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Abstract: Visible light communication (VLC) is an upcoming wireless communication technology. In
a VLC system, signal integrity under low illumination intensity and high transmission frequencies
are of great importance. Towards this direction, the performance of the analog front end (AFE)
sub-system either at the side of the transmitter or the receiver is crucial. However, little research on
the AFE of the receiver is reported in the open literature. Aiming to enhance signal integrity, three
pre-amplification topologies for the VLC receiver AFE are presented and compared in this paper.
All three use bipolar transistors (BJT): the first consists of a single BJT, the second of a double BJT in
cascade connection, and the third of a double BJT in Darlington-like connection. In order to validate
the performance characteristics of the three topologies, simulation results are provided with respect
to the light illumination intensity, the data transmission frequency and the power consumption.
According to these simulations, the third topology is characterized by higher data transmission
frequencies, lower illuminance intensity and lower power consumption per MHz of operation.

Keywords: visible light communication (VLC); wireless communication; analog front end (AFE);
pre-amplification

1. Introduction

Visible light communication (VLC) is a promising scientific field in which the interest
of the research community has increased significantly during the last decade. The term
VLC stands for a wireless communication system which uses the visible spectrum of light
(380 nm to 750 nm, 430 THz to 750 THz) as the medium for transmitting information.
Although the idea of using visible light in communications is not new [1], it was not until
the beginning of the year 2000 that there were the first VLC experiments using light-emitting
diode (LED) lamps. In fact, in [2] a white LED was used for simultaneous illumination and
data transmission in an indoor space. That research was a springboard for optical wireless
communications (OWC), increasing the research interest and leading to major innovations,
such as new configuration techniques, new LED technologies and more. The year 2011
was a milestone for VLC. Initially, a first demonstration of a Light Fidelity (Li-Fi) network
during a TEDx talk by Harald Haas [3] highlighted the innovation brought about by this
promising wireless communication and resulted in an exponential increase on research
output related to VLC, OWC and free-space optical communications (FSOC). Later in
the same year, the IEEE included OWC/VLC in the official IEEE Standard for local and
metropolitan area networks [4].

There are different types of OWCs that can use LEDs or laser diodes (LDs) as trans-
mitters and photodiodes (PDs) or image sensors (IS) as receivers. Also, depending on
the proposed technology, the physical means of communication may be the infrared (IR),
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visible light (VL) [5,6] or ultraviolet (UV) part of the electromagnetic radiation of light [7].
This new technology has some significant advantages such as the use of existing lighting
infrastructure both for illumination and communication. Considering the gradual replace-
ment of traditional lighting by LED lamps, the energy consumed for lighting is useful, in a
twofold manner. However, in mobile devices the energy consumption by the LEDs used
remains considerable.

The bandwidth of visible light is one of VLC’s most important advantages over radio
frequency (RF) communications. It is about 1000 times wider than the spectrum of radio
frequencies, thus significantly reducing the possibility of channel congestion. In addition,
the high frequency of electromagnetic waves of visible light (of the order of THz) can allow
very high-speed data transmission. More specifically, compared to Wi-Fi, where the highest
data rate reaches 1 Gbps (in the Wireless Gigabit (WiGig) standard [8]), studies on optical
communications report data rates up to 100 Gbps, as in [9] where a LD is used.

VLC can also provide significant advantages in data security options compared to
radio wave links, since visible light waves do not have the ability to penetrate through
opaque solid surfaces like radio waves, making VLC safer than radio wave communications.
In addition, all electromagnetic radiation that does not belong to the visible spectrum, even
when very close to it, such as infrared and ultraviolet, tend to be harmful to human
health or cause interference to machines, such as pacemakers and other important medical
equipment. On the contrary, radiation belonging to the visible spectrum does not cause
such interference and is harmless, making VLC safe for humans.

Apart from the above, VLC technology demonstrates a wide range of applications,
such as internet connectivity, underwater communications, and even interplanetary com-
munications. Furthermore, there are three applications that mainly attract research interest:
(i) indoor VLC systems, (ii) transport and vehicular VLC systems and (iii) indoor position-
ing systems.

