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Abstract: Emerging applications of IoT (the Internet of Things), such as smart transportation, health,
and energy, are envisioned to greatly enhance the societal infrastructure and quality of life of indi-
viduals. In such innovative IoT applications, cost-efficient real-time decision-making is critical to
facilitate, for example, effective transportation management and healthcare. In this paper, we formally
define real-time decision tasks in IoT, review cutting-edge approaches that aim to efficiently schedule
real-time decision tasks to meet their timing and data freshness constraints, review state-of-the-art
approaches for efficient sensor data analytics in IoT, and discuss future research directions.
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1. Introduction

IoT envisions to enable many innovative applications, such as smart transportation,
healthcare, and emergency response [1–4]. In IoT, timely decision-making using real-time
sensor data is essential. For example, drivers in New York, Chicago, and Philadelphia
lost 102, 104, and 90 h on average in 2021 despite a −27% to −37% drop since 2019 due
to the reduced traffic during the COVID-19 pandemic [5]. Real-time decision-making
for efficient traffic routing based on sensor data streams from roadside sensors (if any)
or dashboard-mounted smartphones can greatly alleviate traffic congestion [6,7]. Also,
an agent for real-time decision-making needs to find an available route among several
alternative routes to send an ambulance to a patient when some of them are unavailable
because of construction, social/political event, or disaster [8]. As another example, patients
in an emergency department or intensive care unit with abnormal shock index values
have much higher mortality rates [9] and higher risks to suffer from hyperlactatemia [10]
and cardiac arrest [11]. Thus, making real-time triage decisions based on the analysis
of physiological sensor data from wearable devices within decision-making deadlines
is desirable.

In the presence of alternative actions, a real-time decision-maker needs to select one of
them that is currently feasible within decision-making deadlines using fresh sensor data
that represent the current real-world status to minimize, for example, traffic congestion or
mortality in an emergency department. Furthermore, a real-time decision-maker should
require IoT devices to provide minimal sensor data necessary for decision-making only
to avoid possible network congestion and significant energy consumption in IoT devices
for transmitting redundant sensor data wirelessly. Logic predicates, also called Boolean
queries, can effectively evaluate alternative courses of action in IoT [8,12,13]. For example,
an ambulance may try to find an available route among several alternative routes to a
patient where some of them are unavailable due to construction, a social/political event,
or disaster. Let us suppose that there are two alternative routes, A-B-C and D-E-F, which
are expressed as (A ∧ B ∧ C) ∨ (D ∧ E ∧ F) where ∧ and ∨ represent the logical AND and
OR operator, respectively. If road segment A of the route A-B-C is unavailable, the data
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indicating the status of the road segment B or C does not have to be retrieved from the
sensors and analyzed for real-time decision making, but can be short-circuited to reduce the
latency and resource consumption [8,12,13]. Similarly, effective treatment can be selected
among alternative treatments by efficiently analyzing the logic predicate in a timely manner
using fresh data that represent the current status of the patients in an emergency department
or intensive care unit. In the rest of this paper, we use emergency vehicle routing and
triage/treatment as our running examples for real-time decision support.

There are many reviews of the general area of IoT, including (but not limited to) [1–4].
In this paper, we review cutting-edge research on efficient real-time decision support by
analyzing logic predicates in a timely fashion using fresh sensor data in IoT. Instead of being
exhaustive, we focus on systematic approaches for efficient processing of real-time decision
tasks that aim to meet stringent timing constraints (i.e., deadlines) and data freshness
requirements of the tasks for real-time decision support in IoT. We take this approach
because it is essential to meet stringent timing and data freshness constraints for real-time
decision support in IoT. For example, the real-time decision task to route a vehicle should
complete within the deadline before the vehicle passes the next exit using fresh data that
represent the current traffic status. Otherwise, the vehicle may miss the exit or make
an ineffective decision using stale data. In the same vein, we do not review techniques
for near real-time decision support or data analytics in IoT, such as [14–21], that do not
consider explicit timing and data freshness constraints. They are agnostic to timing and
data freshness constraints and only aim to decrease the average latency or increase the
average throughput without providing any timing or freshness assurance critical in real-
time decision making in IoT [8,12,13,22–24]. Therefore, we have chosen papers published in
top-tier real-time conferences and journals that aim to schedule real-time decision tasks to
efficiently meet the stringent timing and freshness constraints for real-time decision support
in IoT. We have avoided search via keyword-based queries, such as “real-time decision
making” and “IoT” because most papers returned by such queries are near real-time at best.

Recently, a set of pioneering works, such as [8,12,13,22–24], has been done to efficiently
support real-time decision-making in IoT using fresh sensor data. More specifically, they
aim to efficiently evaluate logic predicates that model alternative courses of action [8,12,13]
and to effectively schedule decision making tasks [22–24]. The field of research on real-time
decision making in IoT, however, is in an early stage and relatively little work has been
done to review the area [25], even though closely related areas that form a basis for real-time
decision making, such as wireless networking for IoT [6,26–29] and sensor data analytics
via machine learning [30–32], have been reviewed extensively.

To bridge the gap, in this paper, we review state-of-the-art approaches for real-time
decision-making in IoT and other closely related topics in terms of their strengths and
limitations. A summary of our key contributions follows.

• We define real-time decision tasks in IoT that intend to evaluate logic predicates within
their deadlines using fresh sensor data. In this way, we clearly distinguish them from
near real-time approaches agnostic to timing and data freshness constraints.

• We review leading-edge scheduling methodologies for efficient processing of real-time
decision tasks in IoT by thoroughly analyzing their advantages and disadvantages
while reviewing effective machine learning techniques that can be leveraged by real-
time decision tasks.

• Furthermore, we propose future research directions to meet the timing and data
freshness constraints of real-time decision tasks in IoT more cost-efficiently.

In Section 2, we give background for real-time decision making in IoT and define real-
time decision tasks in IoT. In Section 3, we review state-of-the-art approaches for efficient
predicate evaluation, freshness management of the sensor data, and real-time analytics of
sensor data in IoT. In Section 4, we discuss future research directions. Finally, Section 5
concludes the paper.
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2. Background

In this paper, we focus on event-driven sensing and data analysis for efficient real-time
decision making based on the ECA (Event-Condition-Action) model depicted in Figure 1
using IoT devices equipped with sensors and a wireless communication module (In this
paper, we mainly discuss real-time decision making using wireless IoT devices that are
easier to deploy in a distributed area. However, the techniques for efficient real-time
decision making reviewed in this paper are applicable to decision support using wired
sensors too, without loss of generality.). Sensors normally do not transfer data to the real-
time decision-maker. Instead, a sensor streams data into the real-time decision-maker only
when an event of interest occurs to avoid wireless data transfer that consumes precious
bandwidth and energy unnecessary for real-time decision making. In this paper, we
employ a comprehensive definition of events: an event is anything noteworthy in terms of
enhancing the quality of life or safety and efficiency of societal infrastructure. An event can
be triggered by any sensor, software agent, or user that forms a real-time decision-making
system in IoT. For example, a surveillance camera begins to send a video stream to the
real-time decision-maker when the motion sensor detects a motion. For cost-effective
triage, a patient at an emergency department or an intensive care unit can be continuously
monitored using a wearable device. The wearable device triggers an event and reports to
the real-time decision-maker when the shock index, SI = heart rate

systolic blood pressure , of the patient
exceeds the threshold, such as 0.9 [9]. Also, certain cameras send images of the specific road
segments that they monitor when the decision-maker begins route planning and requests
data from them. Given fresh sensor data, the real-time decision-maker needs to make
decisions within the specified deadlines to support the IoT application, such as real-time
traffic control or triage.

