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Abstract: Detecting and localizing buildings is of primary importance in urban planning tasks.
Automating the building extraction process, however, has become attractive given the dominance of
Convolutional Neural Networks (CNNs) in image classification tasks. In this work, we explore the
effectiveness of the CNN-based architecture U-Net and its variations, namely, the Residual U-Net, the
Attention U-Net, and the Attention Residual U-Net, in automatic building extraction. We showcase
their robustness in feature extraction and information processing using exclusively RGB images, as
they are a low-cost alternative to multi-spectral and LiDAR ones, selected from the SpaceNet 1 dataset.
The experimental results show that U-Net achieves a 91.9% accuracy, whereas introducing residual
blocks, attention gates, or a combination of both improves the accuracy of the vanilla U-Net to 93.6%,
94.0%, and 93.7%, respectively. Finally, the comparison between U-Net architectures and typical deep
learning approaches from the literature highlights their increased performance in accurate building
localization around corners and edges.

Keywords: automatic building extraction; U-Net; residual U-Net; attention U-Net; attention residual
U-Net; semantic segmentation; SpaceNet 1 dataset

1. Introduction

Building detection and localization are some of the most important tasks in land-cover
classification [1–3] and urban planning [4–6], which derives from the fact that citizens live
and interact inside buildings for most of their time. Therefore, it is necessary to accurately
map each building’s location during the initial urban planning procedure and, although
it is highly accurate with the traditional methods used, it is also both time consuming
and cost dependent. This has motivated the research to take advantage of other available
resources that can represent most of the urban scene—for instance, data from satellite and
aerial images.

Detailed digitization through these images manually allows the extraction of the loca-
tions of buildings in maps with reduced time and cost when compared to the traditional
surveying methods while providing buildings’ precise footprints as well [7]. Furthermore,
for a wide range of tasks, such as environmental, geographic, or government land admin-
istration and/or cover inspections, urban plans may have larger error tolerances in each
building’s initial position due to the scaling parameter considered [8].

Although it seems promising, detailed digitization that is conducted manually suffers
from the following drawbacks: (1) It is a serial and iterative procedure, meaning that each
time a polygon representing an arbitrary building is completed, the procedure is repeated
for the rest of the buildings from the selected area; (2) as a consequence of (1), building
localization has to be redone from scratch after certain years or whenever necessary from

Technologies 2022, 10, 19. https://doi.org/10.3390/technologies10010019 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies10010019
https://doi.org/10.3390/technologies10010019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-4064-8990
https://doi.org/10.3390/technologies10010019
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies10010019?type=check_update&version=1


Technologies 2022, 10, 19 2 of 14

the cadastre systems; (3) it does not favor highly populated areas, as they are prone to
errors happening more often due to the complexity of the buildings’ geometry; (4) one also
has to consider additional errors originating from anthropogenic factors [8,9].

To this end, research has shifted towards algorithms and methods for automating the
procedure of buildings’ detection and localization [10–15]. However, they have to face the
following challenges: (1) Buildings’ reflectance values are not significant throughout the
whole spectrum, which is in contrast to the vegetation in near-infrared [16]; (2) buildings
and other human-made structures—for instance, roads—presented in the same scene are
confused during image segmentation, possibly resulting in inaccurate predictions due to
the fact that all of these structures are made of the same material, concrete [17]; (3) it is
important for predicted buildings to have geometrical correctness in order to be realistic—
for instance, to have a rectangle-shaped structure [8].

Separating an urban area automatically is a process in which building and non-
building areas have to be successfully distinguished from one another. This task is also
known as semantic segmentation in images. Deep Neural Networks (DNNs) and espe-
cially Convolutional Neural Networks (CNNs) are dominant in image classification, which
makes them attractive for semantic segmentation tasks [18–23]. A computationally efficient
deep learning architecture named U-Net was proposed in [24] to implement semantic
segmentation in biomedical images. Given its excellent performance, it was also used in
land-cover classification tasks [2,25,26] with the purpose of providing accurate recognition
and detailed localization of buildings in the area of interest. Compared to the traditional
Fully Convolutional Network (FCN) [23], the SegNet [27], and the MASK R-CNN [28],
experimental results showed that U-Net requires fewer data during training and fewer com-
putational resources while offering better performance in classification and segmentation
at the same time [29–32].

