which uses hardware timestamping.

Linux PC

RELY_TSN_PCIe

TSN SW

i210

Linux PC

System Clock

RELY_TSN_PCIe

TSN SW

i210

System Clock

Figure 3. Network clocks that require to be synchronized.



Technologies 2022, 10, 55 6 of 11

4.2. IEEE 802.1Qbv Implementation

There are two options to build a network in which Qbv is implemented end-to-end.
The first is to activate Qbv only on the output of the Linux endpoint that acts as a talker. In
this way, the packets will leave the Linux Kernel orderly fashion and theoretically propagate
unordered throughout the network until they reach the listener. However, this is not the
best approach. From the kernel output to the wire, several layers inject jitter. This jitter may
lead to non-compliance with the allocated slots.

The second option is to activate Qbv in two points: in the Kernel of the Linux talker
and in the output port of the Ethernet card connected to the talker, as shown in Figure 4.
This second approach is the one that has been used. The same Qbv is configured at both
points. In this way, the packets follow the allocated slots at the wire. When all the network
elements are also TSN-aware, these slots will be maintained up to the receiver.

Linux PC

RELY_TSN_PCIe

TSN SW

i210

Linux PC

Listener

RELY_TSN_PCIe

TSN SW

i210

Talker

Figure 4. Qbv net structure.

Kernel patches have been created to provide Qbv functionality to Linux machines. In
the following, we will explain how packet forwarding works on Linux machines, the two
patches that have been created to work with time-slots, and their implementation on the
final Linux machines.

The traffic forwarding on Linux systems is done through the Traffic Control (TC)
subsystem of the Kernel [29]. TC subsystem code operates between the Intellectual Property
(IP) and network interface drivers that transmit data to the network. This subsystem is
responsible for constantly supplying packets to be sent to the driver.

TC is composed of queue disciplines (qdisc). The qdiscs represent the scheduling
policies applied to the queue. It reorganizes the packets arriving in the queue according
to the rules installed in that scheduler and sends them in that new order. By default, this
scheduler maintains a First In, First Out (FIFO) queue. Therefore, what is needed is a qdisc
that can reorganize packets based on time intervals and send traffic in an orderly fashion
based on the 802.1Qbv standard.

The vanilla Linux kernel does not have this queuing discipline, so kernel patches
were developed that introduce the necessary tools to implement 802.1Qbv on Linux
systems [30,31]. These patches introduce two new qdiscs:

• Earliest TxTime First Qdisc (ETF) allows applications to control the exact instant a
packet should be sent to the network card driver. ETF achieves that by buffering
packets until a configurable time before their transmission time.

• Time-Aware Priority Shaper (TAPRIO) implements a simplified version of the state
machines defined by the IEEE 802.1Qbv standard (see IEEE 802.1Qbv Standard) that
allows the configuration of a sequence of gateway states where each state allows or
disallows the egress of traffic for a subset of traffic classes.

The patches also introduce a new option to system sockets called SO_TXTIME to
enable a socket for time-based transmission and thus configure its parameters.



Technologies 2022, 10, 55 7 of 11

5. Results

A high-level application has been created to configure both standards graphically. It
enables the network administrators to configure and observe the network providing slot
information similar to Wireshark’s I/0 Graph shown in Figure 5 but in real-time. Proofs of
concepts have been developed in a specially set up network composed of two PCs (talker
and listener) connected through a TSN-aware network composed of a single switch.

1.89 1.90 1.91 1.92 1.93 1.94 1.95
Time (s)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Pa
ck

et
s/

s
Wireshark Graph

BE
ST

Figure 5. Wireshark capture demonstrating slots.

The first step is to check the synchronization among all the different systems. Checking
the Pulse-Per-Second output of the PCIe boards and the information provided by the PTP
daemons, the Ethernet cards are synchronized within 10 ns, while the systems are in the
100 ns range (see Figure 6).

Linux PC

RELY_TSN_PCIe

TSN SW

± 10 ns

i210

Linux PC

± 100 ns

System Clock

RELY_TSN_PCIe

± 10 ns

TSN SW

± 100 ns

i210

System Clock

Figure 6. Fully synchronized system. gPTP relationships have been created among the internal
switches of the cards, between the internal switch and the i210 chip, and between the chip and the PC.



Technologies 2022, 10, 55 8 of 11

A demo has been created to test the operation of the patches on the endpoint. The
demo configures the Qbv patches in the talker to send ST and Best Effort traffic. The listener
receives this data and shows graphically in real-time how each one arrives in its slot.

