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Abstract: The move towards intelligent systems has led to the evolution of IoT. This technological
leap has over the past few years introduced significant improvements to various aspects of the human
environment, such as health, commerce, transport, etc. IoT is data-centric; hence, it is required that
the underlying protocols are scalable and sufficient to support the vast D2D communication. Several
application layer protocols are being used for M2M communication protocols such as CoAP, MQTT,
etc. Even though these messaging protocols have been designed for M2M communication, they are
still not optimal for communications where message size and overhead are of much concern. This
research paper presents a Lightweight Messaging Protocol (LiMP), which is a minified version of
CoAP. We present a detailed protocol stack of the proposed messaging protocol and also perform a
benchmark analysis of the protocol on some IoT devices. The proposed minified protocol achieves
minimal overhead (a header size of 2 bytes) and has faster point-to-point communication from the
benchmark analysis; for communication over LAN, the LiMP-TCP outperformed the CoAP-TCP
by an average of 21% whereas that of LiIMP-UDP was over 37%. For a device to remote server
communication, LiMP outperformed CoAP by an average of 15%.

Keywords: messaging protocol; Internet of Things; CoAP

1. Introduction

There has been a significant advancement towards ‘smart” and ‘smarter” systems
due to the integration of smart objects into the existing and new infrastructure of today’s
data-intensive applications [1,2]. This move has led to the evolution of IoT which is
currently driving sectors such as agriculture, manufacturing, smart healthcare, etc. [3-6].
IoT devices range from simple wearable to large machines, each containing sensor chips or
microcontrollers [7]. These devices can occur in physical or virtual space. In physical space,
consider humans, vehicles, residences, computers, switches, routers, smart devices, road
networks, office buildings, etc. In virtual space, consider software, data streams, virtual
machines, virtual networks, etc. [8].

The building blocks of IoT include: Sensor, Aggregator, Communication channel, eUti-
lity, and Decision Trigger. Sensors measure physical properties by employing mechanical,
electrical, chemical, optical, or other effects at an interface to a controlled process or open
environment. An aggregator is a software implementation based on mathematical func-
tion(s) that transforms groups of raw data into intermediate, aggregated data. Aggregators
help in managing ‘big’ data. A communication channel is a medium by which data is
transmitted (e.g., wireless, wired, etc.). An eUtility is an abstraction of unforeseen future
services that can be incorporated in future types of IoTs yet to be defined. It may include
databases, mobile devices, software or hardware systems, etc. A decision trigger creates the
final result(s) needed to satisfy the purpose, specification, and requirements of a specific
IoT device.
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Most IoT devices follow a layered architecture comprising of three or four layers [9-16];
as shown in Figure 1.
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Figure 1. Most common IoT architectures [10,17].

The perception layer comprises the physical level of objects and how they interact
with the surrounding environment by collecting and processing information [17]. This level
includes objects that can interact with the external world and are also equipped with com-
puting capability. The network layer, also known as the communication layer, transports
the data provided by the perception layer to the application layer. This layer can be broken
down into six (6) sublayers, viz., PHY, MAC, transport, network, session, and application.
It includes all the technologies and protocols that make this connection possible. There
are several protocols used by IoT devices [1,2]. The choice of the communication protocol
is dependent on the type of technology been used; Zigbee, BLE, NFC, Z-Wave, LPWAN
etc. [18]. Some network layer protocols have been developed for low computational devices
of which IoT devices form part. For instance, to meet the requirements of WSN, the 6LoW-
PAN protocol and other routing protocols such as RPL were created. Also, to enhance the
security of traversing data, TLS (for TCP) and DTLS (for UDP) were developed. Application
layer messaging protocols such as CoAP, MQTT, AMQP, etc have also been developed
and tailored specifically for M2M type of communication. The support layer enhances the
operation of the other layers, providing storage and computing services. The application
layer includes all the software necessary to offer a specific service. The data from the previ-
ous levels are stored, aggregated, filtered, processed, and later used in making informed
decisions or used in the provision of real-time IoT applications.

