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Abstract: At the end of 2019, a severe public health threat named coronavirus disease (COVID-19)
spread rapidly worldwide. After two years, this coronavirus still spreads at a fast rate. Due to its rapid
spread, the immediate and rapid diagnosis of COVID-19 is of utmost importance. In the global fight
against this virus, chest X-rays are essential in evaluating infected patients. Thus, various technologies
that enable rapid detection of COVID-19 can offer high detection accuracy to health professionals to
make the right decisions. The latest emerging deep-learning (DL) technology enhances the power
of medical imaging tools by providing high-performance classifiers in X-ray detection, and thus
various researchers are trying to use it with limited success. Here, we propose a robust, lightweight
network where excellent classification results can diagnose COVID-19 by evaluating chest X-rays.
The experimental results showed that the modified architecture of the model we propose achieved
very high classification performance in terms of accuracy, precision, recall, and f1-score for four
classes (COVID-19, normal, viral pneumonia and lung opacity) of 21.165 chest X-ray images, and at
the same time meeting real-time constraints, in a low-power embedded system. Finally, our work
is the first to propose such an optimized model for a low-power embedded system with increased
detection accuracy.

Keywords: classification; COVID-19; lightweight neural network; deep learning; medical imaging;
chest X-rays

1. Introduction

COVID-19 is a highly contagious and infectious disease that causes severe infection of
the lower respiratory system. COVID-19 was officially declared a global pandemic by the
World Health Organization (WHO) on 11 March 2020 [1]. The total number of COVID-19
cases worldwide up to this point, which changes almost every minute, is over 328 million,
including 5 million deaths and 55 million active patients [2]. The increasing number of
deaths from COVID-19 and the rapid rate of disease transmission makes it one of the
world’s most significant and most serious public health issues.

The clinical findings of COVID-19 infection are those of bronchopneumonia, where
cough, dyspnea, fever and respiratory failure with acute respiratory distress syndrome
(ARDS) occur [3,4]. Radiographic imaging is the fastest, cheapest, and most essential
diagnostic tool for detecting pneumonia while providing lower patient radiation than
computed tomography (CT) and magnetic resonance imaging (MRI) [5,6].

In COVID-19 disease, the lungs are affected resulting in severe viral pneumonia [7–9].
Deaths from viral pneumonia due to COVID-19 are constantly increasing day by day. Thus,
a valid diagnosis of COVID-19 pneumonia is vital but often a difficult task due to the similar
symptoms and radiological findings that occur between patients infected with COVID-19
and patients with viral pneumonia [10–12]. This difficulty can be alleviated by enhancing
the arsenal of health workers using artificial intelligence in the form of machine learning.
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In recent years, artificial intelligence (AI) has been established as a powerful tool
in the field of medical services for classification, prediction, diagnosis, detection and
segmentation [13–18]. In medical imaging, DL in chest X-rays has been shown to play an
essential role in the detection of viral pneumonia, bacterial pneumonia and other chest
diseases [19,20]. With the rapid spread of the virus and the fight against pandemics,
researchers are using state-of-the-art DL techniques to classify COVID-19 X-rays [21–24].
Therefore, the design and development of DL models for the classification of COVID-19
infected radiographs is an urgent need to address the pandemic to make appropriate
clinical decisions and significantly reduce workload [25].

The main goal of this study is to propose a robust, lightweight neural network, enhanc-
ing the work in [26], that provides high accuracy of chest X-ray prediction for COVID-19
detection executed on a low-power embedded system. The classic deep CNNs such as
VGG16, VGG19 [27] have excellent performance, but they are difficult to deploy on devices
with low hardware, due to the amount of model parameters and computational complexity.
We use low-power embedded systems to design a low-cost portable point-of-care medical
device that would be affordable for any hospital to acquire [28,29].

Many models have been developed and modified, but there is still room for improve-
ment, as our research proves.

The main contributions of the proposed study can be summarized as follows:

• We propose a modified neural network structure of the MobileNetV2 model, to maxi-
mize the learning ability for classification of chest X-rays. The modified version of our
architecture requires significant less training time than other existing DL architectures
due to the small number of network parameters.