The resulting traffic can be seen in Figure 7, as shown by the real-time window of the
developed application. These demos show the correct operation of the standards and their
integration with the PCIe card. The result is ordered and shaped traffic.

1.12 1.13 1.14 1.15 1.16
Time (s)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Pa
ck

et
s/

s
Wireshark Graph

BE
ST

Figure 7. Real-time capture by the created application demonstrating slots. This real-time view allows
the network designer to follow the operation of the network and tune the different configurations to
the desired requirements.

The results are similar to those provided by Wireshark but, in this case, obtained in
real-time. The application allows easy management of the link. At the same time, they
serve to prove the correct operation of the TSN-enabled system.

Using this configuration framework, the designer can create a network with different
configurations and see their results. A more sophisticated real-life example can be seen in
Figure 8.

In this example, each traffic type in TSN is based on the Priority Code Point (PCP) bits
of the Virtual Local Area Network (VLAN) tag. In this set-up, the traffic has been classified
as follows:

• ST: Brake Info (Data Distribution Service (DDS) Stream 1, VLAN 11, PCP 2).
• RT: Camera Real Time Video (DDS Stream 2, VLAN 12, PCP 5).
• BE: Remaining TCP/IP traffic. (VLAN 3, PCP 6).

TSN configuration is distributed into four slots that complete a Cycle-time of 10 ms.
The distribution of the traffic in each slot is as follows: (1) Free. (2) ST. (3) Free. (4) RT+BE.
As can be seen, the different streams are constrained in the configured slots.



Technologies 2022, 10, 55 9 of 11

0.84 0.86 0.88 0.90 0.92
Time (s)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Pa
ck

et
s/

s

Video application
BE
RT
ST

Figure 8. A real-life example of an in-car network. ST is composed of brake info. RT provides the
real-time video while BE is composed of the rest infoentertainment data.

6. Conclusions

The main result of the work described in this paper is the construction of a TSN-
capable system that can be used to provide a reliable and scalable network. Therefore, it
has been possible to implement the two primary TSN standards in Linux end devices and
validate the RELY_TSN_PCIe cards’ correct operation. The end devices have been included
in the TSN network. On the one hand, all the network clocks have been synchronized
by implementing the IEEE 802.1ASrev standard, using an open-source daemon in the
end devices. On the other hand, we have implemented the ordered sending of packets
in time slots following the IEEE 802.1Qbv standard using public Linux Kernel patches.
Furthermore, we have created a configuration and visualization tool that helps the network
designer to setup and understand the operation of the system. Thanks to this work and
the two open technologies used, progress is being made in implementing TSN in standard
equipment, i.e., non-proprietary equipment.

Author Contributions: Conceptualization, J.L. and J.C.; methodology, J.C.; software, J.C.; validation,
L.M.; formal analysis, A.Z.; investigation, J.L.; resources, J.L.; writing—original draft preparation, J.L.
and J.C.; writing—review and editing, J.L.; visualization, J.L.; supervision, J.J.; project administration,
J.J.; funding acquisition, J.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This work has been supported by the Ministerio de Economía y Competitividad of Spain
within the project TEC2017-84011-R and FEDER funds as well as by the Department of Education
of the Basque Government within the fund for research groups of the Basque university system
IT978-16.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IEEE. IEEE Specification for 10 Mbps Ethernet. 1983. Available online: https://standards.ieee.org/ieee/802.3/7071/ (accessed

on 19 April 2022).

https://standards.ieee.org/ieee/802.3/7071/


Technologies 2022, 10, 55 10 of 11

2. Kleines, H.; Detert, S.; Drochner, M.; Suxdorf, F. Performance Aspects of PROFINET IO. IEEE Trans. Nucl. Sci. 2008, 55, 290–294.
[CrossRef]

3. Cena, G.; Bertolotti, I.C.; Scanzio, S.; Valenzano, A.; Zunino, C. Evaluation of EtherCAT Distributed Clock Performance. IEEE
Trans. Ind. Inf. 2012, 8, 20–29. [CrossRef]

4. He, F.; Zhao, L.; Li, E. Impact Analysis of Flow Shaping in Ethernet-AVB/TSN and AFDX from Network Calculus and Simulation
Perspective. Sensors 2017, 17, 1181. [CrossRef] [PubMed]

5. Yang, X.; Huang, Y.; Shi, J.; Cao, Z. A Performance Analysis Framework of Time-Triggered Ethernet Using Real-Time Calculus.
Electronics 2020, 9, 1090. [CrossRef]

6. Jin, X.; Xia, C.; Guan, N.; Zeng, P. Joint Algorithm of Message Fragmentation and No-Wait Scheduling for Time-Sensitive
Networks. IEEE/CAA J. Autom. Sin. 2021, 8, 478–490. [CrossRef]

7. Time-Sensitive Networking Task Group. IEEE 802.1 Standards. 2018. Available online: http://www.ieee802.org/1/pages/tsn.
html (accessed on 19 April 2022).

