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Abstract: The change of information near light speed, advances in high-speed trading, spatial arbitrage
strategies and foreseen space exploration, suggest the need to consider the effects of the theory of
relativity in finance models. Time and space, under certain circumstances, are not dissociated and can
no longer be interpreted as Euclidean. This paper provides an overview of the research made in this
field while formally defining the key notions of spacetime, proper time and an understanding of how
time dilation impacts financial models. We illustrate how special relativity modifies option pricing and
hedging, under the Black–Scholes model, when market participants are in two different reference frames.
In particular, we look into maturity and volatility relativistic effects.
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1. Introduction

A part of finance focuses on the analysis of financial markets and products, modelling
the way agents interact and the way products should be priced or hedged. Models are
constantly adapting, though necessarily constrained by ”reality”. That is, they depend not
only on social characteristics, such as ideology, legal systems and political aspects but also
on more physical characteristics, in terms of the available resources, locations, distances
and communication times, among others. Thus, economics and financial constructs and
behaviours are subject to physical cosmos rules.

The connection between the disciplines of physics and economics in general (finance
included) is a long one. Hetherington (1983) suggested that “Adam Smith’s (1723–1790) efforts
to discover the general laws of economics were directly inspired and shaped by the examples
of Newton’s (1643–1727) success in discovering the natural laws of motion”. Likewise, the
economist Walras (1834–1910) was influenced by the physical sciences. “His law of general
equilibrium was based on the work of the mathematician Poinsot (1777–1859)” (de Paula
2002).

At the beginning of the twentieth century, Bachelier (1900) admitted that the prices of
financial assets followed a random walk. Curiously, he (known as the founder of stochas-
tic mathematical finance) anticipated the ideas from Einstein et al. (1905) in five years
on the mathematical formalization of random walks (Courtault et al. 2000). Bachelier,
thus, produced the precursor of modern finance, including the efficient markets hypothe-
sis (Eugene 1970; Fama 1991; Samuelson 1965) and the well-known Black–Scholes–Merton
pricing formula for options (Black and Scholes 1973; Merton 1973).

It was, however, much later that the econophysics name emerged, possibly used for the
first time by Stanley et al. (1996). According to Schinkus (2010), this ”new” discipline has
made important contributions to the economy, especially in the field of financial markets.
For a historical overview on econophysics see, for instance, Savoiu and Siman (2013) or de
Area Leão Pereira et al. (2017).

Int. J. Financial Stud. 2021, 9, 32. https://doi.org/10.3390/ijfs9020032 https://www.mdpi.com/journal/ijfs

https://www.mdpi.com/journal/ijfs
https://www.mdpi.com
https://orcid.org/0000-0001-8913-8062
https://orcid.org/0000-0003-3294-3962
https://doi.org/10.3390/ijfs9020032
https://doi.org/10.3390/ijfs9020032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijfs9020032
https://www.mdpi.com/journal/ijfs
https://www.mdpi.com/article/10.3390/ijfs9020032?type=check_update&version=1


Int. J. Financial Stud. 2021, 9, 32 2 of 24

The econophysics literature is currently extremely broad. It covers, not only subjects,
such as nonlinear dynamics, chaos and stochastic and diffusive processes, (Mantegna and
Stanley 1999), but also more recent topics, such as big data (Ferreira et al. 2020). Here, we
look at a relatively small sub-field of econophysics, which is that of the applicability of
relativity theories to finance, hoping to provide a smooth, yet rigorous, read to both finance
professionals and physicists.

Technical developments (such as high-speed communications and trading) as well
as possible future challenges (such as out of Earth trade and cosmos exploration) require
the integration of relativistic theories into finance models. Unfortunately, the literature
on the matter is still relatively scarce and sometimes inconsistent. Time is a fundamental
dimension and is key to all financial models. However, under the theory of relativity, time
is not absolute; instead, it is intertwined with spatial dimensions. The composition of these
spatial dimensions and a temporal one, allied with the speed of light, creates a reference
frame, called spacetime1. Events should, thus, be understood as situated in a spacetime
reference framework.

The reference to spatial dimensions and the need to introduce them to financial models
may, at first, appear odd, as these commonly do not appear in finance models, at least
in a straightforward way. Doubtlessly, if one looks closer and deeper it is possible to
identify that space dimensions are, actually, under consideration. In fact, exchanges can be
interpreted as “spatial zones”, defined by a set of (not necessarily just financial) conditions,
i.e., defined by spatial coordinates. Moreover, information propagation times between
exchanges involve space and may even lead to spatial arbitrages.

In a spacetime framework, objects or events are not defined absolutely; instead, events
are interpreted relatively to the observers motion. In other words, there is no simultaneity
nor an absolute reality between different observers in different inertial reference frames.
Each market participant’s reality depends on its own referential frame velocity relative
to the observed event’s reference frame. As a result, an asset value can be different for
different reference frames.

Einstein’s relativistic theories can be divided in two: (i) the special theory of relativity
(STR), which concerns a spacetime with no gravity (Einstein 1905); and (ii) the general
theory of relativity (GTR), which takes gravity into consideration (Einstein 1916). Here, we
focus on STR, free of gravity and accelerations, which is the simplest Einstein’s relativistic
theories and, thus, appropriate for a first introduction of relativity into finance. In gravity-
free spacetime, we are in the presence of an important type of reference frame—inertial
frames—in which the relations between the space dimensions are Euclidean and there
exists a time dimension in which events either stay at rest or continue to move in straight
lines with constant speed (Rindler 1982). Minkowski (1908)’s spacetime metric is known to
be the cosmos’ simplest space conceptualisation, under STR (Mohajan 2013).