• Our design can classify four different categories of chest X-rays (COVID-19, normal,
viral pneumonia and lung opacity). The accuracy of our approach is significantly
higher than standard architecture and surpasses other state-of-the-art methods.

• This is the first study to investigate a large set of chest X-ray images (21.165 chest
X-ray images) combined from many other studies that appear in the literature, which
include few X-ray samples and mainly concern binary classifications.

• The modified structure of the architecture yields excellent classification results and,
in combination with the small size of the network, leads to an attractive model for
diagnosing chest X-rays in embedded systems.

The rest of the paper is organized as follows. In Section 2, we summarize related
work. Subsequently, in Section 3 we give an outline of the procedure followed for the
proposed approach, while in Section 4 we present the experimental results, and in Section 5
we conclude the article.

2. Related Work

In the global fight against the virus, the rapid and valid assessment of COVID-19
infected patients is a major challenge for the research community. Several studies have
been performed to demonstrate the potential of DL in detecting COVID-19 infected chest
X-rays in the field of medical imaging.

Kamal et al. [30] evaluated eight pre-trained CNN models (MobileNetV2, MobileNet,
VGG19, ResNet50, ResNet50V2, DenseNet121, InceptionV3 and NasNetMobile). The aper-
ture in the preformed plates of 744 images exposes 186 normal, 186 COVID-19, 186 bacterial
pneumonia, and 186 viral pneumonia. Each DL model trained 1000 epochs. The results
showed that for 4 class classification, the MobileNetV2 model achieved 95.40% accuracy.
In [31] the authors proposed a model called Bayesian CNN. The used dataset consisted
of 68 COVID-19, 1.583 normal, 2.786 bacterial pneumonia and 1.504 viral pneumonia im-
ages. Their CNN model was trained for 25 epochs and for 4 class classification achieved
89.82% accuracy. Khan et al. [32] proposed a model called CoroNet, which is based on
the Xception model and consists of 33 million parameters. The used dataset in their tests
consisted of 284 COVID-19, 310 normal, 330 bacterial pneumonia and 327 viral pneumonia
chest radiography images. Their DL model was trained for 80 epochs and for 4 class classi-
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fication (COVID-19, bacterial pneumonia, viral pneumonia, normal) achieved an accuracy
of 89.60%.

Mahmud et al. [33] suggest a model called CovXNet. The used dataset consisted
of 305 COVID-19, 305 normal 305 viral pneumonia and 305 bacterial pneumonia. Their
CNN model was trained for 150 epochs and for 4 class classification achieved 90.20%
accuracy. Wang et al. [34] proposed a model called COVID Net, which consists of
11.75 million parameters. The dataset they used in their tests consisted of 358 COVID-19,
8.066 normal and 5.538 pneumonia. Their CNN model was trained for 22 epochs and for
3 class classification achieved 93.30% accuracy. Similarly, in [35] the authors proposed a
model called DarkCovidNet. In their tests, the dataset they used consisted of 127 COVID-19,
500 normal and 500 pneumonia. Their DL model was trained for 100 epochs and for 3 class
classification achieved an accuracy of 87.02%.

Furthermore, in [36] compared five pre-trained CNN models (MobileNetV2, VGG19,
Xception, InceptionV3 and InceptionResNetV2). They used two sets of data, the first set
consisting of 224 COVID-19, 504 normal, 700 bacterial pneumonia, while the second set
consisted of 224 COVID-19, 504 normal, 714 bacterial and viral pneumonia. Each CNN
model was trained with the same hyperparameters for 10 epochs. The DL MobileNetV2 ar-
chitecture in the first set for 3 class classification achieved 92.85% accuracy and in the second
dataset achieved 94.72% accuracy. Misra et al. [37] proposed a multi-channel pre-trained
ResNet architecture. The dataset they used consisted of 1.579 normal, 4.245 pneumonia and
184 COVID-19 images. Their DL model was trained up to 500 epochs with early stopping
criteria. Their model for 3 class classification achieved 93.90% accuracy.