8. Hallmans, D.; Ashjaei, M.; Nolte, T. Analysis of the TSN Standards for Utilization in Long-life Industrial Distributed Control
Systems. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Vienna, Austria, 8–11 September 2020. [CrossRef]

9. Cisco. Time-Sensitive Networking: A Technical Introduction. 2017. Available online: https://www.cisco.com/c/dam/en/us/
solutions/collateral/industry-solutions/white-paper-c11-738950.pdf (accessed on 19 April 2022).

10. Gavriluţ, V.; Pop, P. Traffic-type Assignment for TSN-based Mixed-criticality Cyber-physical Systems. ACM Trans. Cyber-Phys.
Syst. 2020, 4, 1–27. [CrossRef]

11. Time-Sensitive Networking Task Group. 802.1Qbv—Enhancements for Scheduled Traffic. Available online: https://www.ieee8
02.org/1/pages/802.1bv.html (accessed on 19 April 2022).

12. Kim, Y.J.; Kim, J.H.; Cheon, B.M.; Lee, Y.S.; Jeon, J.W. Performance of IEEE 802.1AS for automotive system using hardware
timestamp. In Proceedings of the The 18th IEEE International Symposium on Consumer Electronics (ISCE 2014), Jeju, Korea,
22–25 June 2014. [CrossRef]

13. Time-Sensitive Networking Task Group. 802.1AS—Timing and Synchronization. Available online: https://www.ieee802.org/1/
pages/802.1as.html (accessed on 19 April 2022).

14. Stanton, K.B. Distributing Deterministic, Accurate Time for Tightly Coordinated Network and Software Applications: IEEE
802.1AS, the TSN profile of PTP. IEEE Commun. Stand. Mag. 2018, 2, 34–40. [CrossRef]

15. Zhao, L.; Pop, P.; Craciunas, S.S. Worst-Case Latency Analysis for IEEE 802.1Qbv Time Sensitive Networks Using Network
Calculus. IEEE Access 2018, 6, 41803–41815. [CrossRef]

16. Farzaneh, M.H.; Knoll, A. Time-sensitive networking (TSN): An experimental setup. In Proceedings of the 2017 IEEE Vehicular
Networking Conference (VNC), Turin, Italy, 27–29 November 2017. [CrossRef]

17. Vlk, M.; Brejchová, K.; Hanzálek, Z.; Tang, S. Large-scale periodic scheduling in time-sensitive networks. Comput. Oper. Res.
2022, 137, 105512. [CrossRef]

18. Kumar, G.N.; Katsalis, K.; Papadimitriou, P.; Pop, P.; Carle, G. Failure Handling for Time-Sensitive Networks using SDN and
Source Routing. In Proceedings of the 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo,
Japan, 28 June–2 July 2021; pp. 226–234. [CrossRef]

19. Finn, N. Introduction to Time-Sensitive Networking. IEEE Commun. Stand. Mag. 2018, 2, 22–28. [CrossRef]
20. Nayak, N.G.; Dürr, F.; Rothermel, K. Routing algorithms for IEEE802.1Qbv networks. ACM SIGBED Rev. 2018, 15, 13–18.

[CrossRef]
21. Gavrilut, V.; Pop, P. Scheduling in time sensitive networks (TSN) for mixed-criticality industrial applications. In Proceedings

of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018.
[CrossRef]

22. Pahlevan, M.; Balakrishna, B.; Obermaisser, R. Simulation Framework for Clock Synchronization in Time Sensitive Networking.
In Proceedings of the 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC), Valencia, Spain,
7–9 May 2019; pp. 213–220. [CrossRef]

23. Falk, J.; Hellmanns, D.; Carabelli, B.; Nayak, N.; Durr, F.; Kehrer, S.; Rothermel, K. NeSTiNg: Simulating IEEE Time-sensitive
Networking (TSN) in OMNeT++. In Proceedings of the 2019 International Conference on Networked Systems (NetSys), Munchen,
Germany, 18–19 March 2019. [CrossRef]