Information sharing among IoT devices is made possible by the use of application layer
messaging protocols such as CoAP, WebSocket, DDS, XMPP and AMQP. These protocols
are not optimal and efficient in instances where header and message size complexities,
together with resource constraints, are of great concern. Besides, with the myriad growth
of IoT devices, it is expected that these messaging protocols are optimal and efficient in
supporting D2D communication. This research paper proposes a lightweight messaging
protocol to reduce message header complexity without compromising the security of the
protocol. The remaining sections of the research paper are organized as follows: Section 2
reviews related literature. The research motivation is presented in Section 3. Section 4
describes the research approach used in the study. Section 5 discusses the results. Section 6
concludes the research paper.

2. Related Works

The most common application layer messaging protocols used by IoT devices include:
CoAP, WebSocket, DDS, XMPP and AMQP.
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CoAP is a specialized web transfer protocol for use with constrained nodes and
constrained networks. The work on CoRE aims at realizing the REST architecture in a
suitable form for constrained nodes. Constrained nodes such as 6LoWPAN support the
fragmentation of IPv6 into small link-layer frames; however, this causes a significant
reduction in packet delivery probability. CoAP has been designed to keep the message
overhead small, thus limiting the need for fragmentation [19]. It supports both UDP [20] and
TCP transport protocols with the default being UDP. It has optional reliability supporting
both unicast and multicast requests. It supports asynchronous message exchanges and also
has simple proxy and caching capabilities.

The WebSocket protocol was developed to address a high overhead due to HTTP
polling. Bidirectional communication between a client and a server has required an abuse
of HTTP to poll the server for updates while sending upstream notifications as distinct
HTTP calls [21]. This results in problems such as the server being forced to use several
different underlying TCP connections for each client, one for sending information to the
client and a new one for each incoming message. Besides, the wire protocol has a high
overhead, with each client-to-server messaging having an HTTP header. Furthermore,
the client-side script is forced to maintain a mapping from the outgoing connections to the
incoming connections to track replies. The WebSocket protocol addresses these problems
by using a single TCP connection for traffic in both directions. Combined with WebSocket
AP], it provides an alternative to HTTP polling for two-way communication between a
client, and a server [22].

Some IoT device communication is based on a publish/subscribe protocol such as
MQTT. MQTT is a client-server publish/subscribe messaging transport protocol applicable
in constrained environments for communication in M2M and IoT contexts. The protocol
runs over TCP/IP, or over other network protocols that provide ordered, lossless, bi-
directional connections. The use of the publish/subscribe message pattern provides one-to-
many message distribution and decoupling of applications [23].

XMPP is also used for the near-real-time exchange of information. It is an application
profile of the XML that enables the exchange of structured yet extensible data (called
“XML stanzas”) between any two or more network entities [24,25]; based on TCP. It is
typically implemented using a distributed client-server architecture, wherein a client needs
to connect to a server in order to gain access to the network and thus be allowed to
exchange XML stanzas with other entities (which can be associated with other servers).
Within XMPP, one server can optionally connect to another server to enable inter-domain
or inter-server communication after the communicating servers negotiate a connection
between themselves.

DDS is a middleware protocol and API for data-centric connectivity. It integrates
the components of a system, provides low-latency data connectivity, extreme reliabil-
ity, and scalable architecture that business and mission-critical IoT applications need.
The middleware is a software layer that lies between the operating system and applications,
as shown in Figure 2. It enables the various components of the system to communicate and
share data more easily. It abstracts the application for the details of the operating system,
network transport, and low-level data formats. Low-level details like data wire format,
discovery, connections, reliability, protocols, transport selection, QoS, security, etc., are
managed by the middleware.
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Figure 2. The DDS Middleware [26].

AMQP is a binary wire-level protocol that allows the reliable exchange of messages
between two entities. It is a corporate messaging protocol designed for reliability, se-
curity, provisioning, and interoperability and supports both request/response and pub-
lish/subscribe architectures. The protocol also offers a wide range of features related
to messaging, such as reliable queueing, topic-based publish-and-subscribe messaging,
flexible routing, and transactions. AMQP communication system requires that either the
publisher or consumer creates an “exchange" with a given name and then broadcasts that
name. Publishers and consumers use the name of this exchange to discover each other.
Messages are exchanged in various ways: directly, by topic, or based on headers [27].

A summary of the mostly used application layer messaging protocols is shown in
Table 1.