In [38] the authors evaluated the VGG16, VGG19, DenseNet201, InceptionResNetV2,
InceptionV3, Resnet50 and MobileNetV2 models. The dataset they used in their tests
consisted of 2.780 images of bacterial pneumonia, 231 of COVID-19 and 1.583 normal. Each
CNN model was trained with the same hyperparameters for 300 epochs. The InceptionRes-
NetV2 model for 3 class classification achieved 92.18% accuracy, while the MobileNetV2
85.47%. Narinet al. [39] compared five pre-trained CNN models (ResNet50, ResNet101,
ResNet152, InceptionV3 and InceptionResNetV2). In their study they applied three different
binary classifications with four classes (COVID-19, viral pneumonia, bacterial pneumonia,
normal). The used dataset in their tests consisted of 341 COVID-19, 2.800 normal, 2.772
bacterial pneumonia and 1.493 viral pneumonia chest radiography images. Each DL model
trained 30 epochs. The results showed that the pre-trained ResNet50 model provided the
highest classification performance in all three different binary classifications with an accu-
racy of over 96%. The ResNet50 model they propose consists of over 25 million parameters.

Most of the above studies used a limited dataset, which varies and includes minimal
samples of COVID-19 X-rays ranging from 100 samples up to 500 using millions of parame-
ters. Studies have shown an urgent need for efficient DL models in large-scale data with
fewer parameters that will provide higher accuracy. This work presents a modified version
of the MobileNetV2 model for detecting COVID-19 infection from chest X-ray images and
focuses on 4 class classifications.

In contrast with all other authors, we propose a well-tuned DL architecture that can
be executed on a low-power embedded system in real time (sustainable performance with
over 120 fps). Furthermore, we have trained our model using a dataset of over 21 k images.
In our study, our goal is for the model to combine small network size a small number
of parameters and to show very high performance for the classification of the four most
important cases for lung deceases (COVID-19, normal, lung opacity and viral pneumonia)
in a large dataset 21.165 chest X-ray images.

3. Materials and Methods

In this section, we will describe the dataset. Then, we will describe the details of the
proposed model architecture, the training on the embedded GPU and the performance metrics.
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3.1. Dataset Description

In this study, the dataset we used in our experiments is the COVID-19 Radiography
Database [40]. This dataset is currently one of the largest public databases with 21.165 chest
X-ray images and includes 3.616 COVID-19 positive cases, 10.192 normal, 6.012 lung opacity
(Non-COVID lung infection) and 1.345 viral pneumonia images. All the images are in PNG
file format, and the resolution is 299× 299 pixels. Figure 1 shows a sample of the COVID-19
Radiography Database (normal, COVID-19, lung opacity and viral pneumonia).

Figure 1. A sample of the COVID-19 Radiography Database.

3.2. Splitting the Dataset

We randomly split the dataset into training 70% (14.813 images), validation 20%
(4.232 images), and testing 10% (2.120 images). The training set consists of 14.813 images,
in which there were 2.530 COVID-19 images, 7.134 normal images, 4.208 lung opacity
images and 941 viral pneumonia images. The validation set consists of 4.232 images, in
which there were 723 COVID-19 images, 2.038 normal images, 1.202 lung opacity images
and 269 viral pneumonia images. The test set consists of 2.120 images, in which there
were 363 COVID-19 images, 1.020 normal images, 602 lung opacity images and 135 viral
pneumonia images. The images used for testing were never used in the training process.
The summary of the dataset (training, validation, and test) after the split is presented in
Table 1.

Table 1. The COVID-19 Radiography Database summary used in our research.

Category Train Validation Test

COVID-19 2530 723 363

Normal 7134 2038 1020

Lung Opacity 4208 1202 602

Viral Pneumonia 941 269 135

Total 14,813 4232 2120

3.3. Data Pre-Processing

Most CNNs are trained on image resolution with 224 × 224 pixels [41]. Therefore,
in all the images of the COVID-19 Radiography Database [40] we changed the size from
299 × 299 pixels to 224 × 224 pixels. The size change was performed using the Python
Imaging Library (PIL). The data augmentation methods such as random rotation, width
shift, height shift, horizontal and vertical flip operations were not used because they have
many limitations on medical images due to their strict format [42].

