
International Journal of 

Financial Studies

Article

Do Green Bonds Act as a Hedge or a Safe Haven against
Economic Policy Uncertainty? Evidence from the USA
and China

Inzamam Ul Haq 1 , Supat Chupradit 2 and Chunhui Huo 3,*

����������
�������

Citation: Haq, Inzamam Ul, Supat

Chupradit, and Chunhui Huo. 2021.

Do Green Bonds Act as a Hedge or a

Safe Haven against Economic Policy

Uncertainty? Evidence from the USA

and China. International Journal of

Financial Studies 9: 40. https://

doi.org/10.3390/ijfs9030040

Academic Editor: Sabri Boubaker

Received: 1 June 2021

Accepted: 24 July 2021

Published: 1 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Management Sciences, Comsats University Islamabad, Islamabad 45550, Pakistan;
inzamam.uh894@gmail.com

2 Department of Occupational Therapy, Faculty of Associated Medical Sciences,
Chiang Mai University, Chiang Mai 50200, Thailand; supat.c@cmu.ac.th

3 Asia-Australia Business College, Liaoning University, Shenyang 110036, China
* Correspondence: huoch@lnu.edu.cn

Abstract: Economic policy uncertainty and particularly COVID-19 has stimulated the need to in-
vestigate alternative avenues for policy risk management. In this context, this study examines the
dynamic association among economic policy uncertainty, green bonds, clean energy stocks, and
global rare earth elements. A dynamic conditional correlation-multivariate generalized autoregres-
sive conditional heteroscedasticity (DCC-MGARCH) model was used to gauge the time-varying
co-movements among these indices. The analysis finds that green bonds act more as a hedge than
a safe haven against economic policy uncertainty (EPU). In the case of diversification, green bonds
work as diversifiers with clean energy stocks and rare earth elements during COVID-19 and in the
whole sample period. Additionally, clean energy stocks and rare earth elements show safe haven
properties against EPUs. This study contributes to the hedging and safe haven literature with some
new insight considering the role of green bonds and clean energy stocks. Additionally, the outcomes
of the research contribute toward the literature of portfolio diversification theory. These findings
pave the way for not only US investors to hedge long-term economic policy risk by investing in green
bonds, but also for China and the UK, as these financial assets (green bonds, clean energy stocks, and
rare earth metals) and EPU are long-term financial and economic variables.

Keywords: COVID-19; economic policy uncertainty; green bonds; diversifier; hedge; safe haven

1. Introduction

Economic policy uncertainty (EPU) is termed an independent nature of risk associated
with the financial system of countries due to the undefined pathways of fiscal, monetary,
and other regulatory policies (Baker et al. 2016). Security-specific risk is often easier to diver-
sify than systematic risks, such as EPU. Financial integration and global trade wars among
countries have increased economic policy uncertainty (Al-Thaqeb and Algharabali 2019;
Wang et al. 2019a). Moreover, the current COVID-19 crisis continues to raise economic
policy uncertainty in the United States, and appears to be a more catastrophic event than
the global financial crisis and European debt crisis (Baker et al. 2020). Interestingly, the
COVID-19 crisis damaged the financial market far more than any other pandemic in the
past, including the Spanish flu. Higher economic policy uncertainty curbs the flow of
investment (Bernanke 1983; Kido 2016), and investors (regardless of type; institutional or
individual) always look to eliminate the risk associated with their investment. Therefore,
the current financial and economic crisis due to COVID-19 remains a heated topic among
scholars and policymakers around the world (Abdelrhim et al. 2020).

Previously, researchers have investigated the hedging ability of financial assets such as cryp-
tocurrency commodities and international stocks against inflation, EPU (Cheng and Yen 2019;
Yen and Cheng 2020), global EPU (Al Mamun et al. 2020; Shaikh 2020; Su et al. 2020), and
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VIX (Bouri et al. 2017a; Kalyvas et al. 2020; Wang et al. 2019b). Very few studies have exam-
ined green bonds, such as the correlation patterns of green bonds and conventional bonds
(Nguyen et al. 2020), green bonds and black bonds (Broadstock and Cheng 2019), pricing
spillover from green bonds and financial markets (Reboredo 2018; Saeed et al. 2020a, 2020b),
and the yield spread of US green and conventional municipal bonds and the impact of green
bonds market liquidity on the green bonds yield (Karpf and Mandel 2018). However, the
investigation of the hedging and safe haven properties of green bonds against economic policy
uncertainty has been previously ignored, as the emerging green bonds market requires further
econometric investigation and more empirical evidence. Moreover, the linkage of environ-
mentally friendly securities and macroeconomic variables can serve as a novel line of inquiry
(Broadstock and Cheng 2019). Due to the worldwide impact, the literature on the risk manage-
ment strand has started to grow quickly. The correlation between financial and non-financial
firms has experienced a surge, and increased the optimal hedge ratio to a higher hedging cost
during the COVID-19 (Akhtaruzzaman et al. 2021a). During the COVID-19 period, the oil indus-
try received higher benefits while the financial industry and oil consumers reacted negatively
during oil price shocks (Akhtaruzzaman et al. 2020). Interestingly, (Akhtaruzzaman et al. 2021b)
investigated the safe haven properties of gold in multiple phases during the COVID-19; they
found a mixture of risk mitigation patterns, as gold proved a safe haven during the first phase
and lost in the second phase.