Table 1. Comparative Analysis of Application Layer Messaging Protocols for IoT Devices: CoAP,
WebSocket, MQTT, DDS, XMPP, AMQP.

Criteria WebSocket MQTT DDS XMPP AMQP
. Client/Server or Client/Server or . . . Client/Broker or
Architecture Client Broker Client/Broker Client/Broker Client/Server Client/Server Client/Server
Header Size 4 Bytes 2 Bytes 124 Bytes Undefined 8 Bytes
Transport UDP (default), TCP, UDP (Some
Protocol TCP, SCTP TCP Implementations) UDP, TCP, SCTP TCP TCP, SCTP
Encoding Format Text (UTE-8) Binary Binary Binary XML

Performance of IoT devices and applications are significantly influenced by choice
of messaging protocols. The application layer messaging protocols are pervasive and
different from each other. For example, CoAP has the smallest message size and overhead
as compared to the other messaging protocols. However, MQTT is lightweight and has
the most diminutive header size of 2-bytes per message, but its requirement of TCP con-
nection increases the overall overhead, and thus the whole message size. AMQP is also
a lightweight binary protocol; however, its support for security, reliability, provisioning,
and interoperability increases the overhead and message size. WebSocket requires the high-
est power resource than any other protocols, and then it decreases for the other protocols
with CoAP requiring the lowest power and resource [27].

3. Research Motivation

The magnitude and rate at which IoT devices generate data are rapidly increasing.
Given that IoT systems primarily depend on IoT devices for data aggregation and message
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exchanges for the overall functioning of the system, the choice of which communication or
messaging protocol to use for device interconnectivity is very significant [28].

Current research works on lightweight messaging protocols have explored compress-
ing some transport protocols [29], as well as adopting some middleware approaches for
multi-protocol translation [30,31]. These studies identify that CoAP generates much less
traffic overhead compared to MQTT when message sizes are small, and the loss rate is equal
to or less than twenty-five percent. A comparative study on MQTT and CoAP revealed
that both protocols achieve 100% data transfer with minimal packet loss [32]. Furthermore,
CoAP’s data loss rate is low when handling smaller data sizes. This research work is aimed
at proposing a minified version of CoAP with minimal header and message complexity.
The research contributions of this paper are:

1.  The proposal of a lightweight messaging protocol based on CoAP for D2D communi-
cation, and

2. The proposal of a mechanism to detect message spoofing with reduced header parsing
complexity.

4. Methodology

This section presents LiMP, a lightweight messaging protocol, based on CoAP. We
discuss CoAP in much details and also present how a lighter version was developed. CoAP
deals with interchanges asynchronously over transport protocols such as UDP (default) and
TCP. This is done logically using a layer of messages that supports optional reliability with
exponential back-off. It defined four (4) types of messages: Confirmable, Non-confirmable,
Acknowledgment, Reset.

Logically, CoAP can be considered as using a two-layer approach; a messaging layer
and the asynchronous nature of the interactions (the request/response interactions using
Method and Response Codes) as shown in Figure 3. The CoAP messaging model is based
on the exchanges of messages over UDP/TCP between endpoints and may also be used
over DTLS and TLS.

Application
-
Request/Responses
-  CoAP
Messages
_J

Transport Protocol
(UDP / TCP)

Figure 3. Abstract Layering of CoAP.
4.1. CoAP Stack

CoAP messages are transport over UDP by default (i.e., each CoAP message occupies
the data section of one UDP datagram). CoAP messages are encoded in a simple binary
format. The message format is shown in Figure 4.
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2 bits 2 bits 4 bits 8 bits 16 bits

VER TKL Code Message ID

Token (if any, TLK bytes) ...

Options (if any) ...

Payload Marker Payload (if any) ...

Figure 4. CoAP Message Format.

A detail representation of the various sections in shown in Figure 5.

4-byte header
e

2bits 2 bits 4 bits 8 bits 16 bits

|| I
I

Message ID

Message Identifie

Yindicates the specific message type]

] |

[Indicates the version of the message format [ndicates the type of message| [Indicates the length of the message token|

Token (if any, TLK bytes) ... } Stores message token

e Options (if any) ... } Contains extra metadata

o Payload Marker Payload (if any) ...

L JL J
e e

Indicates the beginning of the

message payload The message payload

Figure 5. A Detailed Representation of the CoAP Message Format.