In the paradigm of U-Net, researchers have introduced two specific U-Net-based
variations: the Residual U-Net [33] and the Attention U-Net [34]. The Residual U-Net
replaces the traditional convolutional block with a residual one in order to overcome the
problem of accuracy degradation when the neural networks’ depth increases. Attention
U-Net benefits from the effectiveness of attention gates, as they highlight the areas of
interest on each feature map during the concatenation operation. This allows the network
to avoid non-useful and low-level feature extraction, which would result in additional
computational power.

Motivated by the above, in this work, we explore the efficacy of the U-Net architecture
along with that of its variants, namely, the Residual U-Net, the Attention U-Net, and the At-
tention Residual U-Net, in automatic building extraction and localization. To demonstrate
their effectiveness, we consider the SpaceNet 1 dataset [35], which provides RGB images
that: (1) are easy to acquire from multiple sources, such as airborne cameras of unmanned
aerial vehicles (UAVs) and airplanes, (2) are low cost when compared to hyper-spectral or
LiDAR images, and (3) represent information from remote sensing data using the lowest
allowable image quality that captures natural urban scenes and surfaces.

2. Related Work and Motivation for Using RGB Data

Building detection is a feasible procedure that has been addressed in the past using
machine learning techniques in aerial and remote sensing data. Vakalopoulou et al. [10]
proposed a Conditional Random Field (CRF) framework that benefits from edges’ and
boundaries’ locations. These are predicted in two separate ways: (1) with the implementa-
tion of SegNet [27], an FCN architecture that can carry out pixel-wise classification with
an encoding–decoding technique, and (2) with the use of a traditional edge-detecting
Sobel filter that is suitable for this process. Afterwards, they were combined using linear
programming methods, thus optimizing the building detection process. Moreover, this
framework was evaluated on the SpaceNet 1 dataset using exclusively RGB channels.

Another approach for building extraction from remote sensing data was presented by
Xu et al. [11]. The authors used a three-step methodology that combined a pre-processing
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stage, a classification part, and an implementation of a guided filter to optimize buildings’
localization. First, the pre-processing stage performed edge enhancement in each image
channel to emphasize the objects’ edges. Afterwards, a Normalized Vegetation Index
(NDVI), a normalized Digital Surface Model (DSM), and a first Principal Component
Analysis (PCA) were used for additional image analysis before the training procedure.
With respect to the classification part, the previous information was combined in layers
along with the RGB and color infrared channels in a single tensor and then fed to the
network. The network used was a Residual U-Net that was trained to semantically segment
the tensors into two classes, namely, buildings and background. Finally, the guided filter
was used to optimize the extraction of the building by smoothing the edges. The datasets
used were the Vaihingen (Germany) and Potsdam (Germany) datasets, which include RGB,
near-infrared, color infrared, and additional data for DSM generation.

Guo et al. [12] combined a multiloss-based U-Net model along with an attention
block to address the building extraction challenge in exclusively RGB remote sensing data.
Briefly, the multiloss method initializes the boundaries during the training procedure, while
the attention block enhances the local information of each feature map with high-quality
features from deeper levels of the network. The dataset used was the Inria Aerial Image
Dataset, which includes aerial top-down RGB images with a spatial resolution of 0.3 m.

Automatic building extraction using DNNs has been addressed in the past by utilizing
multispectral images and additional altitude information, e.g., DSM and pre-processing
stages for data enhancement [13,14,36,37]. However, multispectral images obtained from
sensors introduce challenges: (1) They come at high cost compared to simple airborne RGB
cameras due to both the value of the sensors themselves and their installation cost, and
(2) they capture the land scene at lower accuracy levels, thereby requiring an additional
resampling stage so as for all channels to have the same exact resolution. On the other
hand, DSM information can be generated as a result of two options. First, by installing a
LiDAR sensor, which is subject to the same challenges faced by the multispectral image
sensors, or second, by applying a Dense Image-Matching algorithm for the area of interest,
which is, however, a time-consuming and computationally intensive process. This is also
reflected in the training procedure, as input tensors become larger when the number of
channels is increased, resulting in more features to be learned.

Considering the above, RGB images, on the contrary, have the following advantages:
(1) They are simpler to collect from multiple sources—for instance, airplanes and UAVs—by
exclusively subtracting the satellite factor, and (2) they represent the urban scene in true
colors using the lowest allowable image quality, resulting in low-dimensional tensors that
are able to be processed using less memory and computational resources. In the proposed
work, we exploit the benefits of RGB images and expand the work in [29] so as to include
different variations of U-Net. Moreover, we attempt to combine the benefits of residual
blocks in Res U-Net and the attention blocks in Attention U-Net into a single architecture,
namely, the Attention ResU-Net, in order to explore its benefits in automatic building
extraction and localization.