Previous literature is limited to discussing the risk management role of gold (Akhtaruz-
zaman et al. 2021b; Paule-Vianez et al. 2020; Qin et al. 2020; Wu et al. 2019), cryp-
tocurrencies (Baur and Hoang 2020; Mariana et al. 2020; Haq and Aftab Forthcoming;
Paule-Vianez et al. 2020; Qin et al. 2020; Wu et al. 2019) against economic policy uncer-
tainty. Therefore, this research has two main purposes. The primary purpose of this paper
is to explore sustainable risk management avenues (green bonds, clean energy stocks, and
rare earth elements) against the economic policy uncertainty of the USA, China, and the
United Kingdom. Moreover, the secondary purpose is to investigate the diversification
properties between green bonds, clean energy stocks, and rare earth elements. This research
is conducted to answer the question of how green bonds, clean energy stocks, and rare
earth elements are correlated with economic policy uncertainty and each other over time.

Green bonds offer potential pathways for risk management and diversification as they
fulfill both needs for investors, such as environmental protection and financial resources
(Huynh et al. 2020). Green bonds can improve the overall performance of the environment
and provide returns to investors (Flammer 2019; Maltais and Nykvist 2020). Recently, stock
exchanges have introduced specific green bonds segments; moreover, since its inception in
2007, the green bonds market has been growing in size and significance for institutions and
individual investors (Febi et al. 2018; Reboredo and Ugolini 2020; Tang and Zhang 2020).
Therefore, this may help green bonds become a sustainable and well-established invest-
ment instrument (Maltais and Nykvist 2020). Green bonds are better performing financial
instruments than conventional bonds (Kanamura 2020), and their correlation is sensitive to
changes in economic policy uncertainty (Broadstock and Cheng 2019).

Rare earth elements (REEs) have become attractive due to their progressive mining,
production, and recycling activities in recent years. REEs were discovered in 1788 and,
until the 1950s, the worldwide production of RREs and their utilization rate was less
than 5 thousand metric tons (Zhou et al. 2017), even if the REEs were scarcely used in our
everyday lives (Klinger and Svensson 2015). According to Zhou et al. (2017), the worldwide
consumption rate for REEs has increased rapidly as rare earth elements (REEs) have certain
electromagnetic and conductive properties, and these properties are salient features in
a broad range of applications, i.e., wind turbines, photovoltaic cells, aircraft engines, mobile
phones, electric vehicle batteries, LEDs, drill bits for oil, natural gas mining, and many
others. Based on these properties, in the 21st century, the usage of rare earth elements
escalated due to the transformation of traditional industries into the manufacturing of
highly technological products (Li et al. 2019; Wang et al. 2015).
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This study follows the definitions of (Baur and Lucey 2010; Bouri et al. 2017b) to
define hedges, diversifiers, and safe havens. Green bonds and rare earth elements have not
been sufficiently investigated as hedges, diversifiers, and safe havens against economic
policy uncertainty and other green stocks, such as clean energy stocks (Dutta et al. 2020;
Dawar et al. 2021), although green bonds have recently received attention from researchers
in the diversification strand (Huynh et al. 2020; Reboredo 2018; Reboredo et al. 2020;
Reboredo and Ugolini 2020; Saeed et al. 2020a).

This paper contributes to the related literature in at least three ways. First, it is the
first attempt to capture the dynamic conditional co-movements between green bonds and
economic policy uncertainty. Overall, green bonds show negative correlation patterns
with EPUs. Second, this study tests the hedging role of green bonds against the economic
policy uncertainty of China, the UK, and the USA, and the diversification properties of
green bonds against clean energy stocks and global rare earth elements. Third, despite the
hedging and diversification role of green bonds, this study also uncovers the safe haven
role of green bonds under the shadow of COVID-19. This work adds a novel addition to the
safe haven literature, as it is the first to consider the safe haven role of green bonds, clean
energy stocks, and rare earth elements against the economic policy uncertainty of China,
the UK, and the USA, which adds to a recent study by (Bouri et al. 2021). Additionally, these
findings provide support in the shadow of modern portfolio or portfolio diversification
theory1. Hedging and diversification properties support the portfolio theory and offer
some new insight and avenues regarding risk mitigation in green finance.

The empirical results demonstrate dynamic conditional correlations among US green
bonds, US clean energy stocks, global rare earth elements, and EPUs (USA, China, and UK).
Firstly, green bonds demonstrated a positive correlation with US EPU, however a negative
correlation with China EPU and UK EPU indexes in full sample estimation, implying
that they play a hedging role against the economic policy uncertainty of China and the
UK, but not the USA. This is due to the fact that the volatility of green bonds may prone
to economic policy uncertainty of the USA, therefore green bonds were not proven as
a hedge. Moreover, clean energy stocks proved a strong hedge against the economic policy
risk, however a weak hedge against China EPU. Thirdly, the index of global rare earth
elements proved a strong hedge against the economic policy uncertainty of China and
the UK. However, a positive association between US-EPU and global rare earth elements
implies that US EPU may prone to the volatility of global rare earth elements due to the
monopolistic control of China over rare earth elements. Therefore, it removes the hedging
ability of global rare earth elements against US EPU. A positive, but not perfectly positive
correlation between green bonds, clean energy stocks, and rare earth elements suggests that
these can be used as diversifiers with one another. The financial assets also demonstrated
similar correlation patterns during the COVID-19 pandemic. Moreover, green bonds and
clean energy stocks were confirmed as a strong safe haven against the US and UK economic
policy uncertainty, however not against China EPU. Afterward, rare earth elements proved
a strong safe haven against all EPU indexes. These findings suggest a road map to the
fund managers for policy risk mitigation. Additionally, the results guide policymakers,
regulators, and all market participants to develop strategies to cope with independent
economic policy risk in the USA, China, and the UK.