The study of indoor VLC systems arose due to the long periods that people spend
inside buildings and the idea started to become a reality due to the gradual prevalence
of LED lamps. In [10] the authors studied the possibility of using LEDs for VLC systems,
presenting the requirements for such a system to act for lighting and communication at
the same time. Nowadays, numerous buildings provide lighting with multiple LEDs
where multiple input multiple output (MIMO) techniques can be applied, regardless of the
type of physical medium configuration. In [11] a MIMO orthogonal frequency division
multiplexing (MIMO–OFDM) system with a transmission speed of 220 Mbps at a distance
up to 1 m between the transmitter and the receiver is reported, while in a recent work of
the same research team [12], a speed of 1.1 Gbps was achieved at the same conditions.

In a VLC system, data transmission takes place, even when the light in an indoor
space is dim or even switched off. In [13] the authors proposed a VLC system in which
data transfer is performed even if the lamp remains switched off for human perception or
at low intensity.

Using VLC in vehicles is also very advantageous, since its application cost can be
relatively low, as the use of LED lamps is trivial. Also, a variety of light sources is available
on the roads, such as car headlights or traffic lights, which can be used to develop intelligent
transport systems (ITS) [14], as they can establish a line of sight (LoS) VLC system. A
vehicular VLC (V2LC) system requires one or more mobile (vehicles) and fixed (traffic
lights, streetlights) nodes. The nodes need to obtain transmitters and receivers to create a
dynamic communication network, to transmit any useful information collected by sensors
embedded in the vehicles and the environment [15], while at the same time an important
possibility for these networks is a direct vehicle-to-vehicle (V2V) communication.

With the development of the Internet of Things (IoT) and the continuous growth of
mobile devices, new applications are available offering new possibilities to the end users.
Such features are related to personal navigation and information or advertising depending
on the user’s location. In order to achieve the above features, location capabilities are
required. VLC technology can provide indoor localization, with great precision using
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existing lighting–communication infrastructure. Thus, the receiver will capture the signals
off the LEDs and with appropriate algorithms the exact position will be determined.

High-precision internal positioning systems, such as Epsilon [16] and Luxapose [17],
have come to light since 2014. In the former, many LED lamps (transmitters) and photodi-
odes (receivers) were used to easily implement a low-cost system, with the ability to find
the position with an error of 0.4 m. In Luxapose, the receivers were image sensors (IS) from
a smartphone camera, having only a 0.1 m internal detection error, while providing the
ability to orient the device.

VLC is therefore a promising communication technology, which will be of great con-
cern to the research community in the coming years, either as a complementary technology
to the already existing wireless communications, or as the main means of wireless commu-
nication. Although the pertinent IEEE standard has been revised since 2018 [18], research is
still at an early stage in this field, as the full operating framework has not yet been defined.

As mentioned above, the range of applications for optical wireless communication
is wide resulting in a dispersion of research towards various directions. Also, beyond
the applications, the attention of the research community has focused on various parts of
the physical layer (PHY), such as the transmitter–receiver architecture, the coding–signal
modulation and the multiplexing of multiple users.

Since the initial release of the IEEE standard [4], different modulation and coding
schemes have been proposed at the PHY level, depending on the application usage of
a VLC system. Typical modulation schemes are on-off keying (OOK), color shift keying
and variable pulse position modulation (VPPM) for VLC systems using photodetectors
such as PDs. Respectively, in the revised version of the standard [18] modulation schemes
were added such as camera on-off keying (C-OOK), rolling shutter frequency shift keying
(RS-FSK) and others, related to the use of the IS of digital cameras.

In addition to the proposed standard schemes, the research interest has turned to vari-
ous data multiplexing schemes such as OFDM, MIMO, wavelength division multiplexing
(WDM) and others or combinations thereof, in order to achieve high transmission rates.
For example, in [12] an optical modulation technique for MIMO–OFDM is proposed, while
in [19] a performance improvement of M-quadrature amplitude modulation (M-QAM)
OFDM–non-orthogonal multiple access (NOMA) is presented. At the same time, in [20]
a 16-QAM OFDM transmission scheme with rates of 4 Gbit per second is proposed and
in [21] a LED-based wavelength division multiplexing (WDM) scheme achieving a 10 Gbps
data rate is presented. Moreover, an additional area of interest for a more complete cov-
erage of the optical channel are the multiple access methods, with NOMA so far seeming
to gain most research interest [22,23], due to the significant improvement of the spectral
performance of the channel.