3. U-Net-Based Architectures
3.1. U-Net

U-Net is a Fully Convolutional Neural Network (FCNN), and its architecture is illus-
trated in Figure 1. In contrast to typical CNN architectures, U-Net exploits a contracting
and an expanding path during the convolution process. The former acts as an encoder of
the input’s information given the fact that the downsampling includes the feature extraction
process, whereas the latter is a decoder that uses information from the encoding process
to improve on the spatial information, a technique called skip connection. Both paths are
symmetrical in their operations, forming a U-shaped process.
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(a) U-Net

(b) Attention U-Net

Figure 1. The U-Net (a) architecture. The contracting path (left) encodes information by down-
sampling the input image five times. The expanding path (right) decodes information using the
contracting path to improve on the spatial information. The Attention U-Net (b) architecture consists
of the original U-Net architecture along with attention gates in the contracting path, which are used
to avoid low-level features being repeatedly extracted.

According to the architecture in Figure 1a, the contracting path (encoder—left side)
contains five vertically aligned layers of convolution blocks, where each executes two
3× 3 convolution operations, followed by an activation function (in this case, rectified
linear unit (ReLU)). Then, the result is downsampled with a 2× 2 max pooling operation of
stride 2. Therefore, the process downsamples 400× 400× 3 images to 25× 25× 256 tensors.
On the other hand, the expanding path (decoder—right side) works similarly to the con-
tracting one, with the main difference being that the max pooling operation is replaced
by an up-convolution that divides by 2 the total number of the channels, thus doubling
the image’s width and height. Afterwards, the upsampled image is concatenated with
the corresponding feature map of the contracting path (a technique also known as skip
connection), and the result passes through two 3× 3 convolution operations, each followed
by the ReLU activation function. This procedure is repeated four more times (five blocks
in total), ending up in the final stage, where the 400× 400× 32 image convolves with a
1× 1 kernel followed by a sigmoid activation function so as to carry out the pixel-wise
classification part.

3.2. Residual Block in U-Net

To eliminate a potential degradation problem in U-Net, which derives from the satura-
tion of the model’s accuracy as the depth of the network increases, the authors in [33,38]
utilized a residual convolution block. A residual convolution block is described in the same
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way as a traditional one, but with the main difference being the shortcut connection; the
initial information is added to the result of the convolution’s output layer. To provide an
insight into its operation, consider a comparison between the residual convolution block
and the traditional one, as shown in Figure 2.

Assuming that x is the input tensor (or vector), then F(·) is the mapping to it, and in
this specific case, it holds that F = W2σ(W1x), where W1, W2 are the weights in the first and
second convolution blocks, respectively, while σ(·) represents the non-linear ReLU function.
The output tensor (or vector) y is then derived as y = F(x) + x. Fitting a desired residual
mapping adds “details” to the original input, thereby improving the learning process when
the depth of the network increases without further stressing the computational complexity.
Therefore, the skip connections, namely, the addition of the input to the residual mapping,
allow for the design of a CNN to be done with much fewer parameters.

Figure 2. (Left): Convolution and ReLU convolution block utilized by the U-Net architecture.
(Right): Residual block adding the initial information to the convolution and ReLU operation.

3.3. Attention U-Net

The traditional U-Net architecture benefits from the implementation of the skip con-
nection between each feature map in the encoder part with each upsampled tensor in the
decoding path. In [34], it was shown that a plain skip connection causes low-level features
to be repeatedly extracted, leading to redundant computational power, an increased num-
ber of parameters, and additional resources occupied during the learning procedure. To
overcome these computational limitations, in [34], a soft-attention block was applied at
the skip connection to actively suppress activations at irrelevant regions of each feature
map. The architecture of the Attention U-Net is shown in Figure 1b. As one can observe,
the attention gate is applied at every skip connection, and it takes as inputs a gating signal
and the symmetrical feature map of the encoding part.