The remainder of the paper is organized as follows. Section 2 describes the data
description and methods. Section 3 presents the analysis and results. Section 4 conducts
a robustness check during COVID-19. Section 5 debates the discussion, while Section 6
concludes the paper.

2. Data and Methods
2.1. Data Description

This study considered the daily prices of green bonds (GB), clean energy stock (CES),
the global rare earth elements (REE) index and three EPU indices (US-EPU, China-EPU, and
United Kingdom-EPU). Five days of a week were considered starting from 11 March 2014
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to 29 September 2020 for all indices due to daily data unavailability for global rare earth
elements. A total number of 1636 observations were considered for full-sample estimation,
1427 before COVID-19 and 209 for during the COVID-19 estimation. The Clean Energy Fu-
els Corp (CLNE) index by NASDAQ was considered for clean energy stocks. Data on clean
energy stocks and global rare earth elements were sourced from www.Investing.com (ac-
cessed on 15 October 2020), Green Bonds from the official S&P (Standard and Poor) website,
EPU indices for the USA and UK were obtained from www.economicpolicyuncertainty.com
(accessed on 15 October 2020), and data for the Chinese Economic policy uncertainty index
were sourced from https://economicpolicyuncertaintyinchina.weebly.com (accessed on
15 October 2020). The economic policy uncertainty index is a news-based index and was
initially constructed by (Baker et al. 2016).

2.2. Dynamic Conditional Correlation Model

This study follows the dynamic conditional correlation multivariate GARCH model
proposed by Engle (2002). Traditionally, the measurement of the conditional time-varying
correlation among two or more time series is often called a gauge (Wang et al. 2019b). Re-
searchers are often in a trade-off choosing between exponential smoothing average techniques
and a rolling windows method or rolling regression (Ratner and Chiu 2013). However, the
dynamic conditional correlation model is a comparatively better tool than an exponential
moving average method and competitive with the multivariate GARCH model (Engle 2002).
The rapid adaptation and continuous adjustment in the correlation for dynamics in volatility
often elevates DCC-GARCH to be a superior model (Cho and Parhizgari 2008). The superi-
ority of the DCC-GARCH model over rolling window regression is due to the usefulness
and reliability characteristics in DCC-based time-variant correlation (Isogai 2016). Many
multivariate GARCH models prevail to capture multivariate relationships; for instance, Baba,
Engle, Kraft and Kroner model (BEKK) and full Vectorized conditional variance matrices
(VECH) can produce distortion in the results and, thus, have costly consequences in the case
of an increased sample size to three asset returns in time estimation (Chiang et al. 2007). The
concept of constant conditional correlation (CCC) has stood untrue and unrealistic across
many financial assets due to the continuous time-variant nature of volatility among financial
assets (Bera and Kim 2002). The wider acceptance of DCC-MGARCH underpins numer-
ous benefits. Accounting for heterogeneity directly using standardized residuals allows for
multiple variable return directions to be examined without introducing several numbers of
parameters (Chiang et al. 2007). Interestingly, the information normally generated by DCCs
enables investors, strategy makers, and researchers to understand correlation movements
under different financial and economic conditions, particularly volatility shocks and crises
(Chiang et al. 2007; Moore and Wang 2014). Thus, certainly, a rigorous approach has clear
relevance to achieve the research objectives.

Originally, the DCC MGARCH model comprises two steps: the first estimates the
conditional volatility through univariate GARCH (p, q), and the second estimates the time-
varying conditional correlation through the DCC (M, N) specification given by Engle (2002).
The overall model definition can be expressed as follows:

Yt = λt +
√

Ht + εt (1)

where Yt is a vector for past time-series observations (Y1t1t, Y2t . . . Ynt), Ht is a multivariate
contemporaneous variance matrix of N×N, λt is a vector of time series conditional returns,
and εt is a vector having standardized residual returns.

εt|δt−1 ∼ c(λ, Ht) (2)

where Equation (2) is a conditional mean equation containing a time series that assumes εt
gives the unconditional mean returns that are either equal to or near zero but <1, denoted
as λ, or residuals from filtered time series Ht on information set δ at times t − 1. c is
a multivariate density function, dependent upon the vector conditional covariance matrix

www.Investing.com
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Ht and unconditional mean. Thus, the conditional covariance matrix can be put into the
product of conditional returns of standardized residuals and the time-variance conditional
correlation matrix as follows:

Ht = DtCtDt (3)

The elements Ct = ρij and Dt are a N × N diagonal matrix dynamic nature of stan-
dard deviations or standardized residuals of the conditional returns obtained from the
Univariate-GARCH model having

√
hi,t on the diagonal of any ith matrix as follows:

ith =

[ √
hi,t σi,j

σi,j
√

hi,t

]
where, i = (1, 2, 3, . . . , n) or

(
Dt = diag

(√
h11,t,

√
h22,t,

√
h33,t, . . .

√
hNN,t

)
where the

√
hi,t element follows the (p, q) process for the individual GARCH, which

can be signified as follows:

hi,t = δi +
pi

∑
p=1

Aipε2
i,t−p +

qi

∑
q=1

Bi,qhi,t−p (4)

In the above equation, the first element δi is considered a constant term, while the term
A captures the short-term conditional volatility, and the B element estimates long-term
volatility persistence; this equation collectively expresses conditional variance denoted
as hi,t. The element Ct is a symmetric time-variant conditional correlation matrix, and
Ct = diag(Qt)

−1/2Qtdiag(Qt)
−1/2.