Also, an important issue that arises in VLC is the elimination of flickering using
coding schemes, in the existing formatted optical signal, such as run-length limiting (RLL)
and Reed–Solomon (RS) encoders, with simultaneous clock recovery and error detection
capability [18]. Although the above encoding schemes are well defined by the standard,
there is considerable research on alternative ways of error detection and correction, such as
the use of polar code (PC) instead of RS in CSK modulation VLC systems [24] or with a
protograph low-density parity-check (LDPC) code of two types [25].

Today, the research mainly focuses on the transmitter with respect to the power supply,
the LED characteristics [26] and the LED driving sub-circuit [27,28]. However, considering
the receiver of a VLC system, the research activity is not extensive enough. Meanwhile,
the AFE of the receiver constitutes an equally important part of a VLC system. It receives
the visual signal and converts it to an electrical one that is filtered and amplified in order
to be digitized and processed. The limited number of studies in the literature are mainly
focused on the receiver architecture at a basic level, such as the use of the trans-impedance
amplifier (TIA) to amplify the received signal [29]. Therefore, the research on the AFE of
the receiver is essential as it contributes to the smooth operation of a VLC system.
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In this paper, three effective current pre-amplification topologies that supplement the
AFE of VLC receivers are presented and simulation results are included. The three topolo-
gies are compared with respect to their characteristics that are related to, (1) the illuminance
falling on the photosensitive surface of the receiver photodiode, (2) the transmission fre-
quency of the optical signal and (3) the total power consumption of the receiver. The paper
is organized as follows. In Section 2 preliminaries on VLC systems are given. Next, in
Section 3 the AFE of a VLC system is discussed and the three current pre-amplification
topologies are presented. In Section 3, simulation results are provided on the perfor-
mance characteristics of the three topologies. Finally, in Section 4 the simulation results
are discussed.

2. Preliminaries

In a VLC system, information is transmitted through the visible light. The transmitter
modulates the light (e.g., on-off switching or continuous changes of light intensity) in a
way that is not perceived by the human eye. In this way, both the illumination and the
information transmission needs are covered simultaneously. The operation is achieved
either by using LEDs that support both functions or by using dedicated LEDs for data
transmission while supplementing the required room illumination with other light sources
that are exploited only for lighting.

From the above discussion, it is well understood that the information transmission
must be carried out at a frequency that the human eye cannot perceive. This frequency has
been already defined by the pertinent IEEE standard at above 200 Hz [4] and reconfigured
by its revised version in 2018 [18] at above 2 kHz.

On the receiver side, the optical signal can be retrieved primarily either by using a
photodiode or the sensor of the built-in camera of a portable device. These two approaches
have essential differences that are exploited by several applications depending on the data
transmission frequency. For example, since a built-in camera supports lower data rates (in
the order of a few kHz), it can be used in an indoor location and navigation system. On the
contrary, as photodiodes can respond to much higher frequencies (in the range of a few
MHz) their use in applications that support higher data rates is preferred.

Furthermore, the reverse current of a photodiode may be in the range of some tenths
of µA up to 200 µA depending on the photodiode model. This feature can be crucial in a
VLC system since such a small input current signal may distort data resulting in incorrect
reception of the transmitted information.

3. Visible Light Communication (VLC) Receiver and Pre-Amplification Circuits

Our work focuses on a receiver circuit that uses a photodiode as the optical signal
sensor. The basic structure of the AFE of the VLC receiver under consideration consists
of: (a) a photodiode (PD), (b) a pre-amplification circuit (Pre-Amp), (c) a TIA, (d) a DC
cancellation circuit (DCC), (e) a passive filter (PF) and (f) a voltage amplifier (VA), as shown
in the block diagram of Figure 1.
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More specifically, the optical signal is converted through the photodiode into a current
signal. This signal, after its pre-amplification, drives the TIA, which is supported by the
DCC circuit, for the conversion to a voltage signal without its DC offset. Then, the signal is
passed through the passive filter that eliminates any unwanted frequencies. Finally, the
signal is amplified at appropriate levels by the VA in order to be digitized and drive a
microcontroller or microprocessor, which will decode it and retrieve the information.