To explain the operation of the attention block shown in Figure 3, suppose that x is the
feature map and g is the gating signal. Usually, both inputs to the attention block come from
different layers in the network, implying that they have different dimensions; g derives
from one layer lower in the network, where areas of interest are more detailed, while x
derives from the encoding part of the network and is in the same layer as the attention
block. The first convolution operation is applied on both x and g with weights Wg and Wx,
respectively, but tensor x has a stride of 2× 2 so as to keep the dimension between the two
convolutions equal. Now, their addition is feasible, allowing for the aligned weights to
become larger, whereas the unaligned ones become relatively smaller. The result of this
operation is passed to a ReLU activation function, and then it is convolved with a 1× 1× 1
kernel, Ψ, so as to extract the attention coefficients, which are normalized by a sigmoid
function. Finally, the result of the sigmoid is upsampled to match the dimension of the
input tensor x and is then multiplied with it pixel-wise to produce the output.
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Figure 3. Operation of the attention block used in the Attention U-Net architecture. The feature map
is denoted as x and is derived from the encoding part of the network, while the gating signal g is
derived from one layer lower in the network.

3.4. Attention ResU-Net Architecture

Both architectures of the Attention and ResU-Net are subject to changes in parts of their
computational blocks in the sense that the architecture core remains identical. Therefore,
one can combine them in a single architecture to obtain the advantages from both; the
residual block enhances the feature extraction and avoids the degradation learning problem
during the training procedure, while the attention gate improves the spatial information
of the input images. Their combination is called Attention ResU-Net. It is implemented
by replacing each convolution layer of the plain U-Net with the residual one, illustrated
in Figure 2. The attention mechanism, Figure 3, is also applied at each convolution layer
of the expanding path, as shown in Figure 1b. The above two blocks, enhance in a sense
the performance of the U-Net architecture, by allowing both the high-level features to be
extracted and low-level spatial information to be preserved.

4. Experimental Setup
4.1. Dataset Description

In order to evaluate the performance of U-Net and its flavors in automatic building
extraction, we consider one of the largest remote sensing datasets that contains high-
resolution images, namely, the SpaceNet 1 dataset [15,39]. We selected 6940 images from
the WorldView-2 satellite, which covers the region of Rio de Janeiro in Brazil. Focusing
on the dataset, it contains two related sets of data depicting the same area of interest.
The first one contains pan-sharpened RGB images, where each pixel corresponds to a
50× 50 cm2 area on the ground, while the second one includes multi-spectral images, with
each pixel corresponding to 1 m2 resolution on the ground. Each image has an initial size
of 438× 406 pixels and covers a corresponding 200× 200 m2 area, with the total area span
being 2544 km2. Note that only the RGB images from the dataset are used.

In order for the input images to be processed by the U-Net architectures, we conducted
a resizing of them to 400× 400; each max pooling operation divided its input image size by
2, which means that the dataset’s images with initial size 438× 406 could not be accurately
passed from the top layer to the bottom one without fractions being introduced. As such,
images with pixel size 400× 400 were the closest allowable representations of the ones in
the dataset.

The advantage of this dataset is that it offers pan-sharpened images available in uint8
format, meaning that no additional preprocessing stage is required and that all images
have the same resolution and size. Moreover, along with the imagery dataset, an extra
geojson file containing the building polygons within that area was attached for each image
patch. This is referred to as an image’s mask, and an example is shown in Figure 4. Note
that all images are converted from vector to raster format and are also georeferenced.
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Figure 4. Two sample images taken from the WorldView-2 satellite along with their masks from the
SpaceNet 1 dataset. (Left): RGB image patches. (Right): Corresponding masks.

4.2. Metrics

All 4 U-Net variations were evaluated with the 4 standard classification metrics:
(1) accuracy, (2) precision, (3) recall, and (4) F1 score. Using the standard definitions from
the confusion matrix (TP = True Positive, TN = True Negative, FP = False Positive, and
FN = False Negative), they are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)
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F1 = 2
(

Precision · Recall
Precision + Recall

)
. (4)

It seems that the F1 score is the calculated harmonic mean of Precision and Recall.
Apart from the 4 standard classification metrics, here, we considered the Jaccard score. It
belongs in the category of intersection-over-union (IoU) metrics and shows the similarity
and diversity of 2 sample sets. It is defined as the size of the intersection divided by the
size of the union of those—in our case, the predicted image (A) and the actual one (B)—and
is described as:

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| . (5)

The Jaccard score is a suitable metric for image segmentation because, apart from the
classification task, segmentation visualizes the predicted classes. This is why a similarity
index measure is important in pixel-wise classification tasks.

4.3. Experimental Results

Tables 1 and 2 present the comparison of the performance of the U-Net architectures
in the semantic segmentation task with the SpaceNet 1 dataset, accompanied by other
approaches from the literature. Therefore, it is reasonable to comment on the perfor-
mance between (1) the U-Net architectures and (2) the U-Net architectures and the other
approaches considered.