3.4. Proposed Modified Model Architecture

Most state-of-the-art CNNs have many millions of parameters to improve accuracy,
and thus they are very time consuming during the training process. The proposed model
is based on the MobileNetV2 architecture [41]. MobileNetV2 is one of the most popular
lightweight network architectures for vision applications (classification, object detection
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and semantic segmentation). It is a very efficient model that improves the state-of-the-art
performance on many visual recognition tasks. The MobileNetV2 is based on an inverted
residual and linear bottleneck, significantly decreasing the number of operations and
memory needed while retaining high accuracy. Although the classification accuracy of
MobileNetV2 is 71% top-1 accuracy such as that of deep CNNs such as VGG16 and VGG19
(up 138 million parameters and 520 MB size) [27], it has the unique advantages of a
smaller size network, fewer parameters, fewer operations, high efficiency, low-power and
low latency.

The weights of the network are initialized with weights from a model pre-trained on
ImageNet [43]. The top layer of the MobileNetV2 is discarded. To enhance the learning
ability of the model, we added three additional new layers. In contrast with all other
authors, we present an enhanced MobileNetV2 with more layers, improving the learning
ability. The number and types of layers were determined after enough research into various
networks and performing many different executions.

The first layer that we added is a global average pooling to minimize the overfitting
and the number of parameters in the model by applying corresponding mathematical
computation. Global average pooling generates one feature map for each corresponding
category of the classification task in the last fully connected layer. The advantage of global
average pooling is more native to the convolution structure between feature maps and
categories [44].

After that, a fully connected layer with 512 nodes is added as a second layer with
Rectified Linear Unit (ReLU) activation function [45]. The fully connected layer functions
similar to a multilayer perceptron. Mathematical computation of ReLU activation function
is shown in Equation (1).

ReLU(x) =

{
0, if x < 0
x, if x ≥ 0

(1)

A dropout layer is added, as the third layer, with a dropout rate of 20% to prevent
network overfitting and divergence [46–48]. Dropout is a technique that randomly sets
a portion of units, along with their connections, from the fully connected layers to zero
during training. Dropout improves the performance of neural networks on supervised
learning tasks in computer vision [48].

Finally, a fully connected layer is added as an output layer with 4 nodes, each one for
every category, and SoftMax [49] is used as the activation function. This layer is used to
predict output images. Mathematical computation of SoftMax activation function is shown
in Equation (2).

Softmax(xi) =
exi

∑m
y=1 exy

(2)

where xi represent input data and m the number of classes.
The details of the architecture, parameters and output shape of the proposed model

are presented in Table 2. It is important to notice that the global average pooling and
the dropout layer consist of 0 parameters, while the fully connected layer with 512 nodes
required our model to carry only 655.872 parameters but gave it higher accuracy than
the standard architecture (omitting our 3 addition layers). Our model has a total of
2.915.908 parameters and is much lighter than many other studies that appear in the litera-
ture, which include more than 25 million parameters. The overall proposed methodology
of the model is shown in Figure 2.
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Figure 2. Modified MobileNetV2 architecture for multiclass classification problem (COVID-19,
normal, viral pneumonia and lung opacity).

Table 2. Details of the proposed architecture, parameters and output shape.

Layer
(Type)

Output
Shape Parameters

MobileNetV2
(Model) 10 × 10 × 1290 2,257,984

Global Average Pooling 0 0

Fully Connected Layer 512 655,872

Dropout 0 0

Fully Connected Layer
(Classes) 4 2052

Total Parameters: 2,915,908

3.5. Training Strategy

We train our model using a two-step strategy. In the first step, we freeze the internal
layers of the network and train only the three new layers (global average pooling layer,
fully connected ReLU layer and dropout layer) for 10 epochs using an Adam optimizer [50]
(β1 = 0.9 and β2 = 0.999) with a learning rate of 0.001. In this step, the learning is enhanced
in the features of our dataset.

In the second step, we are reducing the learning rate of 0.0001 for 20 epochs and
training throughout the network to inform all the weights in the network. The batch size of
32 remained constant throughout the training. In both phases of training, the activation
function at intermediate layers is ReLU, and at the output layer is SoftMax. Loss function
is categorical cross-entropy, and the dropout value is 0.20. The hyperparameters used are
presented in Table 3.