The second step of the model outlines the DCC specification or the DCC (M, N) process
estimates the (Ct) dynamic conditional correlation vector, and the specification of the struc-
ture can be presented as follows:

Ct = Q∗−1
t QtQ∗−1

t (5)

where Q∗t is the k × k diagonal matrix composed of
√

hnn on the diagonal of Qt as follows:

Q∗t =


√

h11 0 0 0
0

√
h22 0 0

0 0
√

h33 0
0 0 0

√
hnn


where Qt follows the structure

Qt =

(
1−

M

∑
m=1

∂m −
N

∑
n=1

ϕn

)
Q +

N

∑
n=1

ϕnQt−n +
M

∑
m=1

∂m
(
ϑi,t−mϑ′j,t−m

)
(6)

Qt = qijt and conditional variance-covariance matrix N × N of standardized residuals
(ϑit = εit/

√
hi,t) following an autoregressive process. The term Qt purportedly drives the

variations in the time-variant nature of the time series conditional correlation.
Q is the time-varying (E(ϑi,t−1ϑj,t−1) unconditional correlation matrix of standard-

ized residuals obtained from the first stage after estimation, and are positively definite
parameters to satisfy (∂ + ϕ) > 1. ∂m and ϕn are parameters that indicate the previous
shock effects and the effects of prior DCCs on the current DCC, respectively. There is the
absence of unit diagonal elements in Ct in Equation (6); therefore, the elements are scaled
to obtain an appropriate time-variant conditional correlation matrix Ct:

Ct = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (7)

where diag(Qt)
−1/2 = diag

(
1√
q11

)
,
(

1√
q22

)
, . . .

(
1√
qnn

)
. Thus, the latest Equation (7) for Ct

builds a correlation matrix having absolute values (1 on the diagonal and >1 on off-diagonal
elements) where Qt is subject to be positive definite. Ultimately, the authors are concerned
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with the correlation estimator (Ct) due to its key significance in this econometric method-
ology. Certainly, the key element Ct has the form indicated: pi,j,t = qi,j,t /√qi,i,t qj,j,t , as
it delineates the contemporaneous correlation between cryptocurrencies and global and
national economic policy uncertainty.

The QMLE quasi-maximum likelihood technique was used to estimate both the
volatility (Dt with
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2

𝑇

𝑡=1

+ 𝜀𝑡
′𝐷𝑡

−2𝜀𝑡) (9) 

𝐿2(Ɵ, Ʋ) = −0.5∑(𝑙𝑜𝑔|𝐶𝑡| + 𝜗𝑡
′𝐶𝑡

−1𝜗𝑡 − 𝜗𝑡
′𝜗𝑡)

𝑇

𝑡=1

 (10) 

3. Empirical Results 
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3. Empirical Results 

The analysis part is divided into two samples: full sample estimation and COVID-19 

analysis. Table 1 illustrates the descriptive statistics for each index based on daily values. 

The descriptive statistics are based on the daily logarithm values of all indices. Values in 

bold indicate significant coefficients at the 5% level. The mean and standard deviation 

coefficients for EPU reflect the stability of economic policy uncertainty in China; however, 

economic policy uncertainty is more volatile in the cases of the USA and UK. Countries 

with high EPU are more volatile, such as the US and UK. Green bonds are less volatile 

than clean energy stocks and global rare earth elements. This may be due to the sustaina-

bility and environmentally friendly perspective attached to green bonds. Moreover, green 

bonds are often considered long-term investments; thus, investors often buy and hold se-
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3. Empirical Results

The analysis part is divided into two samples: full sample estimation and COVID-19
analysis. Table 1 illustrates the descriptive statistics for each index based on daily values. The
descriptive statistics are based on the daily logarithm values of all indices. Values in bold
indicate significant coefficients at the 5% level. The mean and standard deviation coefficients
for EPU reflect the stability of economic policy uncertainty in China; however, economic policy
uncertainty is more volatile in the cases of the USA and UK. Countries with high EPU are
more volatile, such as the US and UK. Green bonds are less volatile than clean energy stocks
and global rare earth elements. This may be due to the sustainability and environmentally
friendly perspective attached to green bonds. Moreover, green bonds are often considered
long-term investments; thus, investors often buy and hold securities. Figure 1 demonstrated
an increase in economic policy uncertainty of the USA and UK during the COVID-19, whereas
this is not true in case of China EPU. Moreover, green bonds index and global rare earth
element index showed a surge. All coefficients and p-values for the Jarque–Bera test confirmed
that all series are non-normally distributed, thus violating normality.

Table 1. Descriptive Statistics.

CES CHEPU GB REE UKEPU USEPU

Mean 2.300 4.755 4.899 5.892 5.546 4.418
Median 2.268 4.782 4.905 5.804 5.514 4.361

Maximum 2.862 6.075 5.026 6.503 7.867 6.694
Minimum 2.050 2.114 4.802 5.223 2.795 1.200

Standard Deviation 0.149 0.461 0.048 0.297 0.675 0.656
Skewness 1.055 −0.558 0.124 0.358 0.047 0.604
Kurtosis 4.324 4.698 2.547 2.134 2.744 4.090

Jarque–Bera 422.910 281.421 18.213 86.117 22.040 180.427
Probability 0.000 0.000 0.000 0.000 0.004 0.000

Observations 1636 1636 1636 1636 1636 1636
Note: The descriptive statistics is based on the daily values of all indices. Values in bold indicate significant
coefficients at the 5% level (values in parentheses). Abbreviation; Green Bonds (GB), Global Rare Earth Elements
(REE), Clean Energy Stocks (CES), United States Economic Policy Uncertainty (USEPU), China Economic Policy
Uncertainty (CHEPU), and United Kingdom Economic Policy Uncertainty (UKEPU).
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The presence of serial correlation in financial time series is one of the critical issues.
Serial correlation reflects the correlation of a time series with itself over multiple lagged
periods; moreover, a serially correlated time series may not be a random walk. Table 2
illustrates the outputs for the Portmanteau (Q) test for serial correlation up to the 40th
order. Bold values in parentheses depict the p-values at the 5% level. The Q statistic and
p-values supported the alternative hypothesis and rejected the null hypothesis of no serial
correlation in EPUs, clean energy stocks, green bonds, and global rare earth elements. Thus,
current estimates lead to choosing the DCC-MGARCH model to capture time-varying
volatility in a time series, as the authors find GARCH (1,1) to be the best suitable model
based on the Akaike information criterion.