The message format starts with a fixed 4-byte header (indicated as (1) in Figure 5.
The header consists of a the following fields: Version (VER), Type (T), Token Length
(TKL), Code and a message identifier (Message ID). The ‘VER’ field indicates the CoAP
version. The “Type (T)” field indicates whether a particular message is confirmable, non-
confirmable, is an acknowledgement or a reset (a retransmission). The ‘Code’ is designated
for request/response codes. It is similar to HTTP request/response codes which are
used to indicate client/server response formats. For instance, a successful request to a
server will return a status code. This status code can be found in the ‘Code’ field of the
response message. The ‘Message ID’ is an identifier for requests/response. It is used to
match messages of type Acknowledgement/Reset to messages of type Confirmable/Non-
confirmable. A summary of CoAP’s header fields is shown in Table 2.
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Table 2. A Summary of CoAP’s Header Fields.

Field Number of Bits Details
Version (VER) 2-bit unsigned integer Indicates the CoAP version number. The default value is set to 1 (01 in binary).
Type (T) 2-bit unsigned integer Indicates if the message is of type Confirmable (0), Non-confirmable (1), Acknowledgement (2),
or Reset (3).
Token Length (TKL)  4-bit unsigned integer Indicates the length of the variable-length Token field (0-8) bytes. Lengths 9-15 are reserved and
processed as a message format error.
. . . Divided into 3-bit class (most significant bits) and 5-bit detail (least significant bits), which are
Code 8-bit unsigned integer o
used to indicate requests and responses format.
Message-ID 16-bit unsigned integer It is used to detect message duplication and further match messages of type

Acknowledgement/Reset to messages of Confirmable/Non-confirmable.

The header field is followed by a “Token’ field (marked as (2) in Figure 5) which is used
to match responses to requests independently from the underlying messages. After the
‘Token’ field comes the ‘Options’ field (marked as (3) in Figure 5); which is made up of
some metadata such as the message format, ETag, etc. A payload marker comes after
the ‘Options’ field. This marks the beginning of the actual message payload; marked in
Figure 5 as (4). The presence of a marker followed by a zero-length payload is processed as
a message format error.

4.2. Analysis of the CoAP Stack

The current CoAP message format indicates the ability to add a Token (whose length
is specified by the TKL) for each request and response. Also, the Message-ID is used to
match each request to a response. Figure 6 shows a sample packet analysis output of a
point-to-point communication between two IoT devices. It can be observed that a sample
request can be sent without a Token which sets the TKL to 0 in the message header.

> Frame 1: 57 bytes on wire (456 bits), 57 bytes captured (456 bits)
> Ethernet II, Src: Apple_9e:3c:df (@c:4d:e9:9e:3c:df), Dst: Nvidia_8d:75:f3 (0@:04:4b:8d:75:73)
> Internet Protocol Version 4, Src: 10.10.0.3, Dst: 10.10.8.11
> User Datagram Protocol, Src Port: 55999, Dst Port: 5683
~ Constrained Application Protocel, Confirmable, GET, MID:255
8l.. .... = Version: 1
..8@ .... = Type: Confirmable (@)
. 8000 = Token Length: @
Code: GET (1)
Message ID: 255
~ Opt Name: #1: Etag: 77 65 65 74 61 67
Opt Desc: Type 4, Elective, Safe
el1e@ .... = Opt Delta: 4
. 8118 = Opt Length: 6
Etag: 776565746167
v Opt Name: #2: Uri-Path: a
Opt Desc: Type 11, Critical, Unsafe
= Opt Delta: 7
= 0pt Length: 1
Uri-Path: a
~ Opt Name: #3: Max-age: 2
Opt Desc: Type 14, Elective, Unsafe
@011 .... = Opt Delta: 3
. 9001 = Opt Length: 1
Max-age: 2
[uri-Path: rsal

Figure 6. A Sample CoAP Message Format.