3.6. Training the Model on the Embedded GPU

Training and testing are performed on the Nvidia Jetson AGX Xavier [51] with
512 CUDA cores, an 8 core ARM processor, 32 GB RAM, 32 GB eMMC and various other pe-
ripherals. Nvidia Jetson CPU-GPU heterogeneous architecture achieves high-performance
computing and where can be quickly programmed to accelerate complex DL tasks [52].
The embedded GPU has shown great acceleration potential and involves low-power, high
accuracy and efficiency in point-of-care medical applications [28,29,53,54]. At the same
time, they provide local processing, eliminating security and privacy issues where required
in biomedical systems [55]. Finally, we need a portable tool to facilitate medical diagnosis
with low-weight, low-cost devices with accuracy, speed and power efficiency. The CNN
models have trained on the Keras [56] framework.

The system can process up to 115 images per second suitable for real-time processing
with approximately 28.5 Watts of maximum power consumption, which is much lower
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than the typical 1 kWatt for a PC with a GPU that executes very large DL models and
cannot reach our highly optimized accuracy.

Table 3. The hyperparameters were used for all the experiments on the Jetson AGX Xavier embed-
ded system.

Parameters Value

Optimizer Adam (β1 = 0.9 and β2 = 0.999)

Learning Rate 0.001–0.0001

Batch Size 32

Dropout value 0.20

Loss Function Categorical cross-entropy

Activation function at intermediate layers ReLU

Activation function at output layer SoftMax

Total Training Epochs 30

3.7. Model Evaluation Metrics on the Test Dataset

Four metrics (accuracy, precision, recall and f1-score) [57] were used to evaluate the
performance of the standard MobileNetV2 and the modified MobileNetV2 architectures.
The calculation types of the metrics are shown in Equations (3)–(6), where TP, FN, FP, TN
represent the number of true positives, false negatives, false positives and true negatives.

Accuracy =
TP + TN

TP + FN + FP + TN
× 100% (3)

Precision =
TP

TP + FP
× 100% (4)

Recall =
TP

TP + FN
× 100% (5)

F1-Score =
2 × ( Precision × Recall )
( Precision + Recall )

× 100% (6)

4. Experimental Results

All executions were performed on the Jetson AGX Xavier embedded system. The
total training times of standard MobileNetV2 were 1 h 38 min 22 s, and for the modified
MobileNetV2, it was 1 h 40 min 52 s. Table 4 shows the performance comparison of the
standard MobileNetV2 and the modified MobileNetV2. The total accuracy is 95.80% in the
modified MobileNetV2, and the standard MobileNetV2 is 90.47%. The support is the num-
ber of occurrences of each class in the testing dataset, as shown in the classification report.

In Figures 3 and 4 we show the training accuracy/loss and validation accuracy/loss for
standard MobileNetV2 and modified MobileNetV2, respectively. Modified MobileNetV2
architecture achieved 95.80% testing accuracy, while MobileNetV2 standard 90.47% for
4 classes of the public COVID-19 Radiography Database. It is clear that the performance of
our modified MobileNetV2 model is much better than the standard MobileNetV2. Addi-
tionally, the modified MobileNetV2 model is more stable, while the standard MobileNetV2
shows more oscillation. The confusion matrix of the standard MobileNetV2 and pro-
posed method is shown in Figures 5 and 6. It is evident that our modified MobileNetV2
achieves much better results, classifying correctly many more images than the standard
MobileNetV2.
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Table 4. Comparison of classification report of standard MobileNetV2 and modified MobileNetV2
for 4 classes (COVID-19, normal, viral pneumonia and lung opacity) classification.

Modified MobileNetV2 Standard MobileNetV2

Class Precision Recall F1-Score Precision Recall F1-Score Support

COVID 0.9888 0.9697 0.9791 0.8880 0.9174 0.9024 363

Lung Opacity 0.9416 0.9369 0.9392 0.8680 0.8953 0.8814 602

Normal 0.9527 0.9667 0.9596 0.9312 0.9029 0.9169 1020

Viral Pneumonia 0.9923 0.9556 0.9736 0.9259 0.9259 0.9259 135

Accuracy 0.9580 0.9047 2120

Macro avg 0.9688 0.9572 0.9629 0.9033 0.9104 0.9067 2120

Weighted avg 0.9582 0.9580 0.9581 0.9055 0.9047 0.9049 2120

Figure 3. Comparison of training accuracy of standard MobileNetV2 and modified MobileNetV2.
Our modified DL model presents a stable high accuracy due to its minimum loss per epoch.