Table 1. Comparison of the performance between U-Net architectures. Best scores are annotated
in bold.

Architecture
Evaluation Metrics

Accuracy Precision Recall F1 Jaccard

U-Net [29] 0.923 0.808 0.808 0.798 0.700
ResU-Net 0.936 0.864 0.770 0.811 0.703

Attention U-Net 0.940 0.851 0.809 0.826 0.726
Attention ResU-Net 0.937 0.850 0.799 0.820 0.719

Table 2. Comparison of performance between the proposed U-Net architecture and approaches
from the literature on the semantic segmentation task with the SpaceNet 1 dataset. Best scores are
annotated in bold.

Architecture
Evaluation Metrics

Accuracy Precision Recall F1 Jaccard

SegNet [27] 0.919 0.569 0.813 0.662 -
SegNet with Sobel filters [10] 0.923 0.596 0.722 0.667 -

CRF with Sobel filters [10] 0.931 0.632 0.763 0.675 -
CRF with CNN boundaries [10] 0.924 0.624 0.764 0.674 -

U-Net [29] 0.923 0.808 0.808 0.798 0.700
ResU-Net 0.936 0.864 0.770 0.811 0.703

Attention U-Net 0.940 0.851 0.809 0.826 0.726

Comparison between the different U-Net architectures proposed: According to
Table 1, U-Net achieves the lowest computational accuracy regardless of the evaluation
metric among the four architectures considered (U-Net, ResU-Net, Attention U-Net, and At-
tention ResU-Net). Focusing on precision, ResU-Net achieves the highest score with a value
of 0.864, which is due to the residual block’s ability to introduce additional information to
the inputs being processed. On the other hand, Attention U-Net results in the best accuracy,
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recall, F1, and Jaccard scores; during the concatenation operation, the areas of interest on
each feature map are highlighted, and this results in improved processing of the input’s
spatial information. Of particular interest is Attention ResU-Net’s performance. Although
it is expected that combining both the residual blocks and the attention gates in the same
architecture would further increase the computational performance when compared to
ResU-Net or Attention U-Net, in fact, Attention ResU-Net performs moderately. To this
also contributes the fact that it has the largest number of trainable parameters.

Comparison of the proposed U-Net-based architecture with other approaches from
the literature: In this paragraph, we compare the proposed deep learning architecture
that utilizes the U-Net structure with other models presented in the literature, such as
SegNet [27], a deep fully convolutional neural network architecture for semantic pixel-
wise segmentation, SegNet with Sobel edge-detecting filters [10], CRF, a machine learning
algorithm used for structured predictions along with Sobel filters [10], and CRF with CNN
boundaries [10]. Focusing on precision, it can be seen that the proposed Attention U-Net
architecture outperforms the other approaches, and the fact that the number of FP values is
remarkably low considering (2) should also be emphasized. This is due to skip connection,
which enhances the spatial information during the decoding process. With respect to
accuracy, the standard U-Net has the same performance as SegNet, while CRF with Sobel
filters performs slightly better than the other approaches, with Attention U-Net scoring the
highest value. The highest recall score is achieved by SegNet, followed by the proposed
Attention U-Net, whereas the rest of the values are in the range of 0.7–0.8. Similar results
to that of the precision are observed for the F1 score, where the Attention U-Net performs
better regardless of the architecture used.

Apart from the numerical accuracy of the U-Net architectures, in Figure 5, we illus-
trate their effectiveness in building extraction. Here, the rows correspond to: (a) U-Net,
(b) Residual U-Net, (c) Attention U-Net, and (d) Attention Residual U-Net, whereas the
columns correspond to: (1) the original RGB image, (2) the image’s ground-truth label,
(3) the predicted buildings, and (4) the TP, TN, FP, and FN values compared to the original
RGB images. Note that the TN values are totally transparent and represent other objects of
the area that the networks predicted correctly as background.