In this paper, we begin by presenting an overview of literature that applies relativity
theories to finance, in Section 2. In Section 3, we focus on STR and the Minkowski spacetime
conceptualisation, formally introduce the necessary physical concepts and present a possi-
ble financial model setup. In Section 4, we illustrate the usage of the proposed model to
identify possible option prices discrepancies, due to time dilation and non-simultaneity of
communications. Section 5 concludes the proposed ideas, and we discuss further research
challenges.

2. State of the Art

Einstein’s axioms state that the laws of physics are identical in all inertial reference
frames and that there exists an inertial reference frame in which light, in a vacuum, always
travels rectilinearly at a constant speed, in all directions, independently of its source
(Rindler 1982). The relevance of Einstein’s axioms resides on the universal constant value
of the light speed c = 299, 792, 458 m/s in a vacuum and that the laws of physics are

1 The notion of spacetime is explained in Section 3.
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identical in all inertial reference frames. However, the light speed light leads to non-
simultaneity when observers are significantly distant from each other.

This section’s main objective, is to present the literature that covers relativity and
finance, even if some articles may now be considered, with the present technology, as
science fiction. In Krugman (2010), it is stated that the theorems are useless but true.
The fact that Krugman theorems may have, currently, no use is not a reason to stop the
knowledge path, even it it may belong in science fiction.

2.1. Interplanetary Trade

Consider, for instance, the case of Earth and Mars with a distance of 5.57× 1010 m
and 4.01 × 1011 m between themselves (NASA 2018)2. Any buy/sell order travelling
between the two planets would take ≈ 3.1 to ≈ 22.3 min to arrive. This alone creates a
non-simultaneity situation. Auer (2015) argued that, due to this non-simultaneity effect,
significant bid–ask spreads on interplanetary exchanges would be common and more
significant than the time dilation effects. One can also consider the case between markets
on Earth and a orbiting space station, although with a lower non-simultaneity difference,
compared with Earth and Mars.

Angel (2014) claimed that the no-simultaneity would produce differences in the prices
for markets participants (MPs) in different reference frames. Concerning the same reference
frame, Krugman (2010) established two fundamental interstellar trade theorems: (i) that
the interest costs should consider a common time measure to all planets reference frame
(not the reference frame of any spacecraft) and (ii) that interest rates would equalize
across planets.

The concern with the establishment of a common reference frame was also highlighted
by Morton (2016). This paper mentions that, in order to avoid arbitrage or misconduct,
firms’ balance sheets should be linked to a concrete inertial reference frame. In this sense,
all MPs, in their own reference frames, would evaluate the firm’s balance sheet relative to a
benchmark reference frame. This would help to avoid different performances and risks for
the same firm.

Haug (2004) and Auer (2015) referred to the term proper interest to correct for
the non-simultaneity effect, prevent arbitrage and comply with the law of one price.
Haug (2004) also referred to proper volatility in connection with proper time, so that
MPs in different reference frames would consider the same volatility (instead of different
volatility values for different reference frames).

Although full of good ideas, the above mentioned notion of the proper interest concept,
as a way to compensate for the differences due to the coordinate and proper time differences,
may be hard to implement. Concretely, Auer (2015) considered proper interest as a constant
time dilation that hardly exists, i.e., finding an interest rate process compatible with such
an adjustment may be extremely difficult. The problem lies in the fact that this proper
interest concept merges the Lorentz factor effect with the interest rates dynamics, instead of
keeping it separate. To put it differently, even in a scenario of no (or zero) interest rate, there
is still non-simultaneity in interplanetary trading. For this reason, in our option pricing
application, we considered a zero interest rate setup as our base scenario to distinguish
pure proper time adjustments from mixed (interest rate and proper time) effects when
computing the present or future value of assets.

Considering interplanetary financial trading may, at first, seem far fetched. It is likely
not as far fetched as high-speed trading between very distant exchanges on Earth would
have looked not so long ago when there were no telecommunications. Space exploration is
on the news daily and, according to Haug (2004), “spacetime finance will play some role in
the future”. Our technological developments are enabling us to access the space outside
Earth, with the International Space Station and the several rover missions sent to Mars as

2 The distance between the planets is not always the same. Planets have elliptical orbits around the Sun. All planets have different elliptics; therefore,
the distance between them is not constant.
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examples. This motivates us to study, this knowledge field of finance, space and relativity.
The question is not whether finance will play some role in the future space exploration but
rather a question of when this will happen.

Even with our present-day technology level, delays due to no-simultaneity, are of the
utmost importance. Wissner-Gross and Freer (2010) demonstrated that light propagation
delays present opportunities for statistical arbitrage, at the Earth scale. They identified a
node map across the Earth’s surface by which the propagation of financial information
can be slowed or stopped. There can be an arbitrage at a mid-point—i.e., in land, sea or
space—between two exchange financial centres (Buchanan 2015; Haug 2018).

In fact, it is in the area of high speed trading that relativity has contributed the most
to finance.

2.2. High Speed Trading

In the works of Angel (2014), Laughlin et al. (2014), Buchanan (2015) and Haug (2018),
relativistic effects on high speed trading and communications were indicated, revealing
their potential and where they can be more significant.

The race to the fastest trading speeds with an investment of US $300 Million to obtain
2.6× 10−3 s, between London and New York stock exchanges; US $430 Million to obtain
3× 10−3 s, between Singapore and Tokyo stock exchanges; in hollow-core fibre cables;
or even neutrinos, shows how relativity is becoming ever present in finance (Buchanan
2015; Laughlin et al. 2014). Likewise, as is clear from (Buchanan 2015), the development
of lasers or very short waves, between two points, over a geodesic, preferably in line-of-
sight is a reality. Laughlin et al. (2014) reported a 3× 10−3 s decrease time in one-way
communication between New York and Chicago due to relativistically correct millisecond
resolution tick data.