Table 2. Portmanteau (Q) Test for Serial Correlation.

GB CES REE

Q Test 27,688.649 23,957.7967 28,487.137
Probability 0.000 0.000 0.000

USEPU CHEPU UKEPU

Q Test 9378.4235 538.6449 12,169.8416
Probability 0.000 0.000 0.000

Note: Refer to Table 1 for abbreviations. Bold values in parentheses depict the p-values at the 1% level.

Results of Phillips Perron test for unit root are illustrated in Table 3. Results confirmed
that the null hypothesis is rejected for all indexes at a high-level significance. Therefore, all
variables are stationary at the first difference and fulfilling a pre-estimation assumption for
DCC-GARCH estimation. *** indicates significance at 5%. All variables are stationary, as
can be viewed in Figure 2.
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Table 3. Philips Perron test of ADF results (1st Difference).

Index t-Statistics (Probability)

USEPU −65.815 (0.000) ***
CHEPU −72.173 (0.000) ***
UKEPU −66.315 (0.000) ***

CES −30.095 (0.000) ***
GB −36.399 (0.000) ***

REE −37.336 (0.000) ***
Note: *** indicates the significance level at 5% and p-values in parenthesis indicates that all series are stationary,
thus appropriate for DCC-GARCH estimation.
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nique assumes that residuals are conditionally normal, but originally draw from other 
conditional distributions. After consideration of several log-likelihood value evaluations, 
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However, the authors estimated unconditional correlation before DCC-MGARCH
estimation, as shown by the results in Table 4. The authors also tested the null hypothesis
that the unconditional correlation is equal to zero. The results for unconditional correlations
reported in Table 4 confirm the evidence for a negative and not perfect positive correlation
based on the p-values and t-test statistics. Thus, a predominant positive correlation sign
suggests that clean energy stocks, green bonds, and rare earth elements are avenues for
diversification, and that green bonds, rare earth elements, and clean energy stocks are
strong hedges against the economic policy uncertainty of the USA. Moreover, green bonds
and clean energy stocks proved to be strong hedges against UKEPU and CHEPU indexes,
respectively. In contrast, the negative correlation of green bonds, clean energy stocks,
and rare earth elements against EPUs suggests that green bonds’ hedging ability is not
limited to the USA only. These findings are consistent with our proposal that hedging
ability prevails in green bonds, clean energy stocks, and rare earth elements against EPU.
Correlation values in bold denote unconditional correlation coefficients at t− 0 at a 5%
statistical significance level.
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Table 4. Preliminary Evidence from Unconditional Correlation.

Indexes Correlation Coefficient t-Stats p-Values

CES–CHEPU −0.016 0.650 0.026
GB–CES 0.588 29.403 0.000

GB–CHEPU −0.142 −5.780 0.000
REE–CES 0.059 2.407 0.016

REE–CHEPU −0.165 −6.763 0.000
REE–GB 0.107 4.362 0.000

CES–UKEPU −0.132 −5.394 0.000
GB–UKEPU −0.041 −1.661 0.010

REE–UKEPU −0.132 −5.384 0.000
CES–USEPU −0.191 7.886 0.000
GB–USEPU −0.361 15.642 0.000

REE–USEPU −0.348 −15.026 0.000
Note: Statistical significance at the 5% level. Correlation values in bold denote unconditional correlation coeffi-
cients at t− 0.

Authors estimated the DCC-GARCH model quasi-maximum likelihood technique
due to non-normality in the time series. The quasi-maximum likelihood function ignores
non-normality and generates standard errors by maximizing the likelihood. This tech-
nique assumes that residuals are conditionally normal, but originally draw from other
conditional distributions. After consideration of several log-likelihood value evaluations,
the authors consider GARCH (1,1) as the data are better fitted in DCC (1,1) with each
conditional variance in GARCH (1,1) in the current lag periods for all series. Tables 5 and 6
illustrate the GARCH (1,1) results for the full sample and during COVID-19, respectively, to
estimate conditional volatility since 2014 and during the novel coronavirus to uncover the
diversification properties among green bonds, clean energy stocks, and rare earth elements
with more hedge and safe haven efficiency against EPUs. The sum of Ai and Bi is near 1;
thus, all GARCH processes are highly persistent.

Table 5. DCC Multivariate GARCH Estimations (A).

GB REE CES GB USEPU CHEPU UKEPU

Constant 0.000 0.000 0.000 0.000 0.088 −0.003 0.073
0.000 0.000 0.000 0.000 0.000 0.954 0.001

Arch 1.070 1.114 1.138 0.884 0.395 0.136 0.333
0.000 0.000 0.000 0.000 0.000 0.000 0.000

Garch −0.002 0.001 −0.002 0.002 0.384 0.906 0.457
0.557 0.196 0.543 0.323 0.000 0.000 0.000

C1 0.293 0.119
0.000 0.000

C2 0.704 0.856
0.000 0.000

χ2 test 14,000,000.000 140,000.000
0.000 0.000

REE USEPU CHEPU UKEPU CES USEPU CHEPU UKEPU

Constant 0.000 0.089 −0.036 0.082 0.000 0.091 −0.038 0.075
0.000 0.000 0.357 0.000 0.000 0.000 0.337 0.030

Arch 0.872 0.381 0.140 0.360 0.850 0.373 0.135 0.294
0.649 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Garch 0.000 0.391 1.063 0.423 0.003 0.344 1.070 0.460
0.000 0.000 0.000 0.000 0.333 0 0 0
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Table 5. Cont.