Event Condition Action

Figure 1. Real-time decision making in IoT based on the Event-Condition-Action model.

In this paper, we focus on the problem of efficiently evaluating logic predicates where
a predicate represents the availabilities or feasibilities of alternative courses of action in
IoT, such as alternative routes or treatments. In this paper, we assume that predicates
for decision-making are in disjunctive normal form (DNF), which is a canonical normal
form, without loss of general applicability. Because any predicate can be converted to
an equivalent predicate in DNF [33], our discussions in this paper apply to any logic
formula for real-time decision making. Let us use ∧ and ∨ to represent the logical and and
or operator, respectively. Given that, a DNF predicate P is a disjunction of one or more
conjunctions of literals (Boolean variables):

P = C1 ∨ . . . ∨ Cn = (C1,1 ∧ . . . ∧ C1,m1) ∨ . . . ∨ (Cn,1 ∧ . . . ∧ Cn,mn) (1)

where Ci (1 ≤ i ≤ n) is a conjunction of mi ≥ 1 literals; that is, Ci = (Ci,1 ∧ . . . ∧ Ci,mi ) and
Cij is a Boolean variable whose value is either true or false. For example, a DNF predicate
P = (A∧ B∧C)∨ (A∧D∧ E)∨ (F∧G∧ H) may represent the availabilities of alternative
routes A-B-C, A-D-E, or F-G-H or feasibilities of alternative medical treatments.

A DNF predicate is useful when a decision-maker aims to find one of the alternative
solutions that are currently available/feasible in a timely manner. For example, if the
conjunction (A ∧ B ∧ C) in the DNF predicate P above evaluates to true before the other
conjunctions in P, the route A-B-C is returned as a solution without further evaluating
P, if necessary, to meet the deadline for real-time decision making. On the other hand,
if the condition A is false, (A ∧ B ∧ C) and (A ∧ D ∧ E) in P immediately become false,
via short-circuiting. In IoT, a real-time decision-maker, such as the traffic controller in a
city or triage agent in an emergency department, can leverage short-circuiting to avoid
unnecessary transfer and analysis of sensor data. When A is false in the previous example,



Technologies 2022, 10, 12 4 of 15

IoT devices do not need to transfer sensor data for the road segments B, C, D, and E to the
real-time decision-maker, because the first two conjunctions in the predicate are already
false. The decision-maker does not have to analyze them to evaluate the entire predicate P,
either. Instead, it can focus on evaluating the remaining conjunction of P, i.e., (F ∧ G ∧ H).

Furthermore, machine learning is an important building block for real-time decision
making in IoT. For example, a real-time decision-maker can analyze the images of road
segments A, B, and C, via deep learning, to tell if the route A-B-C is available, which is
represented by the conjunction (A ∧ B ∧ C) in P.

For the clarity of the presentation, we formally define real-time decision tasks in IoT
as follows.

Definition 1 (Real-Time Decision Tasks). A real-time decision maker in IoT has a set of n (≥1)
real-time decision tasks, τ = {τ1,. . . , τn} that are triggered on demand. A real-time decision task
τi ∈ τ is associated with the relative deadline Di: if it is triggered at time t, it must complete by the
absolute deadline, t + Di, to meet its timing constraint. When triggered at time t, τi must retrieve
and analyze a set of sensor data objects Si = {Oi,1, . . . , Oi,ni}, where ni = |Si| (the cardinality of
the set Si), to evaluate its predicate Pi and choose one of the alternative solutions expressed in Pi for
decision making by t + Di. To manage the freshness of the sensor data, each data object Oi,j ∈ Si
(1 ≤ j ≤ ni) is associated with the absolute validity interval avi(Oi,j). Oi,j is considered fresh
at time t′(≥ t) if it was updated (retrieved) at time t and t′ ≤ t + avi(Oi,j) [34,35]; that is, its
validity interval has not expired yet. Otherwise, it is considered stale.

3. A Review of Techniques for Cost-Efficient Real-Time Decision Support in IoT

In this section, we discuss state-of-the-art approaches that aim to efficiently process
real-time decision tasks, while meeting their timing and data freshness constraints as per
Definition 1. More specifically, we review state-of-the-art approaches to efficient processing
of real-time decision tasks via short-circuiting, scheduling of real-time decision tasks to
meet timing and data freshness constraints, and sensor data analytics via machine learning
for real-time decision support in IoT. In addition, the outline of our review is shown in
Figure 2.

Figure 2. Flow of our review of state-of-the-art methods for real-time decision support in IoT.

3.1. Efficient Evaluation of a Single Conjunction via Short-Circuiting

Efficiently evaluating one conjunction in a computer program via short-circuiting is
a well-established technique [36,37]. Previous studies [36,37] prove that short-circuiting
is optimal in terms of the computational cost for evaluating a single conjunction, e.g.,
A ∧ B ∧ C. Based on the theoretic results [36,37], a series of novel works [8,12,13] have
recently explored how to efficiently evaluate predicates for real-time decision-making in IoT
via short-circuiting. Given an arbitrary conjunction Ci = Ci1 ∧ Ci2 ∧ . . . that represents a
single action, the common approach presented in [8,12,13] evaluates the condition in Ci with
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the highest short-circuit probability per unit cost first, where the cost is the consumption of
the bottleneck resource, such as the communication bandwidth. If Cij ≺ Cik denotes that
the condition Cij precedes the condition Cik in the order of evaluating the literals in the
conjunction Ci, the heuristic presented in [8,12,13] requires the following:

Cij ≺ Cik ⇔
1− Pij

costij
≺ 1− Pik

costik
(2)

where Pij is the probability of the jth literal in Ci to be true. In addition, costij is the cost for
retrieving the sensor data needed to evaluate the jth literal, such as the latency to retrieve
the corresponding sensor data over a wireless connection. By doing this, this heuristic
can considerably reduce the cost for evaluating one conjunction in a DNF predicate via
short-circuiting; however, it has several limitations:

• In [8,12,13], the authors only consider how to evaluate a single conjunction via short-
circuiting [8,12,13] without investigating how to efficiently evaluate the entire DNF
predicate that is a conjunction of one or more conjunctions representing alternative
courses of action.

• They implicitly assume that the conjunction evaluation scheme has a priori knowl-
edge of short-circuit probabilities for efficient evaluation of the conjunction based on
history [8,12,13]. However, they do not discuss how to derive the short-circuit proba-
bilities. Estimating the probabilities may incur additional sensor data retrievals. If the
accurate short-circuit probabilities are unavailable a priori or the cost for probability
estimation is not negligible, the greedy heuristic that orders the literals in a conjunction
via Equation (2) for efficient real-time decision making via short-circuiting [8,12,13]
may become ineffective.

3.2. Pull Model and Data Freshness

In [8,12,13], the real-time decision-maker employs the pull model, in which it pulls
(retrieves) data from sensors over a single wireless connection upon an event of interest
to analyze, for example, the availabilities of alternative routes. To make decisions based
on fresh data representing the current real-world status, the real-time decision-maker
in [8,12,13] periodically retrieves sensor data based on their validity intervals—the notion
originated in real-time databases (RTDBs) [34,35]. A sensor data object is fresh within its
predefined validity interval; however, the real-time decision-making system considers it
stale after the validity interval expires. By doing this, the system ensures that it makes
real-time decisions based on fresh data representing the current real-world status.