Thus, the light speed limit already brings challenges not only to (future) interplanetary
but also to (present, current) intraplanetary financial trading due to delays in commu-
nications, high frequency trading, non-simultaneity and spatial and speed arbitrages as
highlighted by Angel (2014); Auer (2015); Buchanan (2015); Haug (2004 2018); Laughlin
et al. (2014); Morton (2016); Wissner-Gross and Freer (2010).

2.3. Other

Formal physical relativistic relationships have also been used to address other finance
issues, sometimes with not so straightforward mapping considerations.

Mannix (2016) called attention to the revision of the efficient markets hypothesis con-
cept, under a relativistic spacetime as there is no instantaneous incorporation of all available
information. Angel (2014) reported that the no simultaneity produces different best prices
for market participants that are not in the same reference frames. Under relativistic quan-
tum mechanics, any measurement procedure takes some amount of finite time, and thus
there are no immediate values of the measured quantity (Saptsin and Soloviev 2009). In
brief, this puts into evidence Heisenberg’s uncertainty principle (Heisenberg 1927), which,
combined with relativity, can bring a higher uncertainty in the asset valuation and increase
the no simultaneity of the incorporation of all available information. In conclusion, this
can reinforce an efficient market hypothesis revision. Heisenberg’s uncertainty principle
affirms that the increased precision on a particle position decreases the precision in the
momentum (Heisenberg 1927).

Up to now, we have focused on relativity for human physical scales although relativity is
transverse to all scales, even in quantum reality. Literature contributions are being developed
in the field of quantum relativity in econophysics that adapt, use and apply quantum model
processes, analogies or ideas (Jacobson and Schulman 1984; Romero and Zubieta-Martínez
2016; Romero et al. 2013; Saptsin and Soloviev 2009; Trzetrzelewski 2017).

In the works of Romero et al. (2013), Romero and Zubieta-Martínez (2016) and
Trzetrzelewski (2017), there are mapping considerations for the variables that require more
theoretical and empirical support with a financial or economic interpretation. For instance,
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Romero and Zubieta-Martínez (2016) considered that the physical variables mass m and po-
sition x can have their corresponding finance relations, as m = 1/σ2 and x = ln(S), where
S is the underlying asset price and σ is the volatility. In Trzetrzelewski (2017), volatility had
dimensions of s−1/2. Although these models incorporated relativity and quantum ideas in
finance models, empirical results are required to validate them.

In fact, the lack of economic and or financial direct reasoning for the variable mapping
considerations applied to the quantum relativistic models does not give proper support to
the adoption of these models. The present study will not cover this area of study.

Some literature contributions consider relativity independently of the physical space-
time reference frame. Trzetrzelewski (2017) considered the concept of relativity under
high speed trading, where the speed of light was substituted by a frequency interpretation
of orders per second. In Jacobson and Schulman (1984), Dunkel and Hänggi (2009) and
Trzetrzelewski (2017), the authors performed works in relativistic Brownian motions.
Dunkel and Hänggi (2009) developed extensive work in relativistic Brownian motions
constructed under mathematical and physical considerations, with the potential to be inte-
grated in finance models. Under a relativistic extension of Brownian motion, Kakushadze (
2017) studied the volatility smile as a relativistic effect. In these studies, relativity, however,
was not associated with our living spacetime structure.

Relativity is a time reversal invariance theory, like all basic theories in physics. The
macroscopic world is not time reversal invariant as explained by thermodynamics and
entropy. Zumbach (2007) stated that time reversal invariance is only observed in stochastic
volatility and regime switching processes and that GARCH(1,1) can only explain some
asymmetry. Tenreiro Machado (2014) applied relativity in financial time series, and Pincak
and Kanjamapornkul (2018) used relativity in financial time series forecast models. Pincak
and Kanjamapornkul (2018) considered a special Minkowski metric where price and time
cannot be separated.

The heterogeneity of the above mentioned literature has one common feature: the fact
that each author adapted STR differently! In fact, except for the cases of interplanetary
trade and (intraplanetary) high speed trading, where some consistency (finally) seems to
appear, in almost all other cases, key concepts of relativity theory change, depending on
the concrete application. Sometimes, this even occurs without taking into consideration
the physical properties that they must obey, which may lead to a loss of sense resulting
from the calculations. To avoid falling into that “trap”, in Section 3, we present a possible
formal setup, focusing on properly defining the necessary physical concepts.

3. Spacetime Finance

We start by revisiting and discussing some key concepts from physics, then we
formalize Minkowshi Minkowski (1908) spacetime, the associated Lorentz trasnformations
and the idea of proper time.

3.1. Concepts

• Spacetime
Spacetime is a space concept where time and spatial dimensions are intertwined and
undissociated and where a reference frame is defined. Its dimensions can be in-
terpreted as “degrees of freedom”, which theoretically provide an infinite set of
coordinates available to the event.
However, spacetime dimensions are isotropic, which means the relation between
different reference frames must be deterministic. Thus, they cannot be modelled using
stochastic processes. Furthermore, the isotropy of the time dimension does not mean
that a "back-in-time" occurrence is possible, it only states that the time flow direction
does not matter. Taking a finance perspective, this means that we may calculate future
values or present values—i.e., the time flow direction can be what better suits us—
however, of course, there is no "back-in-time" possibility. These are the most common
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mistakes identified in the literature. A stock exchange from a specific city may be
defined in a spacetime concept with its spatial coordinates and time dimension.