According to Figure 5, in the first and third columns, it can be seen that the building
areas are predicted precisely and are correctly separated from the non-building areas,
making the buildings’ localization accurate. However, it is also observed that the edges
and especially the corners of the buildings do not form a clear four-rectangle shape, but
instead, they form arcs. Furthermore, it can be seen that the vanilla U-Net makes an
initial localization of the buildings, while the other variations express the geometry of the
buildings in an improved manner. Specifically, Res U-Net’s predictions are more precise
when buildings are relatively close to each other, while Attention U-Net is more accurate
in mapping the buildings’ theoretical four-rectangle shape without including the non-
building areas, e.g., fences and roads. It is important to note that attention gates are robust
in finding highly detailed features within an image, and this is justified from the small
prediction (considered as a park in the image), making Attention U-Net more flexible for
urban planning tasks. Finally, Attention ResU-Net attempts to combine the best of both
worlds; buildings are clearly observed and are also separated from the non-building areas,
but the accuracy of this process is moderate when compared to each individual network
(Attention or ResU-Net).
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Figure 5. Automatic building extraction using the U-Net architectures. From the top to the bot-
tom rows: (a) U-Net, (b) Residual U-Net, (c) Attention U-Net, and (d) Attention Residual U-Net.
From the left to the right columns: (1) original RGB image, (2) ground-truth labels, (3) networks’
predictions, and (4) overlap of networks’ predictions and ground-truth labels with the original image
as background.

4.4. Model Complexity

With respect to the training and testing procedure, out of the 6940 images in total, we
considered 4500(65%) for training, 500(7%) for validation, and 1940(28%) for testing.

The batch size used corresponded to 16 samples per batch, while the learning rate
was LR = 10−3 for a total of epochs = 30. These parameters were applied to all of the
U-Net architectures so as to have a fair comparison of their performance. It is important
to note that all simulations were conducted on Google Colaboratory, an environment
that provides access to graphical processing units (GPUs) and the parallel computing
platform CUDA. Thus, many of the separate computations of each model were done in
parallel, thus generally achieving lower training and testing times. As far as the number
of trainable parameters is concerned, it is expected that increasing the model complexity
implies an increase in (1) the number of trainable parameters and (2) the time required
for the networks to be trained. The corresponding results are graphically illustrated in
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Figures 6 and 7. An important observation is that although Attention U-Net has almost 1m
parameters more than Res U-Net, they have similar training times, meaning that Attention
U-Net converges faster.

The main advantage of the U-Net architectures is that they require fewer data dur-
ing training and fewer computational resources when compared to other deep learning
architectures according to the literature [29–32]. Therefore, a potential decrease in the
input data may have a negligible impact on the models’ accuracy and precision, but may
reduce the computational time and resources [40]. In contrast to that mentioned above,
increasing the input data by applying data augmentation algorithms can improve the
models’ performance in terms of the cost of additional training time and computational
power [41]. Finally, the processing times of other CNN architectures and approaches can vary
greatly compared to those of the models in this work, and this is based on many factors, such
as the available processing units (i.e., CPU, GPU, etc.), the number of images in the dataset
itself, possible early-stopping criteria used, the depth of other CNN architectures, the batch
size used, the base number of input filters, and other factors.

Figure 6. Number of trainable parameters (×106) used for U-Net and its variations. The inclu-
sion of attention gates and residual blocks increases the total number of parameters for the plain
U-Net architecture.

Figure 7. Total training and testing times in seconds for the U-Net architecture and its variations.
The increase in the models’ complexity due to the inclusion of attention gates and residual blocks has
an impact on the training time.
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5. Conclusions

In this work, automatic building extraction from low-cost RGB images by using
various deep neural network architectures based on the U-Net model was presented. It
was shown that a plain U-Net can accurately make an initial localization of the buildings,
whereas the inclusion of attention gates reduces the appearance of arcs around edges and
detects small objects that refer to non-building areas. Although there was no information
from near-infrared spectra or any digital terrain models, all U-Net variations made accurate
predictions. In particular, our best model was the Attention U-Net, which achieved the
highest F1 and Jaccard scores of 0.826 and 0.726, respectively, among all the compared
architectures, such as the conventional U-Net and the ResU-Net. Despite that the attention
mechanism makes U-Net a more robust network than other U-Net variants, the residual
block makes the U-Net more precise in building localization. A combination of the previous
advantages can be achieved using both residual blocks and attention gates, but at the cost
of increasing the number of trainable parameters. The experimental results justified the
above in the evaluation with standard classification metrics on the SpaceNet 1 dataset,
while extensive comparisons with other deep learning approaches used in the literature
highlighted the advantages of the proposed Attention U-Net variant. As a conclusion, the
time needed for urban planning using U-Net deep learning models can be accelerated.
As future work, U-Net models will be evaluated on other datasets while utilizing more
spectral bands in order to investigate their effectiveness in building extraction. In addition,
few-shot learning strategies can be incorporated in the above-mentioned architecture to
take an expert user’s preferences into account in the final classification outcomes.
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