24. Cochran, R.; Marinescu, C. Design and implementation of a PTP clock infrastructure for the Linux kernel. In Proceedings of
the 2010 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication,
Portsmouth, NH, USA, 27 September–1 October 2010; pp. 116–121. [CrossRef]

25. de Oliveira, D.B.; Casini, D.; de Oliveira, R.S.; Cucinotta, T. Demystifying the Real-Time Linux Scheduling Latency. In Proceedings
of the 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), Virtual, 30 June 2020. [CrossRef]

26. Reghenzani, F.; Massari, G.; Fornaciari, W. The Real-Time Linux Kernel. ACM Comput. Surv. 2020, 52, 1–36. [CrossRef]
27. SoC-e. RELY-PCIe Time-Aware Redbox-DAN-Switch PCIe Platform. 2021. Available online: https://www.relyum.com/web/

rely-pcie/ (accessed on 19 April 2022).
28. Cochran, R. The Linux PTP Project. Available online: http://linuxptp.sourceforge.net/ (accessed on 19 April 2022).
29. Vehent, J. QOS & contrôle du trafic. Gnu/Linux Magazine, May 2010; Volume 127.

http://doi.org/10.1109/TNS.2007.914032
http://doi.org/10.1109/TII.2011.2172434
http://dx.doi.org/10.3390/s17051181
http://www.ncbi.nlm.nih.gov/pubmed/28531158
http://dx.doi.org/10.3390/electronics9071090
http://dx.doi.org/10.1109/JAS.2021.1003844
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
http://dx.doi.org/10.1109/etfa46521.2020.9212162
https://www.cisco.com/c/dam/en/us/solutions/collateral/industry-solutions/white-paper-c11-738950.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/industry-solutions/white-paper-c11-738950.pdf
http://dx.doi.org/10.1145/3371708
https://www.ieee802.org/1/pages/802.1bv.html
https://www.ieee802.org/1/pages/802.1bv.html
http://dx.doi.org/10.1109/isce.2014.6884384
https://www.ieee802.org/1/pages/802.1as.html
https://www.ieee802.org/1/pages/802.1as.html
http://dx.doi.org/10.1109/MCOMSTD.2018.1700086
http://dx.doi.org/10.1109/ACCESS.2018.2858767
http://dx.doi.org/10.1109/vnc.2017.8275648
http://dx.doi.org/10.1016/j.cor.2021.105512
http://dx.doi.org/10.1109/NetSoft51509.2021.9492666
http://dx.doi.org/10.1109/MCOMSTD.2018.1700076
http://dx.doi.org/10.1145/3267419.3267421
http://dx.doi.org/10.1109/wfcs.2018.8402374
http://dx.doi.org/10.1109/isorc.2019.00046
http://dx.doi.org/10.1109/netsys.2019.8854500
http://dx.doi.org/10.1109/ispcs.2010.5609786
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.9
http://dx.doi.org/10.1145/3297714
https://www.relyum.com/web/rely-pcie/
https://www.relyum.com/web/rely-pcie/
http://linuxptp.sourceforge.net/


Technologies 2022, 10, 55 11 of 11

30. Gomes, V.C. Net/Sched: Introduce the Taprio Scheduler; Technical Report; Intel Inc.: Santa Clara, CA, USA, 2018. Available online:
https://lwn.net/ml/netdev/20180929005943.12928-1-vinicius.gomes@intel.com/ (accessed on 19 April 2022).

31. Intel. Adopting Time-Sensitive Networking (TSN) for Automation Systems. 2020. Available online: https://software.intel.com/
content/www/us/en/develop/articles/adopting-time-sensitive-networking-tsn-for-automation-systems-0.html (accessed on
19 April 2022).

https://lwn.net/ml/netdev/20180929005943.12928-1-vinicius.gomes@intel.com/
https://software.intel.com/content/www/us/en/develop/articles/adopting-time-sensitive-networking-tsn-for-automation-systems-0.html
https://software.intel.com/content/www/us/en/develop/articles/adopting-time-sensitive-networking-tsn-for-automation-systems-0.html

	Introduction
	Related Standards
	IEEE 802.1Qbv (Enhancements for ST)
	IEEE 802.1ASrev (Timing & Synchronization)

	Related Work—TSN Implementation
	Proposed Solution
	IEEE 802.1ASrev Implementation
	IEEE 802.1Qbv Implementation

	Results
	Conclusions
	References