• Market participants (and observers)
The term “observer” is widely used in physics and relativity literature. It intends to
describes someone—e.g., a researcher—that does not interfere with what is being stud-
ied, nor with the fundamental laws of physics. When taking a financial perspective, it
is difficult conceive such a person or entity who only observes the market without
playing a role in it. Therefore, the term ”market participant” (MP) appears to be a
better fit for financial applications.
A MP can have a more direct intervention in the market—e.g., issuer, broker, investor
or analyst—or a lesser one, but still cannot disobey the fundamental laws of physics.
We save the term “observer” to refer to an outside person or entity that we can
guarantee does not interfere in the market (e.g., a researcher or supervision authority).

• Relativity
In the present study, the term relativity is used in the context of relativity that is not
Euclidean and is gravity free, under STR. It affects the spacetime metric and produces
market measurable effects. This implies very high velocities and an exact definition,
which may depend on the concrete application.
When an MP′s is moving relative to the stock exchange, relativity is involved, even if
its effects are negligible.

• Event and object
Object and event terms commonly have different meanings. An MP, may interpret
a nickel mine as an object that is inanimate. Another MP can interpret it as a set of
material points travelling through the cosmos, at thousands of meters per second. The
latter description is more frequently called an event. The term “event” is also more
suitable to refer to a deal between two MP′s.3 Thus, throughout, we refer only to
events (E), instead of events and objects.

3.2. Minkowski Spacetime

To situate an event and deal with different inertial reference frames, we need to
use a free gravity space conceptualisation. The Minkowski spacetime is a suitable four-
dimensional real vector space, under STR on which a symmetric, nondegenerate metric
is defined Naber (2012). This spacetime considers the Cartesian coordinates (x, y, z), or
the polar coordinates, as space coordinates, plus time t. The space axis dimensions in
Minkowski spacetime are all in meters m and time t is often multiplied by the speed of
light constant value c to give a new spatial dimension ct.

The reasoning for considering ct, resides in the fact that it is immediate to interpret
what a w displacement in the ct axis is: it corresponds to the time taken by light to travel
the same distance w (Siklos 2011). In addition, given the common space coordinate4, m,
time t can always be extracted from the ct dimension.

In relativity, representations like that of Figure 1 are widely used; however, with the
equivalent time represented vertically. Here, we opted to represent it in the horizontal axis,
which is typically the time-related axis in finance. We hope the change of axis will not be
considered a physical “heresy” and that it will help those from a financial background
to better visualize the concepts. It presents a spacetime diagram where the z axis is
omitted. As events can take any direction and dimensions are isotropic, this produces a
four-dimension cone called the light cone.5

3 The term “event” also has a wider meaning—it can define a happening or an object.
4 It allows to create a metric tensor to perform coordinate transformations between different inertial reference frames.
5 Only three-dimensions are represented in Figure 1.
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Figure 1. A spacetime diagram with past and future light cones and timelike, lightlike and spacelike
trajectory representation.

There are two possible light cones for each event E at each moment in time, a past
light cone and a future one. The light cone surface is only accessible to light, because the
slope line is 45◦, between ct and x. Thus, the distance that light travels, in a vacuum, in
one second6 is 299, 792, 458 m, which is the same distance travelled in all axes. This means
that a w displacement in the ct axis is the same w displacement value in the space axes.
Inside the light cone resides the four-dimensional coordinates available to all real events
defined at the origin. Events inside the cone are time-like events and correspond to all sets
of coordinates available to the E or MP defined at the origin. Space-like events are not
accessible to the MP because this implies speeds higher than c.

3.3. Lorentz Transformations

Suppose L and L′ define, respectively, the stationary and moving inertial refer-
ence frames.7 Let us consider a market participant, MPA, on the four dimension’s inertial
reference frame L with the coordinates (ct, x, y, z). Recall, all coordinates are in meters m,
and time t is obtained by dividing ct by c. In addition, we have a second market participant,
MPB, on the four dimensions inertial reference frame L′ with the coordinates (ct′, x′, y′, z′).
Furthermore, the L′ reference frame is moving away from L, according to MP1, with the

6 Recall c = 299, 792, 458 m/s in a vacuum.
7 The ′ symbol should not be interpreted as a differentiation notation. As opposed to Naber (2012), Siklos (2011), among other authors, who identify a

reference frames by s, here, we opt from the letter L, as, in finance, s is commonly used to identify the price of a stock.
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velocity v. For an event E its coordinates transformation between the inertial reference
frames L and L′, is provided by the Lorentz transformations

ct′ = γ(ct− v
c

x) , x′ = γ(x− vt) , y′ = y , z′ = z , (1)

where γ = 1/
√

1− v2

c2 is the so-called Lorentz factor (Rindler 1982).
Lorentz transformations show that time and space are not invariant but reference-

frame dependent (Siklos 2011). In Equation (1), the transformed y′ and z′ axes coincide with
the y and z axes, which, although standard, is a simplification and assumes the direction of
motion happens only in the x′ axis (Naber 2012)8.

3.3.1. Space Contraction and Time Dilation

In Figure 2, the reference frames L and L′ are drawn, only with ct, ct′, x and x′ axes,
for the purposes of illustration. Green and light blue dashed lines represent simultaneity
lines in the L and L′ reference frames, respectively. The ratio between the reference frame’s
relative velocity v and c, can also be defined as the arctan of the α.9 The simultaneity line of
ct1 is constant in the L; however, the simultaneity line of L′, represented on L, has a slope.
Vice versa, i.e., the simultaneity line ct′1, in its own reference frame L′, has no slope. Space
contraction and time dilation are implicit from the first two expressions in (1).