Although managing the data freshness (data temporal consistency) via validity inter-
vals could be effective in RTDBs with its own sensors, it can be too strict and expensive
in IoT. First, sensor data, such as indoor temperature readings, may not normally change
significantly in a short time period. Thus, the data could be still valid even after its validity
interval expires. Periodic updates even in the absence of any noteworthy change may incur
unnecessary consumption of the precious wireless bandwidth and energy in IoT devices
without enhancing real-time decision making.

Moreover, if a decision-making task uses several sensor data with different validity
intervals, the real-time decision-maker may have to retrieve the data repeatedly to ensure
that all of them are fresh until the decision task completes. The system also should undo
and redo any analysis performed using stale data. Hu et al. [8] investigate this problem
for a single decision task that uses sensor data pulled over a wireless connection. Their
algorithm, called the LVF (Least Volatile First), pulls the data with the longest validity
interval first. By doing this, LVF minimizes repeated data retrievals for one decision task
that pulls sensor data with different validity intervals.

Kim et al. [22,23] extend LVF to schedule multiple real-time decision-making tasks
with potentially different deadlines using fresh data. Their algorithm, called EDEF-LVF
(Earliest Deadline or Expiration First-Least Volatile First), schedules the real-time task with
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the earliest deadline or the shortest time to the expiration of the validity interval first.
Within each task, the least volatile sensor data is retrieved first, similar to [8]. They assume
that there is a single bottleneck resource, such as a wireless connection, and real-time tasks
do not share any data. Under the assumptions, EDEF-LVF is optimal in the sense that it
can schedule real-time decision-making tasks to meet their deadlines and data validity
constraints if such a schedule exists. In addition, Kim et al. [24] devise several suboptimal
heuristics to efficiently schedule real-time decision-making tasks that share sensor data
with each other.

However, none of these approaches [8,12,13,22–24] is free of repeated sensor data
retrievals and re-executions of data analytics upon expiration of any validity interval. As a
result, the precious wireless bandwidth and energy of IoT devices can be wasted and
many deadlines for real-time decision making can be missed. In an extreme case, it may
become impossible to run a task using fresh data as per the strict notion of validity intervals.
For the sake of simplicity, let us suppose that there is only one real-time task that needs to
pull data A and B from sensors deployed in a wide area over a wireless connection with
relatively low bandwidth. Using LVF, the task pulls A with the longer validity interval first.
When it tries to pull B, however, the wireless connection may become unstable. As a result,
the sensor should retransmit B several times. Meanwhile, the validity interval of A expires.
By the time a new version of A arrives, the validity interval of B may expire, and the whole
process may repeat indefinitely. Finally, the system misses the deadline of the real-time
decision-making task, wasting the bandwidth and energy. If there are multiple real-time
decision-making tasks in the system, the problem may become worse. In addition to the
situations described above, a real-time task can be preempted by a higher priority task,
such as a task with an earlier deadline under the EDF (Earliest Deadline First) scheduling
algorithm. When all higher priority tasks are completed, the preempted task may have to
pull certain sensor data again, if their validity intervals have expired already.

The root cause of the problem is using the rigid freshness requirements based on
data validity intervals. Surprisingly little work has been done to address this critical issue
for cost-efficient real-time decision-making in IoT. A viable way to address the problem
is the adaptive updated policy based on flexible validity intervals [38–40]. Instead of
using fixed validity intervals, the validity intervals of sensor data are dynamically adapted
based on their access to update ratio in RTDBs such that the validity intervals of the data
updated frequently but accessed infrequently are extended, if necessary, to reduce update
workloads under overload [38–40]. The notion of flexible validity intervals can be extended
to efficiently manage the data freshness for real-time decision-making in IoT. Instead of
requiring the real-time decision-maker to pull data from IoT devices, sensors start to push data
into the decision-maker when they detect an event of interest, e.g., a moving object in surveillance
or traffic congestion in transportation management. After sending the first sensor readings
to the decision-maker upon an event, the sensors only send new data if they differ from the
previous version by more than the specified threshold. They periodically send a heartbeat
message to the real-time decision-maker to indicate that they are still alive and monitoring
the event of interest, even though they have not transferred new data to the decision-maker
due to little changes. When the decision-maker receives a heartbeat message from a device,
it extends the flexible validity interval to the next heartbeat period. On the other hand,
when the sensor data changes by more than the threshold, the device sends new data to
the decision-maker. By doing this, the decision-maker can avoid significantly wasting the
network bandwidth, computational resources, and energy to repeatedly pull sensor data
from IoT devices due to the expirations of strict validity intervals even when the actual
data values hardly change.

3.3. Sensor Data Analytics via Machine Learning for Real-Time Decision Making

Machine learning is effective to analyze sensor data. For example, the availability of a
bridge or a road segment can be analyzed by a CNN (Convolutional Neural Network) [41],
which is very effective for image processing and computer vision. Thus, machine learning
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is useful to evaluate the literals of a DNF predicate for real-time decision support. Sequence
models are also useful for real-time decision support in IoT. For example, Markov decision
processes [42] and partially observable Markov decision processes [42] are leveraged for
near real-time health monitoring, treatments, and interventions in various medical applica-
tions [43]. More recently, long-short term memory (LSTM), which is an artificial recurrent
neural network (RNN) architecture effective for sequence modeling, has been applied to
detect emotion [44], to predict cardiovascular disease risk factors [45], and to predict health-
care trajectories [46]. Machine learning is applied to smart homes [47–49]. Guo et al. have
designed a graph CNN optimized for traffic predictions [50]. In [51–54], GRNN (General
Regression Neural Network) and GRNN-SGTM (GRNN-Successive Geometric Transfor-
mation Model) are used to recover missing IoT data, respectively. Wang et al. [55] devise a
GRNN and a multivariate polynomial regression model to estimate unmeasurable water
quality parameters from measurable parameters. In addition, Tien [56] gives a high-level
view of IoT, (near) real-time decision making, and artificial intelligence instead of focusing
on technical approaches for real-time decision support in IoT, unlike this review.

Although it is effective for data analytics, machine learning is resource hungry. A com-
plex machine learning model often consumes a significant amount of memory and compu-
tational resources, such as CPU cycles and GPU (Graphics Processing Unit) thread blocks,
that may not be available in IoT devices with relatively little resources. Thus, in IoT devices,
it is hard to run sophisticated prediction models in a timely manner to meet stringent
timing constraints. A naive approach to address this challenge is transferring all sensor
data from IoT devices to the cloud with virtually infinite resources. However, this approach
is unsustainable, as described before. Therefore, the question of “where to analyze sensor
data?” is as important as the question of “how to analyze them efficiently?”. Ultimately, it
is desirable to optimize the tradeoff between the timeliness and bandwidth conservation of
real-time data analytics near IoT devices vs. the scalability of data analytics in the cloud.
In this regard, we summarize the relative advantages and disadvantages of sensor data
analytics in IoT devices, at the network edge, and the cloud in Table 1, and discuss them in
the following.

Table 1. Comparisons of real-time decision-making at different places.

Cloud Edge IoT End-Devices

Resources High Medium Low
Latency High Medium Low
Bandwidth consumption High Medium Low
Energy consumption High Medium Low
Geographic coverage High Medium Low

The first category is centralized analytics of sensor data in the cloud. A cloud has
abundant computational resources and provides rich functionalities, such as very deep
learning with many layers and training complex machine learning models using big
datasets. Another advantage of real-time analytics in the cloud is that it can support real-
time data analytics in a more global geographic area. However, centralized data analytics
for real-time decision making in the cloud has several serious drawbacks:

• It requires IoT devices to transmit all sensor data to the cloud for analytics, incurring
long, unpredictable latency, and many deadlines miss in real-time decision making.
(The Internet backbone latency is relatively long and varies significantly from tens to
hundreds of milliseconds [57].) Tardy decisions may lead to undesirable results, such
as severe traffic congestion or chaos in an emergency department.