3.1. VLC Receiver

In more detail, for the VLC receiver design the TIA–DCC sub-circuits proposed in [30]
were adopted in our work, while the anti-aliasing filter used in [30] was replaced by a
high-pass filter and a voltage amplifier, as shown in Figure 2.
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The combination of the TIA and DCC blocks (“Ambient Light Filter” in [30]) achieves
the elimination of the DC offset from the signal and has the ability to self-adjust according
to the average light intensity changes that are taking place in the lighting of the room. It is
a very versatile active filter with its cut-off frequency set at 340 Hz.

The signal provided by the TIA–DCC blocks, without the DC offset, enters a high-pass
passive filter with a cut-off frequency of 3 MHz. Finally, the filtered signal enters a voltage
amplifier, powered by a single (positive) supply VCC at 3.3 V, which acts as a half rectifier
eliminating the negative part of the signal. The gain of the VA is 43.58 dB which is large
enough to support easy digitization of the signal.

3.2. Pre-Amplification Circuit Topologies

According to our observations, the above typical receiver AFE topology presents seri-
ous signal integrity problems at low light intensities. For that reason, three pre-amplification
topologies are explored in this work. The common feature of all three topologies is that
bipolar transistors were chosen as their basic unit. Thus, the current of the photodiode
controls the collector current of a transistor, forming a current source controlled by current.

The three topologies under consideration are: (i) a single BJT current amplifier,
(ii) a double BJT in a cascade connection current amplifier and (iii) a double BJT in
Darlington-like connection current amplifier. These topologies are presented in detail
in the following paragraphs.
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3.2.1. Single Bipolar Transistor (BJT)

The first pre-amplification topology, along with the photodiode, is shown in Figure 3.
It is the simplest topology consisting of a bipolar transistor where its base is fed by the
current signal produced by the photodiode. The base current is amplified at the collector
according to the BJT current gain factor (hFE) and the amplified current signal drives the
TIA–DCC blocks.
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3.2.2. Double BJT in Cascade Connection

The second topology consists of two BJTs in cascade connection as shown in Figure 4.
Its basic operation principle lies in the amplification provided by each BJT. Here, the
incoming current signal is amplified via the BJT current gain factor hFE1 and the emitter
current of the first BJT is obtained. The emitter current of BJT1 feeds the base of BJT2
which in turn is amplified by the current gain factor hFE2 and drives the TIA–DCC block. It
should be noted that the RC network (with cutoff frequency of 80 kHz) is used to limit the
DC offset of the current on the BJT1 collector and consequently is exploited to control the
collector current of the first stage.
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3.2.3. Double BJT in Darlington-Like Connection

This topology also uses two BJTs but in a Darlington-like connection. Figure 5 presents
the circuit which differs with respect to a typical Darlington scheme, due to the existence of
the resistor at the collector of BJT1. This resistance is exploited to regulate the amplification
and consequently to provide a better control of the amplified current signal that feeds the
TIA-DCC block. As mentioned earlier, the BJT1 collector resistance provides a self-control
capability of the current at the base of BJT2, aiming to reduce the DC current amplification.
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4. Simulation Results

In this section, initially, the components in Figures 2–5 that were used for the design
of the VLC receiver under consideration are discussed. Next, the electrical model of the
photodiode is presented and the structure of a typical signal that feeds a VLC receiver is
analyzed. Both are exploited in the simulations of the receiver, which were performed in
the LTSpice XVII platform of Analog Devices. Finally, the simulation results are presented
that provide comparisons among the three pre-amplification topologies.

4.1. VLC Receiver Design

The AFE circuitry of the VLC receiver in Figure 2 along with the three pre-amplification
topologies were designed using the schematic editor of the LT-SPICE platform. The com-
ponents of the various parts in the design are presented in Table 1. For each one of them
the Spice models of the manufacturers are exploded at the simulations, except the PD. The
selection of the components was based on their ability to support the specifications of the
receiver that are related to the response time, the bandwidth, the operating frequency and
the slew rate.