Let us consider the reference frame L′, where an event E′, starts at t′1, finishes at t′2
and is stationary; thereby, x′1 = x′2 = 0. The time interval of E′ is, therefore, ∆t′ = t′2 − t′1.
According to the L reference frame, however, the event E′ start and finishing moments
have the coordinates (ct1, x1) and (ct2, x2). Since the L′ reference frame is moving at a
constant velocity v according to L, the time interval in L is ∆t = γ∆t′. In conclusion, the L′

time interval is shorter than in L; therefore, the time passage on L′ is slower than on L, and
thus from L′ perspective, time dilates.

On the contrary, in terms of space, we find a contraction. Consider now a second
event Ẽ′ also taking place in L′ but that is instantaneous, i.e., (t′1 = t′2 = 0) and has length
∆x′ = x′2 − x′1. According to L, the event Ẽ′ is, also measured instantaneously (t1 = t2 = 0)
with its start and finishing coordinates (0, x1) and (0, x2), respectively; thus, ∆x = x2 − x1.
Since the reference frame L′ is moving at a constant velocity v, according to L, we have
x1 = x′1/γ and x2 = x′2/γ. Since we have γ > 1, the length in L′ is expanded, or the space
in L is contracted.

Overall, in L′, one experiences time dilation (time passes slowly) and a space contrac-
tion, relative to what happens in L. Suppose, for instance, that a market participant MPA
is in L and that another, MP′B, is in L′. MPA at instant t1, perceives MP′B at t′1, that is a
moment in the past of t1. On the other hand, MP′B perceives MPA at instant t1, already, i.e.,
at a moment that is in the future of t1.

Thus, an asset can be valued by MPA with price Pt1 at time t1, but since t1 is not in
the simultaneity line of L′, MP′B values it differently obtaining Pt′1

, different from Pt1 . Both
MPA and MP′B may be correctly pricing the asset, from the point of view of their own
reference frames, which are L and L′, respectively. The obtained difference in the asset
price is explained by the time dilation and space contraction that MP′B really feels in the L′

reference frame, relative to L. The price Pt′1
is a past value of the asset in L.

If we wish for MPs in different reference frames to trade with one another, they must
agree on “fair” asset valuations. One way to achieve this is to use what is known as proper
time, instead of coordinate time.

8 The extension of this setup to other spacetime formulations is possible. For the purpose of this paper, the simplest Minkowski spacetime
definition suffices.

9 Lorentz transformations in Equation (1) appear many times in the literature, written in hyperbolic geometric terms: ct′ = γ(ct − x tanh β),

x′ = γ(x− ct tanh β), y′ = y and z′ = z, where γ = 1/
√

1− tanh2 β = cosh β. The relation between α in Figure 2 and the β in these expressions is
as follows: v/c = tan α = tanh β.
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Figure 2. L (top image) and L′ (bottom image) spacetime representations.

3.3.2. Proper Time

Minkowski (1908) introduced the concepts of proper time that is Lorentz invariant, i.e.,
it is the same to all MP′s, independently of their coordinate systems (Siklos 2011). In fact,
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proper time can be interpreted as the temporal length (distance10 between the event start
and finishing moments), of a vector ∆τ, which measures the passage of time—e.g., the
lifetime or duration—of an event E, experienced by a MP.

Proper time, in L and L′, respectively, is defined as

∆τ =

√
(t f − ti)2 −

(x f − xi)2

c2 ∆τ′ =

√
(t′f − t′i)

2 −
(x′f − x′i)

2

c2 , (2)

where the subscripts i and f stand for the initial and final moments of an event.
The invariant result of Lemma 1 follows from Equation (1). This is also visible in

Figure 2 where the distance between points A and B is the same on both L and L′.

Lemma 1. Given two different reference frames, L and L′, with associated Lorentz transformations

as in Equation (1), have equal proper times. That is, for ∆τ =

√
(t f − ti)2 − (x f−xi)2

c2 and

∆τ′ =

√
(t′f − t′i)

2 −
(x′f−x′i)

2

c2 , we have

∆τ = ∆τ′ . (3)

Proof. Take ∆t′ = (t′f − t′i), ∆x′ = (x′f − x′i). By squaring ∆τ′ in Equation (2) and multi-

plying by c2, we obtain the result c2(∆τ′)2 = c2(∆t′)2 − (∆x′)2. From Equation (1) we find

c2(∆τ′)
2
= c2

[
γ
(

∆t− v
∆x
c2

)]2
−
[
γ
(

∆x− v∆t
)]2

= γ2
(

c2(∆t)2 − v2(∆t)2
)
+ γ2

(
v2 (∆x)2

c2 − (∆x)2
)

= c2(∆t)2 − (∆x)2

= c2(∆τ)2

∆τ′ = ∆τ

If the vector joining events Ei and E f is timelike, then (∆τ)2 > 0. These are the events
accessible to us. If (∆τ)2 = 0, the vector is lightlike—only accessible to light speed—and
when (∆τ)2 < 0 (implies complex numbers), the vector is spacelike—not accessible to us
nor to light.

3.3.3. Example

Let us consider two market participants: MPA and MPB and a concrete possible trade11.
Figure 3 illustrates the situation, from the MPA and MPB perspectives. Past and future

light cones for all relevant ct points are drawn. In this example, MPA is stationary in a
referential frame, and the time elapsed between points O and O2 is T. The time interval
between each consecutive Oi=1,2,3,4 point is T/γ.

10 That is why, in some of the literature, proper time is also referred to as proper distance or a Minkowski interval.
11 This example can be understood as an adaptation, to a financial setting, of the well-known “Twin Paradox” (Siklos 2011).
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Figure 3. The two market participant case in a spacetime diagram.