• Such a naive approach may saturate the core network with the limited bandwidth
as the number of sensors and IoT devices is increasing rapidly [58,59]. It may sub-
stantially impair the performance, scalability, and availability of the Internet. Thus,
centralized analytics of sensor data in IoT is unsustainable.
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• In addition, IoT devices may consume a lot of precious energy and wireless bandwidth
to transfer all their sensor data to the cloud for centralized data analytics in the
cloud. Typically, IoT devices communicate wirelessly for the ease of deployment in a
distributed area. Wireless networking consumes a significant fraction of the energy in
an IoT device [60,61]. Wireless IoT networks, such as LPWAN (Low-Power Wide-Area
Network) [62,63], often have stringent bandwidth constraints.

To address these problems, a system designer can consider another extreme—on-
device analytics, where all data analytics occur in IoT end-devices. By supporting dis-
tributed analytics of sensor data, this approach can significantly reduce the latency and
bandwidth consumption compared to the centralized analytics in the cloud. However, this
approach also has several challenges:

• It is challenging to meet stringent timing constraints for real-time data analytics and
decision support due to the stringent resource and energy constraints of IoT devices.

• IoT devices with limited resources may not be able to support sophisticated machine
learning models or extensive model training. Instead, they typically use simplified
models trained in the cloud to analyze local sensor data in a timely fashion [64,65];
however, the stripped-down model may suffer from lower predictive performance.

• Each IoT device is likely to have a relatively myopic view of the specific area it is
monitoring only without a global view necessary to optimize, for example, the overall
traffic flow in a city.

By analyzing sensor data at the network edge near IoT devices and sensors, edge
analytics [66–69] aims to integrate the advantages of cloud and on-device analytics, while
mitigating their shortcomings. Edge computing brings more computational resources at
the network edge near data sources. It can be supported at different places. First, IoT end
devices can preprocess sensor data and perform lightweight analytics [70–72]. Second, an
edge node, such as an IoT gateway, access point, cellular base station, or software-defined
routers/switches, can collect and analyze data from IoT devices [71,73–75]. Edge servers
deployed at the network edge can be leveraged for more sophisticated data analytics [68].

Thus, edge analytics for real-time decision support can be performed in a hierarchical
and event-driven manner. An IoT device preprocesses sensor data and performs a lightweight
analysis of them to detect any event of interest while filtering irrelevant data out. An IoT
gateway, if any, further analyzes data received from the devices connected to the gateway. It
forwards important information, if any, to one or more relevant edge servers. For example,
traffic cameras can send images to the edge server in charge of monitoring traffic flows in a
specific area of a big city. Li et al. [76], on-camera filtering is performed for efficient real-
time video analytics. In [77], an IoT camera analyzes the traffic flow using a low-resolution
image and the edge server also analyzes the image, identifies an important part of the
image (if any) in terms of data analytics, and requests an important part in high resolution
from the device. IoT devices in a smart building can transfer their sensor readings to the IoT
gateway on the same floor for efficient HVAC (Heating, Ventilation, and Air Conditioning).
In these examples, IoT devices can do relatively simple data analytics to drop redundant
or low-quality data, such as blurry images [76]. Edge servers analyze real-time sensor
data from multiple IoT devices/gateways to derive a more comprehensive view of the
real-world status essential for real-time decision making. They can also communicate with
each other to exchange information for a global view of real-world situations, such as the
overall traffic flow in a city or hurricane paths in a nation. Edge computing and analytics
are a booming area of research and industrial adoption due to their significant potential.
Leveraging emerging edge computing for cost-efficient real-time decision support is in an
early stage of research with ample room to grow.

Overall, efficient evaluations of predicates are important across IoT devices, gateways,
and edge/cloud servers to significantly reduce latency as well as energy and bandwidth
consumption. The efficiency of real-time decision-making can also be further enhanced by
effectively exploiting cloud, on-device, and edge analytics frameworks and synthesizing
them to optimize timing, predictive performance, bandwidth, and other resource consump-
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tion. Relatively little work, however, has been done for real-time decision-making in IoT
from this holistic, overarching perspective.

Another promising direction for real-time analytics of sensor data on IoT devices is
model compression [78–81]. The key idea of model compression is to compact a machine
learning model to minimize the resource requirements without significantly reducing
the predictive performance of the compressed model. Especially, deep learning has been
very successful and outperformed other machine learning techniques in killer applica-
tions, such as computer vision and natural language processing. DNNs (Deep Neural
Networks) with many hidden layers and parameters, however, consume a lot of memory,
computation time, and energy. They are too big and too expensive to learn on low-end
IoT devices. The motivation for model compression is to significantly reduce the memory
consumption and computational complexity of DNNs without significantly comprising
their accuracy. Effective approaches for model compression include (1) compact models, (2)
tensor decomposition, (3) data quantization, and (4) network sparsification [78]:

• Compact CNNs (Convolutional Neural Networks) are created by leveraging the spatial
correlation within a convolutional layer to convolve feature maps with multiple weight
kernels (Compact RNNs (Recurrent Neural Networks) for sequence data analysis has
also received significant attention from researchers [78].). They also leverage the intra-
layer and inter-layer channel correlations to aggregate feature maps with different
topologies. In addition, network architecture search (NAS) aims to automatically
optimize the DNN architecture.

• Tensor/matrix operations are the basic computation in neural networks. Thus, com-
pressing tensors, typically via matrix decomposition, is an effective way to shrink and
accelerate DNNs.

• Data quantization decreases the bit width of the data that flow through a DNN model
to reduce the model size and save memory while simplifying the operations for
computational acceleration.

• Network sparsification attempts to make neural networks sparse, via weight pruning
and neuron pruning, instead of simplifying the arithmetic via data quantization.

Model compression in hardware, as well as hardware and algorithm co-design, is also
effective. Good surveys are given in [78,79].

4. Future Research Directions

In this section, we discuss research issues for significantly enhancing the cost-effectiveness
of real-time decision-making in IoT in the future.

4.1. Efficient Analysis of an Entire DNF Predicate Requiring No Knowledge of
Short-Circuit Probabilities

In this subsection, we discuss how to efficiently evaluate an entire DNF predicate
that is a disjunction of one or more conjunctions without requiring a priori knowledge
of short-circuit probabilities.It is important to analyze the entire DNF predicate to find
one of the alternative solutions, e.g., one of the alternative routes, as fast as possible to
meet more decision-making deadlines, while short-circuiting infeasible options. However,
refs. [8,12,13] only consider the efficient processing of one conjunction, without considering
the efficient processing of the entire predicate. Another drawback is that they assume that
the short-circuit probabilities, which may not be available, are known a priori as discussed
before. Therefore, research on the efficient analysis of a complete DNF predicate without
requiring a priori knowledge of short-circuit probabilities is necessary.

To this end, we outline a fundamental approach in Algorithm 1. We propose to build
a hash table H offline to efficiently look up which literals in the predicate P in Equation (1)
are associated with a specific sensor data X. Thus, when sensor data X arrives at runtime,
a hash table lookup H(X) returns a set of literals S = H(X) that depend on X as shown in
lines 2–4 of Algorithm 1. For example, if sensor data X (e.g., the image of a road segment)
is used to evaluate two Boolean literals C1,1 and C2,3, H(X) = {C1,1, C2,3}. In lines 5–18, we
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retrieve Cij, which is the first literal in the set S. If Cij evaluates to true, we replace Cij with
true in the conjunction of Ci ∈ P that includes Cij.