Both the Token and Message-ID are redundant since both seem to perform the same
role. Besides, the length of the Token payload is encoded as 4 bits in the header (which
makes the maximum Token payload 15 bytes). Even though a maximum Token payload of
16 bytes can be encoded, the default specification of CoAP processes the TKL length from
9-15 bytes as a message format error.
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Furthermore, Four (4) request and twenty-one (21) response Method Codes are sup-
ported in the CoAP message format; GET, POST, PUT and DELETE. All other Method
Codes are unassigned. These response codes were borrowed from the HTTP request and
response code formats. Not all these requests and response codes are used in the normal
communication between network entities; hence can be simplified to make the protocol
further lightweight. The ‘Option’ field in the CoAP’s message is delta encoded and defines
several options that be included in a message. Fourteen (14) default ‘Option’ formats
are supported. A sample of these fields can be seen after the Message-ID in Figure 6.
These ‘Option’ formats describe the structure of the message sent specifying fields such
as Content-Format, ETag, Max-Age, etc. Most of these Option Formats are unused, which
makes them redundant.

4.3. LiMP Stack

The LiMP message supports both TCP and UDP transport protocols. It is a simplistic
protocol where messages are encoded in a simple binary format. Its simplicity is achieved
by removing the redundant and unused fields in the standard CoAP implementation.
The message format is shown in Figure 7.

2 bits 2 bits 2 bits 2 bits 8 bits

Code ﬂ Message ID

Payload (if any) ...

Figure 7. LIMP Message Format.

Figure 8 gives a detailed information of the message format. The message format
starts with a fixed-size 2-byte header (marked as (1)). The message header comprises of
the following fields: Version (VER), Type (T), Code, Content-Format (CF) and a message
identifier (Message ID).

The header fields are described as follows:

1. Version (VER): VER is a 2-bit unsigned integer. Indicates the LiMP version number.
The default value is set to 1 (01 in binary) to indicate its initial release.

2. Type (T): The T field is a 2-bit unsigned integer. Indicates of the message is of the type
Confirmable (0), Non-confirmable (1), Acknowledgement (2), or Reset (2).

3.  Code: This field stores a 2-bit unsigned integer. Indicates the request and response
Method Codes. GET (0), POST (1), BadRequest (2), ServiceUnavailable (3). Detailed
responses to requests can be included in the message payload.

4.  Content-Format (CF): The CF is a 2-bit unsigned integer. It indicates the type of
encoding of the payload contents. It was narrowed down to two(2) most common
content-formats; AppXML (XML format)—0 and AppJSON (JSON format)—1.

5. Message-ID: The Message-ID portion is an 8-bit unsigned integer in network byte
order. It is used to match requests to responses. This is 8-bits lesser than CoAP’s
implementation. To deal with request/response replays by an attacker or a malicious
device, an ETag is included in the message payload to detect such attacks since 8-bit
or 16-bit (in the case of CoAP) message-IDs are computationally easy for an attacker
to compute. The ETag is a hexadecimal value resulting from a bitwise operation of
the Message-ID and a current timestamp embedded in the message payload. Further
details are provided in Section 5.1.
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2-byte header
e

g R
2 bits 2 bits 2 bits 2 bits 8 bits

Message ID

> Message Identifier]

> |[Indicates the payload content format

>|ndicates whether is a fetch/share of datal

> [ndicates the type of message|

> |[Indicates the version of the message format

a Payload (if any) ...

T

The message payload

Figure 8. A Detailed Representation of the LiMP Message Format.

The header is followed by the message payload whose content format is indicated by
the ‘CF’ field.

4.4. Benchmark Test and Analysis

A benchmark analysis of COAP and LiMP was conducted on some embedded devices
to evaluate the flexibility and efficiency of the proposed message protocol. A TCP and UDP
versions of CoAP and LiMP were implemented and used in the benchmark test. The ARM
devices used were: Nvidia Jetson Nano (N), Nvidia Tegra (T), Raspberry Pi (P) and and
a Phone (I); as shown in Figure 9. ARM-based devices were selected because most loT
devices are of such architecture.

Nvidia Jetson Nano (2 pieces) Nvidia Tegra (2 pieces)

Phone (2 pieces)

2o

\\ Raspberry Pi 2 (2 pieces)

Figure 9. Benchmark Devices.
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The Nvidia Jetson Nano and the Tegra have an ARM Cortex-A57 MPCore processor,
the Raspberry Pi is an ARM Cortex-A53 processor, and the phone is an Apple A10 Fusion
chipset. All the IoT devices except the phone were running an ARM-based Debian operating
system, whereas the phone was running iOS. Two categories of the benchmark test was
considered, (as shown in Figure 10) viz., Intra-Devices communication, and Out-of-domain
communication. The intra-communication test was done on the same LAN and the out-of-
domain communication test was done between the devices and a remote server (16 hops
from the local network). The key performance indicators include:

1. The PDU sizes and
2. The RTT of requests/responses of the application layer messaging protocols

P

Communication - S
with remote _ -~

server_ .-~ -

-
@ i Remote Server
.