Trade and MPs movements:

• At point t = 0 in Market1, (point O), MPA and MPB, agree on the price of an asset12.
• Then MPB initiates a journey to Market2.
• Exactly the moment when MPB reaches Market2 is a simultaneous moment for MPA.

MPA is at point O2 and measures an elapsed time of T.
• Although from MPB perspective, MPA is at point O1. Thus, the elapsed time measured

by MPB is T/γ < T.
• From the Market2 perspective, the elapsed time is T/γ < T. Thus, when MPB reaches

Market2, he sees the asset price for T/γ time (point O1).
• According to MPA, when MPB reaches Market2, he sees the asset price for T (point O2).
• Now, let us consider if MPB turns around and goes back to Market1. While performing

the turn, MPB is not in an inertial reference frame, because MPB has to slow down,
turn and accelerate again.

• In this case, from MPB’s perspective, while MPB is turning back, the reality of MPA
shifts rapidly (from point O1 to O3).

• Although both meet back at point O4, in Market1, MPB spent 2T/γ time units, while
for MPA, it took longer—2T.

• Both MPA and MPB agree again on the asset price when they meet again at point O4

(the law of one price holds)13. However one of them has experienced the possible
gains or losses in less time than the other, which may be understood as some sort of
“spacetime arbitrage”.

From the above description, it follows that, in the case where MPs—i.e., the buy and
sell sides of a deal or regulation entities—are in different inertial reference frames, one needs
to consider the spacetime structure, considering the associated Lorentz transformations
and proper time.

The following axioms14 should hold.

12 Or other characteristic of the asset. For illustration purpose, we consider the price.
13 For this to happen MPA and MPB must have different pricing models for the asset price, as they experienced different time spans between their

meetings. For instance, travelling in space for MPB may be modelled using price jumps to account to for the time dilation experience, particularly
when MPB turns back and sees MPA passing from O1 to O3.

14 Axiom 1 is a generalization of Krugman (2010) theorems to take into account different reference frames.
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• Axiom 1: For all financial events and market participants, when different inertial refer-
ence frames are involved, a settlement spacetime reference frame must be considered
to serve as a benchmark.

• Axiom 2: When only time incorporates the relativity effects then proper time is the
time measure that makes the asset or financial instrument pricing model invariant to
all inertial reference frames. All market participants should follow the financial event
proper time—i.e., deal or asset duration—to evaluate the asset or financial instrument
pricing conditions.

4. Options

From the previous section, it follows that proper time is the right concept to measure
an event’s lifetime and that this quantity is invariant. Therefore, when dealing with outer
space or relativistic trading, one needs to re-define every event E—i.e., financial products,
commercial deals, etc.—so that all MP′s, independently of their inertial reference frame,
agree even if they are in different reference frame simultaneity lines.

That is, a "proper spacetime stamp" may be required for future deals, whenever MP′s
need to consider different inertial frames. Haug (2004) refers to the possibility that the asset
trade should register its own proper time and that this may be solved by implementing a
spacetime stamp on each deal so that, independently of the MP times, they will all agree
and follow, according to the assets deals, the spacetime stamp values.

In this section, we take the case of plain vanilla at-the-money (ATM) European options
to illustrate the relativistic effects presented in the previous section. Essentially, an Euro-
pean call/put option is a contract that confers the holder the right, but not the obligation, to
purchase/buy a certain underlying asset (e.g., a stock) for a fixed price K on a fixed expiry
date T, after which the option becomes worthless. We consider the Black and Scholes (1973)
model setup, as this is one of the greatest econophysics contributions to finance, where the
heat diffusion equation, widely used in physics, helped to solve the problem of finding the
fair price to option contracts.

Here, we focus only ATM calls/puts, i.e., the case when at inception t = 0, the strike
price K equals the underlying asset current price s. Without a loss of generality, we also
take S = K = 1. For simplicity, we also assume a zero interest rate r = 0%. The fact that we
consider interest rates to be zero allows us to focus on time dilation effects alone (avoiding
mixed time effects resulting from discounting). We consider, that all stationary MP′s stay
at rest for the entire life of the option. The moving MP′s maintain a constant speed (>0)
from the inception at the end of the life of the option. This is a conceptualization; in reality,
one can consider an average velocity for the MP while the life of the option elapses. The
choice of plain vanilla ATM European options, with the conditions defined previously,
instead of other assets, concerns the fact that Equation (4) is dependent only on volatility
and time. This provides a better example to access the time dilation effects.

4.1. Pricing

For S = K = 1 and r = 0%, the option price depends on two key parameters: (i) the
time to maturity T − t and (ii) its volatility σ as follows from Lemma 2.

Lemma 2. Considering the Black and Scholes (1973) model on a reference frame L, with r = 0%
and S = K = 1, the price at time t of an at-the-money call (or put) with time to maturity T and an
underlying volatility σ is given by,

Call = Put = 2N
(σ
√

T − t
2

)
− 1 , (4)

where N(·) stands for the cumulative distribution function for the Gaussian distribution.
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Proof. It follows from setting S = K = 1 and r = 0% in the standard Black–Scholes formula,
c = SN(d1)− Ke(−r(T−t))N(d2). Under that setting, we also have d1 = −d2 = σ

√
T−t
2 . The

result for puts follows from put-call parity when setting S = K = 1 and r = 0%.

Let us consider a trade between two MPs who agree on the contract/settlement
reference frame, L. That is, MP1 sells to MP2, ATM calls for a given maturity T, at the “fair”
premium in L.

Suppose, however, that after the deal is done, MP1 stays stationary in L, but MP2
starts a journey, moving relative to MP1. MP2 is in a different reference frame L′ and is also
stationary in is L′ frame.