Table 1. The components used in the AFE design of the receiver.

AFE Parts Component

Photodiode (PD) SFH–206K
BJT (in all topologies) BFR–340F

Operational Amplifier used in TIA + VA LTC6228
Operational Amplifier in DCC ADA4622

The OSRAM SFH-206K [31] photodiode was chosen, as this component has a spectral
sensitivity between 400–1100 nm, which is satisfactory for a VLC system. In addition, it has
quite small rise and fall times, along with an appropriate current intensity and linearity
with respect to the incident luminous flux per unit area of the photodiode. For the needs of
our VLC system, the photodiode provides a 40µA current for an incident luminous power
of 500 Lux on the surface of the photodiode.

The Analog Devices LTC6228 [32] low-distortion operational amplifier was selected
for the TIA and the VA. This opamp is characterized by low noise, down to 0.88 nV/

√
Hz,

high slew rate that reaches 500 V/us and the rail-to-rail output ability.
Unlike the cases of the TIA and VA, for the selection of the operational amplifier for

the DCC sub-circuit there are no special specifications, as the DCC is the least demanding
part of the receiver. Thus, the Analog Devices ADA4622 [33] opamp was chosen.

Finally, the Infineon Technologies BFR-340F [34] bipolar transistor was selected for
the pre-amplification topologies under consideration. This component is an RF bipolar
transistor with 14 GHz typical transition frequency and low capacitance coupling between
its terminals.
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4.2. Photodiode Electrical Model

To conduct the simulations of the receiver, an appropriate electrical model for the
photodiode under consideration was necessary. Towards this direction, a proper sub-circuit
was developed, according to the photodiode datasheet, using the typical topology shown in
Figure 6 for a photodiode in reverse bias. In this model, the photodiode current is correlated
with the actual illuminance intensity values.
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The photodiode model consists of a current source, a capacitor and an ohmic resistor
in parallel connection, as it is depicted in Figure 6. Capacitance and resistance values
correspond to the SFH–206K datasheet values, while the current source amplitude is
determined by the linear relationship between illuminance and photocurrent, as it is
extracted from the pertinent datasheet diagram. Furthermore, the rise and fall times of the
photodiode were also taken into account in this model.

In order to use a realistic current signal, it was necessary to consider an appropriate
data-encoding method according to the IEEE standard [18]. The Manchester encoding was
chosen, where the logic high bit (“1”) is encoded with a low to high transition during one
period of the system clock (Figure 7a), while the logic low bit (“0”) is encoded with a high
to low transition accordingly (Figure 7b).

Technologies 2022, 10, x FOR PEER REVIEW 9 of 18 
 

 

Τhe photodiode model consists of a current source, a capacitor and an ohmic resistor 
in parallel connection, as it is depicted in Figure 6. Capacitance and resistance values cor-
respond to the SFH–206K datasheet values, while the current source amplitude is deter-
mined by the linear relationship between illuminance and photocurrent, as it is extracted 
from the pertinent datasheet diagram. Furthermore, the rise and fall times of the photodi-
ode were also taken into account in this model. 

In order to use a realistic current signal, it was necessary to consider an appropriate 
data-encoding method according to the IEEE standard [18]. The Manchester encoding was 
chosen, where the logic high bit (“1”) is encoded with a low to high transition during one 
period of the system clock (Figure 7a), while the logic low bit (“0”) is encoded with a high 
to low transition accordingly (Figure 7b). 

 
Figure 7. Manchester encoding (a) the logic high bit (“1”) and (b) the logic low bit (“0”). 

Manchester encoding, although simple, is essential in a VLC system since it prevents 
an intense change in the brightness of the transmitter’s light in the case of consecutive “1” 
or “0” bits. Thus, the human eye is protected from perceiving light brightness perturba-
tions since it keeps a constant average light intensity, for signal frequencies above the 
minimum specifications of the standard. 

In order to simulate a realistic operating scenario for the receiver, a Manchester-en-
coded 24-bit input sequence was created that is followed by an empty span of 16-clock 
periods. This results in the creation of a data package and a blank space after that, which 
is continuously repeated as shown in Figure 8. The generated sequence controls the cur-
rent source of the photodiode model in Figure 6. The pulse amplitude and max frequency 
are determined according to the incident luminous power and the system clock frequency, 
respectively. 