Algorithm 1: Efficient DNF Predicate Evaluation for Real-Time Decision Making
in IoT

input : Predicate P = (C1 ∨ . . . ∨ Cn), Hash table H of sensor data
output : Ci that is the first conjunction that evaluates to true (null if P is

unstasfiable)

1 S = ∅
2 if sensor data X arrives then
3 /* Hash table lookup */
4 S = H(X) where S = {Cij} and X = Cij ∈ P ∀i, j

5 for k = 1; k ≤ |S|; k++ do
6 Cij = delete_ f irst_element(S)
7 if Cij == true then
8 /* Find one of possible alternative solutions */
9 Replace Cij ∈ Ci with true

10 if Ci == true then
11 /* return a solution */
12 return Ci

13 else
14 /* Short-circuiting: eliminate any invalid conjunctions */
15 P = P− Ci
16 if P = ∅ then
17 /* no solution */
18 return null

If Ci becomes true after the replacement, Algorithm 1 returns Ci and terminates. On the
other hand, if Cij evaluates to false, we short-circuit the conjunction Ci, which has just
become false, and repeat lines 5–18. Overall, Algorithm 1 finds one of the alternative
solutions (if any) in the predicate and short-circuits invalid conjunctions quickly requiring
no knowledge of short-circuit probabilities.Based on this fundamental method, further
research in the future is necessary to support this approach efficiently in a timely, decen-
tralized fashion. For example, distributed hash tables can be leveraged to support efficient
lookups of sensor data and predicate evaluations in a distributed IoT application.

4.2. Predicting Probabilities of Satisfying Conjunctions and Two-Level Scheduling for Efficient
Evaluation of an Entire Predicate

Recent work [8,12,13] based on the theoretic results [36,37] assumes that the short-
circuit probabilities are known based on history without discussing how to derive/estimate
them. Neither do they consider which conjunction in a DNF predicate should be evaluated
first to further enhance the efficiency of real-time decision support.

To address these issues, an effective technique for query optimization in databases,
called Eddies [82], can be applied. An Eddy gives incoming data to a query operator
randomly picked from a set of compatible operators in the query. It gives a credit to an
operator when it gives input data to the operator but takes the credit back from the operator
if it returns any data as a result. Thus, more selective operators accumulate more credits
over time. When a new tuple arrives, the Eddy assigns it to the operator with the highest
credit. In this way, Eddies favor more selective operators to accelerate query processing. To
apply Eddies to real-time decision support in IoT, when sensor data X arrives, the real-time
decision-maker randomly picks any Cij ∈ S in Algorithm 1. By repeatedly doing this
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over time, it learns which conjunction Ci in the predicate P can be met with the highest
probability and which literal Cij in Ci may have the highest short-circuit probability.

Given that, we can efficiently evaluate conjunctions in the predicate via two-level
scheduling. The real-time decision maker evaluates the conjunction with the highest
probability to be met first. As Algorithm 1 immediately returns the conjunction once
it evaluates to true without further evaluating the other conjunction, this approach can
significantly reduce the latency and resource consumption for real-time decision making.
In turn, the decision-maker evaluates the literal in the selected conjunction that has the
highest short-circuit probability to further reduce the latency and resource consumption.
For example, let us consider a DNF predicate P = (A ∧ B ∧ C) ∨ (D ∧ E ∧ F) that is a
disjunction of the two conjunctions that represent the route A-B-C and D-E-F, respectively.
If the first conjunction A ∧ B ∧ C has a higher probability to be met, P(A)× P(B)× P(C),
the real-time decision-maker will evaluate it first to minimize the latency and resource
consumption for real-time decision support in IoT. The decision-maker then evaluates B
in A ∧ B ∧ C first, if it has the highest short-circuit probability among A, B, and C; that
is, 1− P(B) = max[1− P(A), 1− P(B), 1− P(C)]. Thus, it is important to investigate a
cost-effective design and implementation of this approach and explore more advanced
techniques in the future.

4.3. Efficient Management of Sensor Data Freshness

Managing the freshness of sensor data based on the strict notion of validity inter-
vals [34,35] may force the real-time decision-maker to repeatedly pull (retrieve) data from
sensors and restart the same decision masking tasks from the beginning, which may result
in many deadline misses and waste of resources, as discussed in Section 3. There are
several directions for future research to address these issues, including (but not limited
to) the following ones. First, it is necessary to explore a more efficient update model, such
as the push model, where data sources take control for data updates and transfer, or a
hybrid of the push and pull model to minimize unnecessary data transfer and processing
in terms of real-time decision support. Second, it is important to investigate more flexible
metrics used to measure and manage the freshness of sensor data, such as flexible validity
intervals [38–40], and extend them for efficient real-time decision support in IoT with a
formal assurance of data freshness. It is also necessary to investigate cost-effective methods
to ensure that a set of sensor data used by a real-time analytics task is fresh simultaneously
to avoid updating them and re-executing the task again whenever one of them becomes
stale before the task completes.

4.4. Scheduling Real-Time Analytics Tasks

Tasks for real-time analytics may need to be scheduled and processed in a geographi-
cally distributed manner. For example, to monitor traffic flows and detect any incidents,
real-time data analytics tasks can be distributed across roadside IoT devices, dash-mounted
smartphones, edge servers, and cloud. A critical research question is how to place the
operations/functions for distributed real-time analytics to minimize the latency and re-
source consumption, while providing informative decision support based on fresh data
reflecting the current real-world status. It is also important to investigate how to schedule
analytics tasks within each device or server to reduce the deadline miss ratio and resource
consumption, while collaborating with the global scheduling scheme discussed above
to enhance the overall timeliness, scalability, and cost-effectiveness of real-time decision
support in IoT. Although the underlying mechanisms, such as edge computing and model
compression for on-device analytics, have recently received a lot of attention, much more
research is necessary for holistic optimization of distributed real-time decision support.

5. Conclusions

Efficient real-time decision support is essential in IoT emerging applications, such as
smart transportation and health, with significant societal impact. Especially, it is important
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to minimize the latency and resource consumption for effective real-time decision support,
via machine learning and logic predicate evaluation, using fresh sensor data reflecting the
current real-world status. In this paper, we formally define real-time decision tasks in IoT
in terms of their predicates, timing constraints, and data freshness requirements. Based on
the definition of real-time decision tasks, we review leading-edge approaches that schedule
real-time decision tasks to efficiently meet their timing and data freshness constraints,
state-of-the-art approaches for sensor data analytics via machine learning, and advanced
techniques to support efficient real-time data analytics in IoT devices, at the network edge,
and in the cloud. Moreover, we propose future research directions to meet timing and
freshness constraints of real-time decision tasks cost-efficiently. Despite the importance,
research on real-time decision support in IoT considering explicit timing and data freshness
constraints is still in an early stage with many open research issues, including the issues
discussed in this paper.

Funding: This research was funded by National Science Foundation: CNS-2007854.

Acknowledgments: This work is supported, in part, by NSF grant CNS-2007854.

Conflicts of Interest: The author declares no conflict of interest. The funding sponsor had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015,

58, 431–440. [CrossRef]
2. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial internet of things: Challenges, opportunities, and directions.

IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [CrossRef]
3. Stoyanova, M.; Nikoloudakis, Y.; Panagiotakis, S.; Pallis, E.; Markakis, E.K. A survey on the internet of things (IoT) forensics:

Challenges, approaches, and open issues. IEEE Commun. Surv. Tutor. 2020, 22, 1191–1221. [CrossRef]
4. Fortino, G.; Savaglio, C.; Spezzano, G.; Zhou, M. Internet of Things as System of Systems: A Review of Methodologies,

Frameworks, Platforms, and Tools. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 223–236. [CrossRef]
5. INRIX 2021 Global Traffic Scorecard. Available online: https://inrix.com/scorecard/ (accessed on 10 January 2022).
6. Ji, B.; Zhang, X.; Mumtaz, S.; Han, C.; Li, C.; Wen, H.; Wang, D. Survey on the internet of vehicles: Network architectures and

applications. IEEE Commun. Stand. Mag. 2020, 4, 34–41. [CrossRef]
7. Yang, F.; Wang, S.; Li, J.; Liu, Z.; Sun, Q. An overview of Internet of vehicles. China Commun. 2014, 11, 1–15. [CrossRef]
8. Hu, S.; Yao, S.; Jin, H.; Zhao, Y.; Hu, Y.; Liu, X.; Naghibolhosseini, N.; Li, S.; Kapoor, A.; Dron, W.; et al. Data Acquisition

for Real-Time Decision-Making under Freshness Constraints. In Proceedings of the IEEE Real-Time Systems Symposium, San
Antonio, TX, USA, 1–4 December 2015.

9. Kim, S.Y.; Hong, K.J.; Shin, S.D.; Ro, Y.S.; Ahn, K.O.; Kim, Y.J.; Lee, E.J. Validation of the Shock Index, Modified Shock Index,
and Age Shock Index for Predicting Mortality of Geriatric Trauma Patients in Emergency Departments. J. Korean Med. Sci. 2016,
31, 2026–2032. [CrossRef]

10. Berger, T.; Green, J.; Horeczko, T.; Hagar, Y.; Garg, N.; Suarez, A.; Panacek, E.; Shapiro, N. Shock Index and Early Recognition of
Sepsis in the Emergency Department: Pilot Study. West. J. Emerg. Med. 2013, XIV, 168–174. [CrossRef] [PubMed]

11. Kennedy, C.E.; Turley, J.P. Time series analysis as input for clinical predictive modeling: Modeling cardiac arrest in a pediatric
ICU. Theor. Biol. Med. Model. 2011, 8. [CrossRef]

12. Abdelzaher, T.F.; Amin, M.T.A.; Bar-Noy, A.; Dron, W.; Govindan, R.; Hobbs, R.L.; Hu, S.; Kim, J.; Lee, J.; Marcus, K.; et al.
Decision-Driven Execution: A Distributed Resource Management Paradigm for the Age of IoT. In Proceedings of the IEEE
International Conference on Distributed Computing Systems, Atlanta, GA, USA, 5–8 June 2017.

13. Lee, J.; Marcus, K.; Abdelzaher, T.; Amin, M.T.A.; Bar-Noy, A.; Dron, W.; Govindan, R.; Hobbs, R.; Hu, S.; Kim, J.-E.; et al. Athena:
Towards Decision-centric Anticipatory Sensor Information Delivery. J. Sens. Actuator Netw. 2018, 7, 5. [CrossRef]

14. Miles, A.; Zaslavsky, A.; Browne, C. IoT-based decision support system for monitoring and mitigating atmospheric pollution in
smart cities. J. Decis. Syst. 2018, 27, 56–67. [CrossRef]

15. Morfino, V.; Rampone, S. Towards near-real-time intrusion detection for IoT devices using supervised learning and Apache
Spark. Electronics 2020, 9, 444. [CrossRef]

16. Valliappan, S.; Sivakumar, P.B.; Ananthanarayanan, V. Efficient real-time decision making using streaming data analytics in IoT
environment. In Proceedings of the International Conference on Advanced Computing Networking and Informatics, West Bengal,
India, 20–21 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 165–173.

17. Turner, C.J.; Emmanouilidis, C.; Tomiyama, T.; Tiwari, A.; Roy, R. Intelligent decision support for maintenance: An overview and
future trends. Int. J. Comput. Integr. Manuf. 2019, 32, 936–959. [CrossRef]

http://doi.org/10.1016/j.bushor.2015.03.008
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.1109/COMST.2019.2962586
http://dx.doi.org/10.1109/TSMC.2020.3042898
https://inrix.com/scorecard/
http://dx.doi.org/10.1109/MCOMSTD.001.1900053
http://dx.doi.org/10.1109/CC.2014.6969789
http://dx.doi.org/10.3346/jkms.2016.31.12.2026
http://dx.doi.org/10.5811/westjem.2012.8.11546
http://www.ncbi.nlm.nih.gov/pubmed/23599863
http://dx.doi.org/10.1186/1742-4682-8-40
http://dx.doi.org/10.3390/jsan7010005
http://dx.doi.org/10.1080/12460125.2018.1468696
http://dx.doi.org/10.3390/electronics9030444
http://dx.doi.org/10.1080/0951192X.2019.1667033


Technologies 2022, 10, 12 13 of 15

18. Hassani, A.; Medvedev, A.; Zaslavsky, A.; Delir Haghighi, P.; Jayaraman, P.P.; Ling, S. Efficient execution of complex context
queries to enable near real-time smart IoT applications. Sensors 2019, 19, 5457. [CrossRef]

19. Shahinmoghadam, M.; Natephra, W.; Motamedi, A. BIM-and IoT-based virtual reality tool for real-time thermal comfort
assessment in building enclosures. Build. Environ. 2021, 199, 107905. [CrossRef]

20. Puiu, D.; Barnaghi, P.; Tönjes, R.; Kümper, D.; Ali, M.I.; Mileo, A.; Parreira, J.X.; Fischer, M.; Kolozali, S.; Farajidavar, N.; et al.
Citypulse: Large scale data analytics framework for smart cities. IEEE Access 2016, 4, 1086–1108. [CrossRef]

21. de Assis, M.V.; Carvalho, L.F.; Rodrigues, J.J.; Lloret, J.; Proença, M.L., Jr. Near real-time security system applied to SDN
environments in IoT networks using convolutional neural network. Comput. Electr. Eng. 2020, 86, 106738. [CrossRef]

22. Kim, J.E.; Abdelzaher, T.F.; Sha, L.; Bar-Noy, A.; Hobbs, R.L.; Dron, W. On Maximizing Quality of Information for the Internet of
Things: A Real-Time Scheduling Perspective (Invited Paper). In Proceedings of the IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, Daegu, Korea, 17–19 August 2016; pp. 202–211.

23. Kim, J.E.; Abdelzaher, T.F.; Sha, L.; Bar-Noy, A.; Hobbs, R. Sporadic Decision-centric Data Scheduling with Normally-off Sensors.
In Proceedings of the IEEE Real-Time Systems Symposium, Porto, Portugal, 29 November–2 December 2016.

24. Kim, J.; Abdelzaher, T.F.; Sha, L.; Bar-Noy, A.; Hobbs, R.L.; Dron, W. Decision-driven scheduling. Real-Time Syst. 2019, 55, 514–551.
[CrossRef]

25. Kang, K.D. Towards Efficient Real-Time Decision Support at the Edge. In Proceedings of the ACM/IEEE Workshop on Hot Topics
on Web of Things (in Conjunction with ACM/IEEE Symposium on Edge Computing, New York, NY, USA, 7–9 November 2019.

26. Alsulami, M.M.; Akkari, N. The role of 5G wireless networks in the internet-of-things (IoT). In Proceedings of the 2018 1st
International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 4–6 April 2018;
pp. 1–8.