For every day that is accounted on L—i.e., the coordinate time—less time is measured
by MP2 on L′. Recall Figure 2.

Thus, from MP2 perspective, the option premium paid is higher than the "fair" the-
oretical premium, if MP2 had accounted for the time to maturity MP2 truly experienced,
(T − t)′ = (T − t)/γ.

Proposition 1. Under the same assumption as in Lemma 2, but for the perspective of the reference
frame L′ (as defined in Section 3), the “illusion”15 price at time t of the at-the-money call (or put) is
given by,

Call′ = Put′ = 2N
(σ

2

√
T − t

γ

)
− 1 (5)

where N(·) stands for the cumulative distribution function for the Gaussian distribution and γ is
the Lorentz factor as defined in (1).

Proof. Since the settlement reference frame is L, the contracted time to maturity is (T − t)
in L. However (T − t)′ = (T − t)/γ in L′, as the Lorentz transformation from Equation (1)
applies. The result follows from the Lemma 2 solution with the same assumptions and by
changing (T− t) by (T− t)′ = (T− t)/γ. As before, put-call-parity guarantees c′ = p′, for
S = K = 1 and r = 0%.

To understand how sizable option price differences are, we also define the option price

ratio,
Call
Call′

, with Call and Call′ as defined in Equations (4) and (5), respectively. We start

by analysing the option prices in L and L′ and their ratio for varying maturities, assuming
a constant volatility σ = 15%.

Figure 4 shows the option prices Call, Call′ surfaces for maturities T between 0 and 15
years and various velocities as a percentage of the light speed constant c. In Figure 5, a surface
presents the ratio. Table 1 presents concrete values for the theoretical Call, Call′ prices and
the ratio Call/Call′ for the maturities T = {1/12, 3/12, 6/12, 1, 10, 15} and is divided in sets
of different % of c velocity c = {0.0%, 12.5%, 25.0%, 37.5%, 50.0%, 62.5%, 75.0%, 87.5% and
99.0%}. As the velocity increases, so does the effect of relativity in the time dilation due to the
γ factor. The Call′ prices increase relative to the settlement reference frame price Call. We
considered maturities of 10 and 15 years to highlight the relativistic effects.

15 Assuming only time dilation effects and not proper time.
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Figure 4. Surfaces of European ATM call (or put) prices (z-axis) in the reference frames L (left figure) and L′ (right figure),
for velocities ranging from 0.0%c to 99%c (y-axis) and maturities T (x-axis) of 1/12, 3/12, 6/12, 1, 10 and 15 years. The
asset volatility is fixed at σ = 15%. For simplicity, we consider the values at inception t = 0 and r = 0% and both prices at
inception and strike equal to one S = K = 1.

Figure 5. Surface of the ratio Call/Call′ (or Putt/Put′t), displayed on the z axis, for velocities ranging
from 0.0%c to 99%c (y-axis) and maturities T (x-axis) of 1/12, 3/12, 6/12, 1, 10 and 15 years. The
asset volatility is fixed at σ = 15%. For simplicity, we consider the values at inception t = 0 and
r = 0% and both asset prices at inception and strike equal to one S = K = 1.
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Table 1. Prices of Call, Call′ as well as the Call/Call′ ratio, for the maturities 1/12, 3/12, 6/12, 1, 10 and 15 years and for
the velocities 0.0%, 12.5%, 25.0%, 37.5%, 50.0%, 62.5%, 75.0%, 87.5% and 99.0% of c. The asset volatility is fixed at σ = 15%.
For simplicity, we consider values at inception t = 0 and r = 0% and both asset prices at inception and strike equal to one
S = K = 1.

Velocity 0.0% of c Velocity 12.5% of c Velocity 25.0% of c

T Call Call’ Call/Call’ T Call Call’ Call/Call’ T Call Call’ Call/Call’

1/12 1.73% 1.73% 1.00000 1/12 1.73% 1.72% 1.00394 1/12 1.73% 1.70% 1.01626
3/12 2.99% 2.99% 1.00000 3/12 2.99% 2.98% 1.00394 3/12 2.99% 2.94% 1.01626
6/12 4.23% 4.23% 1.00000 6/12 4.23% 4.21% 1.00394 6/12 4.23% 4.16% 1.01625

1 5.98% 5.98% 1.00000 1 5.98% 5.96% 1.00394 1 5.98% 5.88% 1.01624
10 18.75% 18.75% 1.00000 10 18.75% 18.68% 1.00387 10 18.75% 18.45% 1.01597
15 22.85% 22.85% 1.00000 15 22.85% 22.77% 1.00384 15 22.85% 22.50% 1.01582

Velocity 37.5% of c Velocity 50.0% of c Velocity 62.5% of c

T Call Call’ Call/Call T Call Call’ Call/Call’ T Call Call’ Call/Call’

1/12 1.73% 1.66% 1.03861 1/12 1.73% 1.61% 1.07456 1/12 1.73% 1.53% 1.13180
3/12 2.99% 2.88% 1.03860 3/12 2.99% 2.78% 1.07454 3/12 2.99% 2.64% 1.13177
6/12 4.23% 4.07% 1.03858 6/12 4.23% 3.94% 1.07450 6/12 4.23% 3.74% 1.13171

1 5.98% 5.76% 1.03854 1 5.98% 5.56% 1.07444 1 5.98% 5.28% 1.13159
10 18.75% 18.06% 1.03791 10 18.75% 17.47% 1.07323 10 18.75% 16.60% 1.12951
15 22.85% 22.03% 1.03756 15 22.85% 21.31% 1.07257 15 22.85% 20.25% 1.12837