GB REE CES GB USEPU CHEPU UKEPU

C1 0.106 0.101
0.000 0.000

C2 0.873 0.866
0.000 0.000

χ2 test 190,000.000 66,027.280
0.000 0.000

Note: Table 4 exhibits the DCC-MGARCH full sample results for hedging and diversification properties of
green bonds. Bold values in parentheses demonstrate p-values. These parameter coefficients are output from
the DCC-MGARCH model: hi,t = δi + ∑

pi
p=1 Aipε2

i,t−p + ∑
qi
q=1 Bi,qhi,t−p and Qt =

(
1−∑M

m=1 ∂m −∑N
n=1 ϕn

)
Q +

∑N
n=1 ϕnQt−n + ∑M

m=1 ∂m
(
ϑi,t−mϑ′ j,t−m

)
. A refers to full sample estimation for hedging and diversification.

Table 6. DCC Multivariate GARCH Estimations (B).

CES USEPU CHEPU UKEPU GB USEPU CHEPU UKEPU

Constant 0.000 0.0638582 0.0185369 0.0315451 0.0000207 0.0768539 0.000381 0.0603688
0.013 0.223 0.874 0.585 0.03 0.124 0.998 0.318

Arch 0.8762406 0.4478575 0.1839259 0.3834526 −0.025352 0.485033 0.2150208 0.4416211
0 0 0.088 0 0 0 0.048 0

Garch −0.0122034 0.391363 0.181 0.5213946 −0.025 0.3119924 0.8685495 0.3847559
0.069 0.038 −0.335 0.003 0.23 0.083 0.16 0.021

C1 0.1132437 0.1861076
0 0

C2 0.8660593 0.7897954
0 0

χ2 test 18,908.87 22,122.61
0 0

REE USEPU CHEPU UKEPU GB CES REE

Constant 0.0009607 0.0583526 0.0357547 0.0341716 0.0000468 0.0007225 0.0017002
0.007 0.341 0.774 0.654 0.001 0 0.02

Arch 0.9039061 0.4442368 0.1784936 0.3761146 0.8452306 0.7897822 0.7691403
0 0 0.092 0 0 0 0

Garch −0.040521 0.4118872 0.7105358 0.5481333 0.0140195 0.0639737 −0.0081224
0.063 0.044 0.22 0.006 0.694 0.041 0.916

C1 0.1328137 0.8438846
0 0

C2 0.8607332 0.0976604
0 0.053

χ2 test 110,000.00 6275.61
0 0

Note: Table 5 exhibits the DCC-MGARCH (during COVID-19) results for safe haven properties of green bonds,
clean energy stocks, and global rare elements. Bold values in parentheses demonstrate p-values. These pa-
rameter coefficients are output from the DCC-MGARCH model: hi,t = δi + ∑

pi
p=1 Aipε2

i,t−p + ∑
qi
q=1 Bi,qhi,t−p and

Qt =
(

1−∑M
m=1 ∂m −∑N

n=1 ϕn

)
Q + ∑N

n=1 ϕnQt−n + ∑M
m=1 ∂m

(
ϑi,t−mϑ′ j,t−m

)
. B refers to the COVID-19 period

(1 December 2019 to 30 September 2020) for safe haven properties.

Likewise, the DCC parameters are consistent and statistically significant, as the chi-
square coefficient and probability values are significant in Tables 5 and 6. This suggests
that the null hypothesis, which assumes a constant correlation over time, is rejected.

The second step estimation covers dynamic conditional correlations; Figure 3 reports
the dynamic conditional correlations between green bonds and EPUs, and DCCs among
green bonds, clean energy stocks, and rare earth elements. In the full sample, outcomes
confirm the conditional correlation between green bonds volatility and EPU’s dominantly
negative in the case of the UK and China; however, green bonds volatility and USEPU
demonstrated a positive correlation with few negative high magnitude correlation trends.
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Afterwards, mixed volatility correlation patterns for green bonds with rare earth
elements and clean energy stocks were observed; however, in 2020, the correlation demon-
strated an unconventional pattern. Rare earth elements and clean energy stocks are domi-
nantly positively correlated over time.