27. Morin, E.; Maman, M.; Guizzetti, R.; Duda, A. Comparison of the device lifetime in wireless networks for the internet of things.
IEEE Access 2017, 5, 7097–7114. [CrossRef]

28. Mohammed, A.H.; Khaleefah, R.M.; Hussein, M.K.; Abdulateef, I.A. A review software defined networking for internet of things.
In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications
(HORA), Ankara, Turkey, 26–28 June 2020; pp. 1–8.

29. Wijethilaka, S.; Liyanage, M. Survey on network slicing for Internet of Things realization in 5G networks. IEEE Commun. Surv.
Tutor. 2021, 23, 957–994. [CrossRef]

30. Das, H.; Dey, N.; Balas, V.E. Real-Time Data Analytics for Large Scale Sensor Data; Academic Press: Cambridge, MA, USA, 2019.
31. Raafat, H.M.; Hossain, M.S.; Essa, E.; Elmougy, S.; Tolba, A.S.; Muhammad, G.; Ghoneim, A. Fog intelligence for real-time IoT

sensor data analytics. IEEE Access 2017, 5, 24062–24069. [CrossRef]
32. Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in

agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [CrossRef]
33. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press: Cambridge, MA, USA, 2009.
34. Ramamritham, K.; Son, S.H.; DiPippo, L. Real-Time Databases and Data Services. Real-Time Syst. 2004, 28, 179–215. [CrossRef]
35. Ramamritham, K. Real-Time Databases. Int. J. Distrib. Parallel Databases 1993, 1. Available online: https://link.springer.com/

article/10.1007/BF01264051 (accessed on 10 January 2022). [CrossRef]
36. Greiner, R.; Hayward, R.; Jankowska, M.; Molloy, M. Finding optimal satisficing strategies for and-or trees. Artif. Intell. 2006,

170, 19–58. [CrossRef]
37. Casanova, H.; Lim, L.; Robert, Y.; Vivien, F.; Zaidouni, D. Cost-Optimal Execution of Boolean Query Trees with Shared Streams.

In Proceedings of the IEEE International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014;
pp. 7–16.

38. Kang, K.D.; Son, S.H.; Stankovic, J.A.; Abdelzaher, T.F. A QoS-Sensitive Approach for Timeliness and Freshness Guarantees in
Real-Time Databases. In Proceedings of the Euromicro Conference on Real-Time Systems, Vienna, Austria, 19–21 June 2002.

39. Kang, K.D.; Son, S.; Stankovic, J.A. Managing Deadline Miss Ratio and Sensor Data Freshness in Real-Time Databases. IEEE
Trans. Knowl. Data Eng. 2004, 16, 1200–1216. [CrossRef]

40. Kang, K.D.; Oh, J.; Son, S.H. Chronos: Feedback Control of a Real Database System Performance. In Proceedings of the IEEE
Real-Time Systems Symposium, Tucson, AZ, USA, 3–6 December 2007.

41. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:
//www.deeplearningbook.org (accessed on 10 January 2022).

42. Bertsekas, D.P. Dynamic Programming and Optimal Control, 3rd ed.; Athena Scientific: Belmont, MA, USA, 2005; Volume I.
43. Zois, D.S. Sequential decision-making in healthcare IoT: Real-time health monitoring, treatments and interventions. In Proceedings

of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 24–29.
44. Awais, M.; Raza, M.; Singh, N.; Bashir, K.; Manzoor, U.; ul Islam, S.; Rodrigues, J.J. LSTM based Emotion Detection using Physiological

Signals: IoT framework for Healthcare and Distance Learning in COVID-19. IEEE Internet Things J. 2020, 8, 16863–16871. [CrossRef]
45. Islam, M.S.; Umran, H.M.; Umran, S.M.; Karim, M. Intelligent Healthcare Platform: Cardiovascular Disease Risk Factors

Prediction Using Attention Module Based LSTM. In Proceedings of the International Conference on Artificial Intelligence and
Big Data (ICAIBD), Chengdu, China, 25–28 May 2019; pp. 167–175.

46. Pham, T.; Tran, T.; Phung, D.; Venkatesh, S. Predicting healthcare trajectories from medical records: A deep learning approach.
J. Biomed. Inform. 2017, 69, 218–229. [CrossRef]

http://dx.doi.org/10.3390/s19245457
http://dx.doi.org/10.1016/j.buildenv.2021.107905
http://dx.doi.org/10.1109/ACCESS.2016.2541999
http://dx.doi.org/10.1016/j.compeleceng.2020.106738
http://dx.doi.org/10.1007/s11241-018-09324-6
http://dx.doi.org/10.1109/ACCESS.2017.2688279
http://dx.doi.org/10.1109/COMST.2021.3067807
http://dx.doi.org/10.1109/ACCESS.2017.2754538
http://dx.doi.org/10.1109/JIOT.2018.2844296
http://dx.doi.org/10.1023/B:TIME.0000045317.37980.a5
https://link.springer.com/article/10.1007/BF01264051
https://link.springer.com/article/10.1007/BF01264051
http://dx.doi.org/10.1007/BF01264051
http://dx.doi.org/10.1016/j.artint.2005.09.002
http://dx.doi.org/10.1109/TKDE.2004.61
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/JIOT.2020.3044031
http://dx.doi.org/10.1016/j.jbi.2017.04.001


Technologies 2022, 10, 12 14 of 15

47. Khan, N.S.; Ghani, S.; Haider, S. Real-Time Analysis of a Sensor’s Data for Automated Decision Making in an IoT-Based Smart
Home. Sensors 2018, 18, 1711. [CrossRef] [PubMed]

48. Machorro-Cano, I.; Alor-Hernández, G.; Paredes-Valverde, M.A.; Rodríguez-Mazahua, L.; Sánchez-Cervantes, J.L.; Olmedo-
Aguirre, J.O. HEMS-IoT: A big data and machine learning-based smart home system for energy saving. Energies 2020, 13, 1097.
[CrossRef]

49. Rashidi, P.; Cook, D.J. Keeping the resident in the loop: Adapting the smart home to the user. IEEE Trans. Syst. Man Cybern.-Part
Syst. Hum. 2009, 39, 949–959. [CrossRef]

50. Guo, K.; Hu, Y.; Qian, Z.; Liu, H.; Zhang, K.; Sun, Y.; Gao, J.; Yin, B. Optimized graph convolution recurrent neural network for
traffic prediction. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1138–1149. [CrossRef]

51. Izonin, I.; Kryvinska, N.; Vitynskyi, P.; Tkachenko, R.; Zub, K. GRNN approach towards missing data recovery between IoT
systems. In Proceedings of the International Conference on Intelligent Networking and Collaborative Systems, Oita, Japan, 5–7
September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 445–453.