Figure 7. Manchester encoding (a) the logic high bit (“1”) and (b) the logic low bit (“0”).

Manchester encoding, although simple, is essential in a VLC system since it prevents
an intense change in the brightness of the transmitter’s light in the case of consecutive “1”
or “0” bits. Thus, the human eye is protected from perceiving light brightness perturbations
since it keeps a constant average light intensity, for signal frequencies above the minimum
specifications of the standard.
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In order to simulate a realistic operating scenario for the receiver, a Manchester-
encoded 24-bit input sequence was created that is followed by an empty span of 16-
clock periods. This results in the creation of a data package and a blank space after that,
which is continuously repeated as shown in Figure 8. The generated sequence controls
the current source of the photodiode model in Figure 6. The pulse amplitude and max
frequency are determined according to the incident luminous power and the system clock
frequency, respectively.
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Figure 8 illustrates the generated and “transmitted” 24-bit data sequence, according
to the Manchester encoding. This data sequence (package) consists of pulses of longer or
shorter duration. A short duration pulse corresponds to the transmission of the same bit
value repeatedly, while a longer pulse corresponds to a bit change. According to Figure 8,
in our simulations a package consists of 19 pulses, with a period equal to the system clock
period (T) for a short pulse and a period 2T for a long pulse.

In practice, in a real usage scenario, the transmitted package would be much larger,
since according to the standard, additional bits are required for the transmission of the
information, such as appropriate headings, redundancy bits for error correction etc. How-
ever, without loss of generality, for the needs of the present work, the selection of such a
data package is totally adequate as it provides all the characteristics of a real signal.

4.3. Simulation Assumptions

In this work, we assume that the average illuminance that falls on a work desk is
500 Lux, since with this illuminance a person can work or study uninterruptedly [35].
Simulations were conducted considering three main characteristics: (a) the intensity of
the incident light flux per unit area of the photodiode, (b) the information transmission
frequency and (c) the power consumption of the entire AFE along with the pre-amplification
stage. When one of the two characteristics is explored (light intensity or transmission
frequency), constant conditions were chosen for the other one, by considering realistic
values for the proper validation of the receiver.

Aiming to define the working range of the receiver under various operating conditions,
the basic criterion for the first two factors is the signal integrity at the output of the AFE.
The signal integrity is lost even when a single bit from the data sequence in Figure 8 is lost
at the output of the AFE. By considering that the transition threshold at the input of the
digital block that follows, which is driven by the AFE, is at Vdd/2, a bit is lost when an
expected output signal transition does not pass this threshold.
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4.4. Incident Illuminance Intensity on the Surface of the Photodiode

In order to determine the influence of the light power intensity on the receiver opera-
tion, the illuminance intensity value (Lux) was changed in the subcircuit of the photodiode
by changing its photocurrent accordingly. A constant signal transmission frequency of
5 MHz was considered as a typical frequency of the system.

It was also observed that there is no differentiation between the three AFE variations
when illuminance is increased, while low values of illuminance present an observable
differentiation as described below.

For the first pre-amplification topology (I) (single BJT), as the incident illuminance in
the photodiode decreases, the signal integrity is lost at 95 Lux, as shown in Figure 9. On
the contrary, for the pre-amplification topologies (II) and (III), the signal integrity is lost at
the illuminance of 5 Lux, as shown in Figures 10 and 11 respectively. Note that for the AFE
topology without pre-amplification signal integrity issues arise below 120 Lux.
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Topologies (II) and (III) present similar behaviors and they are clearly superior over (I)
when the sensitivity to the illuminance intensity is considered.

4.5. Data Transmission Frequency

Next, the data transmission frequency efficiency of each topology is considered. For
this purpose, the light intensity (and consequently the corresponding photocurrent) was
kept constant at the value of 500 Lux.

Unlike the previous simulation results, the proposed topologies presented no differen-
tiation for lower frequencies, while they did when transmission frequency increased.