4. Robustness Check: During COVID-19

Moving towards the COVID-19 pandemic, the authors estimated a separate analysis
to verify the robustness of findings in full sample estimation. Table 6 illustrates DCC
M-GARCH results for sub-sample during the COVID-19, and it shows the persistence of
all GARCH processes as, for all cases of any two return series, the sum of Ai and Bi is
close to “1”, thus fulfilling the GARCH assumption. Moreover, Table 7 reports that DCC
parameters for correlation are also consistent in all cases. Figure 4 illustrates the time-
varying conditional correlation among green bonds, rare earth elements, and clean energy
stocks against EPUs during the novel coronavirus. Interestingly, dynamic conditional
correlation outcomes validate that the negative association of green bonds, clean energy
stocks, and rare earth elements is more prominent with the economic policy uncertainty of
the USA, China, and the UK during the COVID-19 episode. However, alternative positive
trends are spotted. In contrast, all other indices, such as green bonds, clean energy stocks,
and rare earth elements, are positively correlated with each other during the sanitary crisis.
This positive (though not perfectly positive) association infers that these securities may be
considered as diversifiers against each other. Table 7 demonstrates the DCC parameters
that are statistically significant and consistent with Figure 4. The authors report a median
spline graph to smooth reoccurring variations as a Figure 4. The horizontal line in the
graph demonstrates the zero correlation on the y-axis, and bold values in Table 7 denote the
dynamic conditional correlation coefficient between all indices. All values in parentheses
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are the p-values at a 5% significance level. “A” refers to full sample estimation for hedging
and diversification and “B” refers to the COVID-19 period. In overview, diversification,
hedging, and safe haven properties for green bonds, clean energy stocks, and rare earth
elements are alive during the COVID-19 period, during which previous studies have
indicated evidence of strong linkages across major stock indices (Abuzayed et al. 2021).
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Table 7. Dynamic Conditional Correlation Coefficients.

Dynamic Conditional Correlation Coefficients (A)

GB–REE GB–CES REE–CES GB–USEPU GB–CHEPU GB–UKEPU

0.413 0.763 0.271 0.386 −0.191 −0.415
0.000 0.000 0.021 0.001 0.045 0.047

CES–USEPU CES–CHEPU CES–UKEPU REE–USEPU REE–CHEPU REE–UKEPU

−0.519 −0.085 −0.463 0.065 −0.482 −0.024
0.004 −0.084 0.029 −0.049 −0.042 −0.050

Dynamic Conditional Correlation Coefficient (B)

GB–REE GB–CES REE–CES GB–USEPU GB–CHEPU GB–UKEPU

0.239 0.198 0.418 −0.019 −0.048 −0.109
0.001 0.004 0.000 −0.009 −0.081 −0.038

REE–USEPU REE–CHEPU REE–UKEPU CES–USEPU CES–CHEPU CES–UKEPU

−0.053 −0.016 −0.054 −0.128 −0.007 −0.340
0.042 0.045 0.000 0.000 0.092 0.000

Note: Values in bold denote dynamic conditional correlation between all indices and the values in parentheses
depict the p-values. A refers to full sample estimation for hedging and diversification and B refers to the COVID-19
period (1 December 2019 to 30 September 2020) for safe haven properties.

5. Discussion

Economic policy uncertainty is deteriorating. Global financial integration and trade
wars among nations are sources of higher EPU. Undoubtedly, the outbreak of COVID-19 has
also led to devastating effects on foreign exchange markets (Aslam et al. 2020a), volatility of
financial markets (Aslam et al. 2020b), and economic policy uncertainty (Baker et al. 2020).
Thus, investors urgently need to find potential avenues that may protect their investments
from loss during a catastrophic event (such as COVID-19). Interestingly, countries have
heterogeneous national economic policy uncertainty patterns based on their regulatory
framework and monetary and fiscal policies (Haq and Aftab Forthcoming). Therefore, every
country-specific economic policy uncertainty requires diverse solutions to hedge.

To the best of our knowledge, this study is the first to consider economic policy
uncertainty and green bonds time-varying associations. This study revealed that green
bonds are a strong hedge against clean energy stocks, rare earth elements, China-EPU and
UK-EPU. However, they serve as a weak hedge against the economic policy uncertainty
of the USA, and rare earth elements act more as a diversifier against clean energy stocks.
This suggests that green bonds can serve as a good financial instrument to hedge economic
policy risk in the USA and even better in other countries, such as China and the United
Kingdom. Thus, the emergence of green bonds is a potential avenue to hedge and mitigate
risk in financial and economic systems (Broadstock and Cheng 2019).

Green bonds are a promising financial asset-class, and their economic significance is
not restricted to the setting of the US. However, the hedging abilities are going beyond the
borders, proving green bonds as an encouraging risk management tool worldwide. These
findings have significance for international investors who have an investment in financial
markets of China and the UK, as adding green bonds to a portfolio can shield certain
investments from the economic policy shocks in these countries during normal economic
conditions. Additionally, there exists a positive volatility linkage between global rare earth
elements and clean energy stocks. This is due to the dependency of clean energy production
on rare earth elements; these findings are well-aligned with (De Koning et al. 2018). In
addition, this is also due to the monopolistic control China holds over rare earth elements
(Marscheider-Weidemann et al. 2013), and the US imports rare earth elements for clean
energy production from China. This is the main reason that the volatility of US clean energy
stocks is positively correlated with global rare earth elements. Moreover, rising tensions
between the United States and China have sparked concerns. The Chinese government and
National Development and Reform Commission (NDRC) took this seriously against the US
by blocking its REE supply (Schmid 2019; Global Times 2019) which will ultimately affect
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the US’s clean energy industry. In current crucial times, the US green bonds demonstrated
a positive volatility correlation with both clean energy stocks and rare earth elements
during the period of this study. Therefore, US investors have ample risk management
opportunities in the shape of having US green bonds, as green bonds are proven diversifiers
against the volatility of clean energy stocks and global rare earth elements in normal
market conditions.

The COVID-19 pandemic unveiled some interesting correlation patterns and impli-
cations for investors. Interestingly, clean energy stocks and rare earth elements are strong
safe havens against economic policy uncertainty, as the correlation signs are predominantly
negative during catastrophic events such as COVID-19. However, green bonds stood as
strong safe havens against US EPU and UK EPU; thus, green bonds as a safe haven faded
during COVID-19 in the case of the China EPU. This may be as US EPU influences the
performance and movements of green bonds (Broadstock and Cheng 2019). These findings
imply that green bonds are more of a hedge than a safe haven. Moreover, the abilities of
safe havens are more pronounced in clean energy stocks and rare earth elements against
EPUs’ economic policy uncertainty. Clean energy stocks, rare earth elements, and green
bonds are not a hedge or a safe haven, but act as diversifiers against each other as these
financial assets share homogeneous characteristics. Likewise, this observation may be due
to the limited connectedness between the green bonds market and general stock markets, as
clean energy stocks and green bonds belong to two different asset classes (Ferrer et al. 2021).