-

Intra-Device Communication

Figure 10. Setup for benchmark analysis.

The RTT is the measured time taken for an IoT device to send a request and receive a
response. A total of 14 (Point-to-Point Communication) x 4 (Protocols) scenarios were used in
the evaluation. A base implementation of CoAP and LiMP (written in Golang) was used in
the evaluation analysis (Source code is available at: https:/ /github.com/jayluxferro/levis
accessed on 6 January 2022 ).

5. Results and Discussion

This section presents an analysis of the benchmark test and discusses the findings.
Table 3 shows the default PDU sizes (in bytes) of LiIMP and CoAP. The PDU size of LiMP-
TCP is 16% smaller than the CoAP-TCP. Furthermore, the PDU size of LIMP-UDP is 23%
smaller than the CoAP-UDP.

Table 3. Default PDU Size (in bytes): CoAP-TCP, LiMP-TCP, CoAP-UDP, LiMP-UDP.

CoAP-TCP LiMP-TCP CoAP-UDP LiMP-UDP
PDU (bytes) 81 68 57 44

Figure 11 shows the RTT for a point-to-point communication between two Jetson
Nano devices. LiMP-TCP outperformed the CoAP-TCP. The LiMP-UDP outperformed
all the other protocols; averaging 18 milliseconds (ms). This amounts to an efficiency of
17.758% more than CoAP.
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Figure 11. Point-to-Point Communication RTT between two Jetson Nano devices.

In Figure 12, the LIMP-UDP outperformed all the rest; averaging 5.7 ms. Similar
observations were made in Figures 13-16. The efficiency of LiIMP-TCP is 10.28% more than

CoAP-TCP and that of LIMP-UDP is 18.04% more than CoAP-UDP.
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Figure 12. Point-to-Point Communication RTT between a Jetson Nano and a RaspberryPi.

In Figure 13, the efficiency of LIMP-TCP is 13.54% more than CoAP-TCP and that of
LiMP-UDP is 20.85% more than CoAP-UDP.
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Figure 13. Point-to-Point Communication RTT between a Jetson Nano and a Jetson Tegra.
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In Figure 14, the efficiency of LIMP-TCP is 11.22% more than CoAP-TCP and that of
LiMP-UDP is 34.58% more than CoAP-UDP.

—e— CoAP-TCP
LiMPP-TCP
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Figure 14. Point-to-Point Communication RTT between two RaspberryPi devices.

In Figure 15, the efficiency of LIMP-TCP is 14.30% more than CoAP-TCP and that of
LiMP-UDP is 20.54% more than CoAP-UDP.
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Figure 15. Point-to-Point Communication RTT between a Raspberry Pi and a Jetson Tegra.

In Figure 16, the efficiency of LIMP-TCP is 13.76% more than CoAP-TCP and that of
LiMP-UDP is 44.39% more than CoAP-UDP.

The RTTs for communication between the iPhone and the other embedded devices
showed a lower RTT (very good) for LIMP-UDP as compared to the other protocols; as
shown in Figures 17-19. For instance, in Figure 19, LIMP-UDP was three-times lesser than
that of CoAP-UDP with an average RTT of 4.55 ms. In Figure 18, the efficiency of LiMP-TCP
is 39.90% more than CoAP-TCP and that of LiIMP-UDP is 56.22% more than CoAP-UDP.
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Figure 16. Point-to-Point Communication RTT between two Jetson Tegra devices.

In Figure 17, the efficiency of LIMP-TCP is 31.60% more than CoAP-TCP and that of
LiMP-UDP is 72.11% more than CoAP-UDP.
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Figure 17. Point-to-Point Communication RTT between a Phone and a Jetson Nano.