52. Tkachenko, R.; Izonin, I.; Dronyuk, I.; Logoyda, M.; Tkachenko, P. Recovery of missing sensor data with GRNN-based cascade
scheme. Int. J. Sens. Wirel. Commun. Control 2021, 11, 531–541. [CrossRef]

53. Tkachenko, R.; Izonin, I.; Kryvinska, N.; Dronyuk, I.; Zub, K. An approach towards increasing prediction accuracy for the
recovery of missing IoT data based on the GRNN-SGTM ensemble. Sensors 2020, 20, 2625. [CrossRef] [PubMed]

54. Izonin, I.; Tkachenko, R.; Verhun, V.; Zub, K. An approach towards missing data management using improved GRNN-SGTM
ensemble method. Eng. Sci. Technol. Int. J. 2021, 24, 749–759. [CrossRef]

55. Wang, Y.; Ho, I.W.H.; Chen, Y.; Wang, Y.; Lin, Y. Real-time Water Quality Monitoring and Estimation in AIoT for Freshwater
Biodiversity Conservation. IEEE Internet Things J. 2021. [CrossRef]

56. Tien, J.M. Internet of Things, Real-Time Decision Making, and Artificial Intelligence. Ann. Data Sci. 2017, 4, 149–178. [CrossRef]
57. Latency Across Cloud Backbones Varies Significantly. Available online: https://www.sd-wan-experts.com/blog/latency-across-

cloud-backbones-varies-significantly/ (accessed on 10 January 2022).
58. State of IoT 2021: Number of Connected IoT Devices Growing 9% to 12.3 Billion Globally, Cellular IoT Now Surpassing 2 Billion.

Available online: https://iot-analytics.com/number-connected-iot-devices/ (accessed on 10 January 2022).
59. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A Survey of Machine and Deep Learning Methods for

Internet of Things (IoT) Security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [CrossRef]
60. Martinez, B.; Monton, M.; Vilajosana, I.; Prades, J.D. The power of models: Modeling power consumption for IoT devices. IEEE

Sens. J. 2015, 15, 5777–5789. [CrossRef]
61. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-based computation offloading for IoT devices with energy

harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]
62. Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT

Express 2019, 5, 1–7. [CrossRef]
63. Lavric, A.; Popa, V. Internet of things and LoRa™ low-power wide-area networks: A survey. In Proceedings of the 2017

International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017; pp. 1–5.
64. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
65. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
66. Satyanarayanan, M.; Simoens, P.; Xiao, Y.; Pillai, P.; Chen, Z.; Ha, K.; Hu, W.; Amos, B. Edge Analytics in the Internet of Things.

IEEE Pervasive Comput. 2015, 14, 24–31. [CrossRef]
67. Jedari, B.; Premsankar, G.; Illahi, G.; Di Francesco, M.; Mehrabi, A.; Ylä-Jääski, A. Video Caching, Analytics, and Delivery at the

Wireless Edge: A Survey and Future Directions. IEEE Commun. Surv. Tutor. 2020, 23, 431–471. [CrossRef]
68. Liu, F.; Tang, G.; Li, Y.; Cai, Z.; Zhang, X.; Zhou, T. A survey on edge computing systems and tools. Proc. IEEE 2019, 107, 1537–1562.

[CrossRef]
69. Liu, D.; Yan, Z.; Ding, W.; Atiquzzaman, M. A survey on secure data analytics in edge computing. IEEE Internet Things J. 2019,

6, 4946–4967. [CrossRef]
70. Mazumder, A.N.; Meng, J.; Rashid, H.A.; Kallakuri, U.; Zhang, X.; Seo, J.S.; Mohsenin, T. A Survey on the Optimization of Neural

Network Accelerators for Micro-AI On-Device Inference. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 532–547. [CrossRef]
71. Sanabria-Russo, L.; Pubill, D.; Serra, J.; Verikoukis, C. IoT data analytics as a network edge service. In Proceedings of the IEEE

INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2
May 2019; pp. 969–970.

72. Hanyao, M.; Jin, Y.; Qian, Z.; Zhang, S.; Lu, S. Edge-assisted online on-device object detection for real-time video analytics.
In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May
2021; pp. 1–10.

73. Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT data analytics: Architecture,
opportunities, and open research challenges. IEEE Access 2017, 5, 5247–5261.

74. Sharma, S.K.; Wang, X. Live data analytics with collaborative edge and cloud processing in wireless IoT networks. IEEE Access
2017, 5, 4621–4635. [CrossRef]

http://dx.doi.org/10.3390/s18061711
http://www.ncbi.nlm.nih.gov/pubmed/29799478
http://dx.doi.org/10.3390/en13051097
http://dx.doi.org/10.1109/TSMCA.2009.2025137
http://dx.doi.org/10.1109/TITS.2019.2963722
http://dx.doi.org/10.2174/2210327910999200813151904
http://dx.doi.org/10.3390/s20092625
http://www.ncbi.nlm.nih.gov/pubmed/32375400
http://dx.doi.org/10.1016/j.jestch.2020.10.005
http://dx.doi.org/10.1109/JIOT.2021.3078166
http://dx.doi.org/10.1007/s40745-017-0112-5
https://www.sd-wan-experts.com/blog/latency-across-cloud-backbones-varies-significantly/
https://www.sd-wan-experts.com/blog/latency-across-cloud-backbones-varies-significantly/
https://iot-analytics.com/number-connected-iot-devices/
http://dx.doi.org/10.1109/COMST.2020.2988293
http://dx.doi.org/10.1109/JSEN.2015.2445094
http://dx.doi.org/10.1109/TVT.2018.2890685
http://dx.doi.org/10.1016/j.icte.2017.12.005
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/MPRV.2015.32
http://dx.doi.org/10.1109/COMST.2020.3035427
http://dx.doi.org/10.1109/JPROC.2019.2920341
http://dx.doi.org/10.1109/JIOT.2019.2897619
http://dx.doi.org/10.1109/JETCAS.2021.3129415
http://dx.doi.org/10.1109/ACCESS.2017.2682640


Technologies 2022, 10, 12 15 of 15

75. Dayalan, U.K.; Fezeu, R.A.; Varyani, N.; Salo, T.J.; Zhang, Z.L. VeerEdge: Towards an Edge-Centric IoT Gateway. In Proceedings
of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Melbourne, Australia,
10–13 May 2021; pp. 690–695.

76. Li, Y.; Padmanabhan, A.; Zhao, P.; Wang, Y.; Xu, G.H.; Netravali, R. Reducto: On-camera filtering for resource-efficient real-time
video analytics. In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Communication, (Virtual Conference), New York, NY,
USA, 10–14 August 2020; pp. 359–376.

77. Du, K.; Pervaiz, A.; Yuan, X.; Chowdhery, A.; Zhang, Q.; Hoffmann, H.; Jiang, J. Server-driven video streaming for deep
learning inference. In Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Communication, (Virtual Conference), New York, NY,
USA, 10–14 August 2020; pp. 557–570.

78. Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model compression and hardware acceleration for neural networks: A comprehensive
survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]

79. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A survey of model compression and acceleration for deep neural networks. arXiv 2017,
arXiv:1710.09282.

80. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.J.; Han, S. AMC: AutoML for model compression and acceleration on mobile devices.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 784–800.

81. Polino, A.; Pascanu, R.; Alistarh, D. Model compression via distillation and quantization. arXiv 2018, arXiv:1802.05668.
82. Avnur, R.; Hellerstein, J.M. Eddies: Continuously Adaptive Query Processing. In Proceedings of the ACM SIGMOD Conference,

Dallas, TX, USA, 16–18 May 2000.

http://dx.doi.org/10.1109/JPROC.2020.2976475

	Introduction
	Background
	A Review of Techniques for Cost-Efficient Real-Time Decision Support in IoT
	Efficient Evaluation of a Single Conjunction via Short-Circuiting
	Pull Model and Data Freshness
	Sensor Data Analytics via Machine Learning for Real-Time Decision Making

	Future Research Directions
	Efficient Analysis of an Entire DNF Predicate Requiring No Knowledge of Short-Circuit Probabilities
	Predicting Probabilities of Satisfying Conjunctions and Two-Level Scheduling for Efficient Evaluation of an Entire Predicate
	Efficient Management of Sensor Data Freshness
	Scheduling Real-Time Analytics Tasks

	Conclusions
	References