Figure 4. Comparison of training loss of standard MobileNetV2 and modified MobileNetV2. Our
modified DL model has much lower loss in every epoch, illustrating its high optimized structure.
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Figure 5. The confusion matrix of the standard MobileNetV2 shows many false negative and false
positive classifications, especially for the COVID-19 cases.

Figure 6. The confusion matrix of the proposed method (Modified MobileNetV2) shows that our
optimized model predicts correctly in most cases much better than the standard DL model.

Comparison with Other Approaches

Comparing the performance of the proposed architecture with other existing methods
is not possible because the dataset is different. Most studies are mainly concerned with
binary classification, while there is a relatively limited number of studies concerning
multiple classes.

However, in Table 5, we summarize the overall accuracy and architecture performance
compared to our modified model from other existing models. Specifically, we only look at
architectures used to classify 3 or 4 classes, but most have a small number of COVID-19
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samples. It is evident that our model has much higher accuracy than every other research,
backed up by the biggest dataset of X-rays examined.

As shown in Table 5, the proposed dataset presents the largest number of COVID-19
cases. We introduce a well-tuned DL technique that can be executed on a low-power
embedded system in real time with promising results. We propose three additional new
layers (global average pooling, fully connected layer with 512 nodes and dropout) and
achieve high performance, small network size and a small number of parameters. We
achieve the highest accuracy compared to the literature review with an accuracy of 95.80%
for multiclass classification.

Table 5. Comparison of the proposed model with other existing models for COVID-19 classification
using chest X-ray images for 3 or 4 class classification.

Study Architecture Dataset Number
of Classes

Number
of Parameters

(million)

Overall
Accuracy

(%)

[30] MobileNetV2 186 COVID-19, 186 normal, 186 bacterial
pneumonia and 186 viral pneumonia 4 3.5 95.40

[31] Bayesian CNN 68 COVID-19, 1.583 normal, 2.786 bacterial
pneumonia and 1.504 viral pneumonia 4 - 89.82

[32] CoroNet 284 COVID-19, 310 normal, 330 bacterial
pneumonia and 327 viral pneumonia 4 33 89.60

[33] CovXNet 305 COVID-19, 305 normal, 305 viral
pneumonia and 305 bacterial pneumonia 4 - 90.20

[34] COVID Net 358 COVID-19, 8.066 normal and 5.538
pneumonia 3 11.75 93.30

[35] DarkCovidNet 127 COVID-19, 500 normal and 500
pneumonia 3 3.1 87.02

[36] MobileNetV2 224 COVID-19, 504 normal, 714 bacterial
and viral pneumonia 3 - 94.72

[37] ResNet 184 COVID-19, 1.579 normal and 4.245
pneumonia 3 25 93.90

[38] MobileNetV2 231 COVID-19, 1.583 normal and 2.780
bacterial pneumonia 3 - 85.47

Proposed Modified
MobileNetV2

3.616 COVID-19, 10.192 normal, 6.012
lung opacity and 1.345 viral pneumonia 4 2.9 95.80

5. Conclusions and Future Work

COVID-19 has spread rapidly worldwide and is a severe public health problem. Thus,
an early and valid prognosis of COVID-19 infected patients is vital to preventing the
spread of the disease. This study proposes a lightweight neural network that provides high
prediction accuracy from chest X-rays. The results of this study seem promising, but they
must be further improved as more and more COVID-19 chest X-ray data become available.
In fact, the model benefits of the numerosity of the examined X-ray dataset in reaching
much higher accuracy than every other compared research. Our architecture approach
achieves 95.80% accuracy, the highest up to this date compared with similar research, and
processes up to 115 images per second with approximately 28.5 Watts of maximum power
consumption on the Nvidia Jetson AGX Xavier. Furthermore, our work is the first to
propose an optimized model for a low-power embedded system with increased detection
accuracy. In a later study, we will test the performance of the proposed approach on
different modern CNN models with an even larger number of COVID-19 and the number
of classes chest X-rays in the dataset.
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