Policy Implications

This research provides useful implications for several sustainable economists and
economic actors in terms of hedging, portfolio management, and sustainability policy.
The restrictive exports policy of China and ban over REE exports to the USA damaging
clean energy production and other dependent industries, i.e., high technology firms. Thus,
American authorities should keep promoting US green bonds, as they can hedge the
volatility of global rare earth elements and the US clean energy stocks for clean energy
investors. Moreover, it can protect US REE investors from the volatility spillover effect
from China’s rare earth metals (due to its dominance over rare earth resources) and win the
trade war. The description of the nature and usage of green bonds should be standardized
internationally to improve their wider acceptance worldwide. Moreover, monitoring the
development and formalization of green bonds can be an effective area of action for any
sustainable economist. The emerging US green bonds hedging properties beyond the
borders suggest that Chinese and UK authorities should ease the restrictions and allow
investors to invest in the US green bonds market. At the same time, these findings provide
a useful roadmap for international policymakers and fund managers having investments
in the USA, China, and the UK. Overall, it infers that US clean energy stocks are vulnerable
to the global rare earth elements.

In terms of sustainability policy, it is time to move the attention toward green finance
and sustainable investment, i.e., green bonds to raise funds. Therefore, the attractiveness of
green bonds are twofold; they are not solely a risk mitigation and hedging tool, but also are
issued to generate money to mitigate climate change and environmental projects, improve
energy efficacy, and accelerate decarbonization in the economy.

6. Conclusions

Despite the growing interest in green investment avenues such as green bonds, the
current finance and economics literature still lacks empirical evidence for their risk man-
agement abilities as a hedge, safe haven, and diversifier against clean energy stocks, rare
earth elements in general, and economic policy uncertainty in particular. Thus, this study
focuses on the hedging and safe haven abilities of green bonds, clean energy stocks, and
global rare earth elements. Additionally, it explored diversification properties between
green bonds, clean energy stocks, and global rare earth elements in the full sample and
during the COVID-19 episode. Thus, this study focuses on four ideas: (i) the hedge and safe
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haven properties of green bonds against economic policy uncertainty during COVID-19;
(ii) hedging and the safe haven properties of clean energy stocks; (iii) hedging and safe
haven role of rare earth elements against economic policy uncertainty during COVID-19;
and (iv) the diversification properties among green bonds, clean energy stocks, and rare
earth elements, using five-day daily values for each index within a dynamic conditional
correlation model (Engle 2002).

Firstly, the results for the full sample estimation reveal that green bonds are potential
avenues for risk mitigation. The authors find that the DCCs between green bonds and
China EPU and UK EPU indices are negative in the full sample estimation, indicating that
green bonds were a strong hedge against China and UK EPU. However, the DCC between
US EPU and green bonds indices was positive in the full sample, indicating that green
bonds were not a hedge (strong or weak) against US EPU. This implies that the volatility of
green bonds may prone to economic policy uncertainty, therefore green bonds lost their
hedging role. On the other hand, the DCCs between green bonds, US EPU, and UK EPU
are negative during COVID-19, indicating green bonds were a strong safe haven against
US EPU and UK EPU during COVID-19. However, there was not a statically significant
correlation between green bonds and China EPU, indicating that green bonds lost their
safe haven ability during COVID-19.

Secondly, clean energy stocks serve as an effective strong hedge against the US EPU
and UK EPU in full sample estimation. As the DCCs between clean energy stocks, US EPU,
and UK EPU were negative in the full sample. However, DCC was negative insignificant
in the case of China EPU, thus clean energy stocks were not a hedge against China EPU.
Particularly during COVID-19, the DCC’s patterns remained the same as the full sample
estimation, thus clean energy stocks were a safe haven against US EPU and UK EPU, but
not against China EPU.

Thirdly, the DCCs between global rare earth elements, China EPU, and UK EPU
indices are negative in full sample estimation, indicating that global rare earth elements
were a strong hedge against the economic policy uncertainty indices of China and the UK.
However, insignificant DCC between US EPU and global rare earth elements indicated no
presence of hedging role against US EPU. This may be due to the monopolistic control of
China over rare earth elements production. During COVID-19, the DCCs between global
rare earth elements and all EPUs (USA, China, and UK) were negative, indicating that
global rare earth elements were a strong safe haven against the economic policy uncertainty
of the USA, China, and the UK.

Fourthly, the results of DCCs between green bonds, clean energy stocks, and global rare
earth elements are mainly positive (though not perfectly positive) in the full sample estimation,
indicating that these securities can be used as diversifiers collectively with each other. In
particular, the positive DCCs (not perfectly positive) remained similar to the full sample, thus
these assets are diversifiers if used in a single portfolio. These results can guide policymakers
and fund managers to form suitable policies and strategies considering COVID-19.

Finally, future studies should explore the real-life importance of green bonds in terms of
sustainability in the USA and around the globe. Further research is expected on how US EPU
and China EPU are related to their country-specific rare earth elements. It will be interesting
to capture the impact of trade wars between the USA and China on rare earth elements,
especially as China has monopolistic control over rare earth production worldwide.
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