When the frequency varies, the signal remains intact for topology (I) up to the fre-
quency of 7.9 MHz, as shown in Figure 12, while for topology (II) up to 11.25 MHz
(Figure 13) and for topology (III) up to 12.05 MHz (Figure 14), respectively.
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Again, topology (I) seems to lag behind the other two topologies in terms of data
transmission frequency. However, topologies (II) and (III) also present differentiations,
with topology (III) being able to provide approximately 650 kHz higher data transmission
frequency than topology (II).

4.6. Receiver Analog Front End (AFE) Power Consumption

Two types of simulations were performed on each AFE circuitry in order to examine
the power consumption of the receiver in relation to the signal transmission frequency and
the illuminance intensity. When the frequency is changed, the light intensity was set at
500 Lux, while when the light intensity is changed, the frequency was set at 500 kHz.

The average power consumption of the receiver AFE as a function of frequency for the
three topologies (at 500 Lux illumination intensity) is presented in Figure 15.

As it can be observed in Figure 15, the frequency variation has little effect on the
power consumption of each topology. More specifically, from 100 kHz to 5 MHz, the power
consumption varies by 1.02% for topology (I), 1.003% for topology (II) and 1.006% for
topology (III). However, with respect to topology (I), topology (II) presents a higher power
consumption by 6.926% on average and topology (III) by 6.436% on average, respectively.
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According to the above simulations on power consumption and considering the
maximum operating frequency of each topology, the power consumption per MHz is
extracted for the three topologies. Thus, the average power consumption per MHz reaches
16.18 mW/MHz, 11.78 mW/MHz and 11.13 mW/MHz, for topologies (I), (II) and (III),
respectively (Figure 16).
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Moreover, the average power consumption of the receiver AFE as a function of illumi-
nation intensity for the three topologies (at a constant frequency of 500 kHz) is presented in
Figure 17. The 500 kHz frequency was chosen aiming to reduce the simulation time, given
that the frequency does not influence the power consumption, as discussed above.
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In Figure 17 we observe that the variation of light intensity affects the power con-
sumption. For each topology, it is obvious that the slope of the curves is similar. However,
topologies (II) and (III) consume respectively on average 8.04% and 7.45% more power
compared to topology (I).

5. Discussion and Conclusions

Although VLC is a promising technology there is a lack of extensive research activity
on the receiver AFE design. Aiming to cover this area, we explore three pre-amplification
topologies for the AFE of a VLC receiver, in order to improve the efficiency of this optical
communication system, since typical AFE, without pre-amplification, are characterized
by reduced signal integrity at low illuminance. In more detail, the typical AFE reaches an
output voltage swing of 1.27 V at 5 MHz and 120 Lux. Referring to Figures 10 and 11, the
AFE with either the pre-amplification topology II or III, has the same output voltage swing
at the luminous flux of 5 Lux at the same transmission frequency. The light intensity of
5 Lux is 95.8% below the light intensity of 120 Lux and that means that the topologies II
and III are more sensitive and capable to operate with smaller light signals than the typical
AFE circuit without pre-amplification. Furthermore, the AFE with the pre-amplification
topology I has a large, rail-to-rail, output voltage swing at 5 MHz and 95 Lux, which is
20.8% lower than the 120 Lux. All of the above indicate that the typical AFE is more prone
to potential noise and less effective at low light signal intensities.

According to the simulations performed on the three topologies of the receiver AFE,
it is stated that topology (III) provides the highest data transmission frequencies, 50.6%
over topology (I) and 5.78% over topology (II). Topologies (II) and (III) support in parallel
operations at low illuminance intensity, 94.74% below this of topology (I). On the other
hand, topologies (II) and (III) present increased power consumption with respect to (I)
by 7.5% and 6.97%, respectively. Moreover, topology (II) has almost the same response
compared to topology (III) with respect to the sensitivity on the illuminance intensity.
However, comparing these two topologies as a function of data transmission frequency,
topology (III) performs better also providing a lower power consumption. By comparing
the three topologies over the power consumption per MHz of operating frequency, once
again topology (III) presents the best efficiency. More specifically, topology (II) has 5.87%
more power consumption per MHz over topology (III), while topology (I) is characterized
by 45.37% more power consumption per MHz compared to topology (III). Consequently,
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it is verified through the experimental results that topology (III) outperforms the other
two topologies.
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