—e— COAPTCP
—e— LiMPPTCP
0.05 1 —e— COAP-UDP

—e— LiMPP-UDP

0.04 1

003 MM

Round-Trip Time (seconds)

0021 W—\/\\/

0] o0 009 o o "0 oo, ,
6 56 160 15';0 260 250 360 3é0 460 45';0 560 550 660 650 760 75';0 860 850 960 950 1060
Payload Size (bytes)

Figure 18. Point-to-Point Communication RTT between a Phone and a RaspberryPi.

In Figure 19, the efficiency of LiIMP-TCP is 39.47% more than CoAP-TCP and that of
LiMP-UDP is 67.10% more than CoAP-UDP.
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Figure 19. Point-to-Point Communication RTT between a Phone and a Jetson Tegra.

For the communication between the two Phones, the marginal difference between
each protocol averages 0.2 ms. In Figure 20, the efficiency of LiMP-TCP is 17.65% more
than CoAP-TCP and that of LIMP-UDP is 21.32% more than CoAP-UDP.
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Figure 20. Point-to-Point Communication RTT between two Phones.

For the communication between the devices and the remote server, the marginal differ-
ence between LIMP-UDP and CoAP-UDP averages 5 ms. Also the LIMP-TCP outperformed
that of CoOAP-TCP with a marginal difference of 0.7 ms. These deductions are observed in
Figures 21-24. In Figure 21, the efficiency of LIMP-TCP is 15% more than CoAP-TCP and
that of LIMP-UDP is 15.90% more than CoAP-UDP.
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Figure 21. Point-to-Point Communication RTT between a Jetson Nano and a remote Server.
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In Figure 22, the efficiency of LIMP-TCP is 15.04% more than CoAP-TCP and that of
LiMP-UDP is 15.85% more than CoAP-UDP.
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Figure 22. Point-to-Point Communication RTT between a RaspberryPi and a remote Server.
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In Figure 23, the efficiency of LIMP-TCP is 14.86% more than CoAP-TCP and that of
LiMP-UDP is 16.15% more than CoAP-UDP.
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Figure 23. Point-to-Point Communication RTT between a Jetson Tegra and a remote Server.



Technologies 2022, 10, 21

16 of 20

In Figure 24, the efficiency of LiIMP-TCP is 15.45% more than CoAP-TCP and that of
LiMP-UDP is 16.37% more than CoAP-UDP.
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Figure 24. Point-to-Point Communication RTT between a Phone and a remote Server.

In summary, for communication over LAN, the LiMP-TCP outperformed the CoAP-
TCP by an average of 21% whereas that of LIMP-UDP was over 37%. For a device to remote
server communication, LIMP outperformed CoAP by an average of 15%. The LiMP-UDP
achieved the fastest RTT. The LiMP-TCP is better in comparison to the CoAP-TCP in
instances where the choice of the transport protocol has to be TCP.

5.1. Security Analysis of LIMP

This section provides a security analysis of LiIMP in comparison to CoAP. The CoAP
header size (as shown in Figure 4) consists of a 16-bit message-ID used to identify re-
quest/response messages; a total of 65536 possible identifiers. One can argue that reducing
the Message-ID to 8-bit (as shown in Figure 7), in the case of LiMP, makes the protocol
vulnerable to message spoofing. In this section, we demonstrate the following;:

1.  the ease of spoofing both 16 and 8-bit message-ID, and
2. how LiMP uses a simple ETag generation mechanism to prevent message spoofing.

Table 4 and Figure 25 show how easy it is to compute both 16 and 8-bit Message-IDs.
This analysis was made on the same devices used in the benchmark analysis.

Table 4. The Time Taken to Compute both 16 and 8-bit possible message-IDs.

Device 16-bit (Time/ms) 8-bit (Time/ms)
Nvidia Jetson Nano 8.037 0.022
Nvidia Tegra 12.989 0.032
Raspberry Pi 20.946 0.063

iPhone 7 1.891 0.005
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Figure 25. Comparison of the Time Taken to Compute All Possible 8 and 16-bit message-IDs.

It can be observed that both 8 and 16-bit Message-IDs are computationally feasible
and easy for a compromised node to spoof Message-IDs. The fastest compute time was
1.890 ms in the case of the 16-bit Message-ID and 0.005 ms for that of the 8-bit Message-ID.

LiMP uses the 8-bit Message-ID as a seed to generate an ETag to prevent message
spoofing. The ETag generation technique is based on binary-shift operations; since binary-
shift operations are easy to compute as compared to other algebraic operations. The ETag
generation mechanism (Algorithm 1) uses the seed together with a timestamp value (which
is also contained in the message payload) to produce a unique hexadecimal string (the
ETag). It is assumed that each IoT device is time-synchronized; hence time becomes a
good entropy source. Line 1 of Algorithm 1 is the procedure for the generation of the
ETag. As input parameters, it requires the seed value and the timestamp (in milliseconds).
The binary equivalent of the seed value is prefixed to the binary value of the current
timestamp. The resulting value is then converted to its hexadecimal equivalent, which then
becomes the ETag. The ETag is collision-resistant due to its usage of the current timestamp
as a source of entropy. The seed value ensures that concurrent requests do not end up
having the same ETag value.
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Algorithm 1 ETag Generation Algorithm.

1: procedure GENERATE(seed, timestamp)

2 % seed (bounded between 0, 255 inclusive), timestamp (time in milliseconds)
3: < bin2hex(bin(seed) + bin(timestamp))

4: end procedure

: procedure BIN2HEX(binary_data)
<+ hex(int(binary_data))
7. end procedure

o w

8: procedure HEX2BIN(hex_data)
9: < bin(int(hex_data))
10: end procedure

11: procedure IS_VALID(e_tag, timestamp, seed)

12: if generate(seed, timestamp) == e_tag then
13: < True

14: else

15: < False

16: end if

17: end procedure

6. Conclusions and Recommendation

With the proliferation of IoT devices, it has become essential to simplify the develop-
ment of network and application layer protocols for M2M communication. Although the
most common application layer protocols such as CoAP, MQTT, XMPP, DDS, and XMPP
are applicable in IoT networks; they are limited in instances where minimal overhead and
message sizes are key requirements. For data-centric IoT, the minimal header and message
complexity, as well as efficient delivery of messages, is key. In this research paper, we
proposed a lightweight messaging protocol with a minimal header (2 bytes) size and a PDU
of 68 and 44 bytes for TCP and UDP respectively. With the reduced header size, it can be
argued that it compromises the security of the proposed protocol. Therefore, we proposed
a mechanism through which spoofing of messages can be detected by proposing the use of
an ETag. We also demonstrated that the proposed messaging protocol has a faster RTT due
to reduced complexity; for communication over LAN, the LiMP-TCP outperformed the
CoAP-TCP by an average of 21% whereas that of LIMP-UDP was over 37%. For a device
to remote server communication, LiMP outperformed CoAP by an average of 15%. In the
context of 10T, aside D2D communication, host-discovery and multicast communication
are essential. Future works will explore how this minified protocol can be leveraged for
host discovery with minimal broadcast overhead.

7. Patents
IoT applicable.
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Abbreviations

The following abbreviations are used in this manuscript:

ToT Internet of Things
D2D Device-to-Device
LAN Local Area Network
M2M Machine-to-Machine
MQTT Message Queueing Telemetry Transport
AMQP Advanced Message Queuing Protocol
CoAP Constrained Application Protocol
eUtility External Utility
BLE Bluetooth Lower Energy
NFC Near Field Communication
LPWAN Low Power Wide Area Network
WSN Wireless Sensor Networks
6LoWPAN  IPv6 over Low-Power Wireless Personal Area Networks
RPL Routing Protocol for Low-Power and Lossy Networks
TLS Transport Layer Security
DTLS Datagram Transport Layer Security
TCP Transmission Control Protocol
ubr User Datagram Protocol
HTTP HyperText Transfer Protocol
LiMP Lightweight Messaging Protocol
DDS Data Distribution Service
XMPP eXtensible Messaging and Presence Protocol
REST Representational State Transfer
CoRE Constrained RESTful Environments
1P Internet Protocol
IPv6 IP version 6
API Application Programming Interface
QoS Quality of Service
XML eXtensible Markup Language
SCTP Stream Control Transmission Protocol
UTF Unicode Transformation Format
JSON JavaScript Object IoTation
ETag Entity Tag
PDU Packet Data Unit
RIT Round-Trip Time
ARM Advanced RISC Machines
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