Velocity 75.0% of c Velocity 87.5% of c Velocity 99.0% of c

T Call Call’ Call/Call’ T Call Call’ Call/Call’ T Call Call’ Call/Call’

1/12 1.73% 1.40% 1.22954 1/12 1.73% 1.20% 1.43716 1/12 1.73% 0.65% 2.66230
3/12 2.99% 2.43% 1.22948 3/12 2.99% 2.08% 1.43704 3/12 2.99% 1.12% 2.66195
6/12 4.23% 3.44% 1.22938 6/12 4.23% 2.94% 1.43687 6/12 4.23% 1.59% 2.66141

1 5.98% 4.86% 1.22919 1 5.98% 4.16% 1.43652 1 5.98% 2.25% 2.66034
10 18.75% 15.30% 1.22570 10 18.75% 13.11% 1.43032 10 18.75% 7.10% 2.64122
15 22.85% 18.68% 1.22379 15 22.85% 16.02% 1.42691 15 22.85% 8.69% 2.63072

Both from the different shape in the price surfaces in L and L′, respectively, on
the left and right of Figure 4 and from their ratio surface (Figure 5), it is clear that the
differences in prices is non-negligible. The price surface in L is insensitive to velocity
changes, as its is settlement reference frame. Naturally the prices of options increases with
maturity. However, in terms of the reference frame, L′ velocity does play an important
role, as expected, in particular for high maturity options. It is clear that, as velocity
increases, so does the time dilation and, correspondingly, the ratio between the two prices
on the different referential frames. It is also important to notice that the price impact is
considerable, as a ratio of 1.5 means Call is 50% higher than the Call′.

Figures 6 and 7 show time dilation effects for volatility values ranging from 1% to 30%,
for a fixed T = 1. Table 2 shows presents Call and Call′ prices and Call/Call′ ratio for the
volatility levels σ = {1.0%, 5.0%, 10.0%, 15.0%, 20.0%, 25.0%, 30.0%}, for the % velocities of
c = {0.0%, 12.5%, 25.0%, 37.5%, 50.0%, 62.5%, 75.0%, 87.5%, 99.0%}.

As expected, the time dilation effects become larger with increasing volatility. From
Figure 6, it is clear from the right image that, for high volatility levels (above 15%), there
starts to exist significant option price differences. These effects naturally depend on the
velocity at which L′ departs from L and become meaningful from 25% of the speed of light
c. From the left image, we observe that, as expected, the option prices grow with volatility.
The increase may seem almost linear in the image; however, it is not, as demonstrated by
the values in Table 2. The almost non-visible non-linearity has to do with the relative short
maturity chosen, T = 1.
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Figure 6. Surfaces of European ATM call (or put) prices (z-axis) in the reference frames L (left figure) and L′ (right figure),
for velocities ranging from 0.0%c to 99%c (y-axis) and the volatilities σ (x-axis) of 1%, 5%, 10%, 15%, 20%, 25% and 30%, for
maturity T = 1 year. For simplicity, we consider values at inception t = 0, r = 0% and both asset prices at inception and
strike equal to one S = K = 1.

Figure 7. Surface of the ratio Callt/Call′t (or Putt/Put′t), displayed on the z axis, for
velocities ranging from 0.0%c to 99%c (y-axis) and volatilities σ (x-axis) of 1%, 5%, 10%,
15%, 20%, 25% and 30%, for maturity T = 1 year. For simplicity, we consider the values
at inception t = 0 and r = 0% and both asset prices at inception and strike equal to one
S = K = 1.

The ratio in Figure 7 shows, as expected, higher price differences the higher the
velocity under consideration is. Finally, although, for each fixed velocity, the ratios appear
rather flat in volatility, that is not the case. This is better understood by looking at Table 2.
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Table 2. Prices for Call, Call′ as well as the Call/Call′ ratio, for the volatilities 1.0%, 5.0%, 10.0%, 15.0%, 20.0%, 25.0% and
30.0%, for maturity T = 1 year, for the velocities 0.0%, 12.5%, 25.0%, 37.5%, 50.0%, 62.5%, 75.0%, 87.5% and 99.0% of c. For
simplicity, we consider the values at inception t = 0 and r = 0% and both asset priced at inception and strike equal to one
S = K = 1.

Velocity 0.0% of c Velocity 12.5% of c Velocity 25.0% of c

σ Call Call’ Call/Call’ σ Call Call’ Call/Call’ σ Call Call’ Call/Call’

1% 0.40% 0.40% 1.0000 1% 0.40% 0.40% 1.0039 1% 0.40% 0.39% 1.0163
5% 1.99% 1.99% 1.0000 5% 1.99% 1.99% 1.0039 5% 1.99% 1.96% 1.0163

10% 3.99% 3.99% 1.0000 10% 3.99% 3.97% 1.0039 10% 3.99% 3.92% 1.0163
15% 5.98% 5.98% 1.0000 15% 5.98% 5.96% 1.0039 15% 5.98% 5.88% 1.0162
20% 7.97% 7.97% 1.0000 20% 7.97% 7.93% 1.0039 20% 7.97% 7.84% 1.0162
25% 9.95% 9.95% 1.0000 25% 9.95% 9.91% 1.0039 25% 9.95% 9.79% 1.0162
30% 11.92% 11.92% 1.0000 30% 11.92% 11.88% 1.0039 30% 11.92% 11.73% 1.0161

Velocity 37.5% of c Velocity 50.0% of c Velocity 62.5% of c

σ Call Call’ Call/Call’ σ Call Call’ Call/Call’ σ Call Call’ Call/Call’

1% 0.40% 0.38% 1.0386 1% 0.40% 0.37% 1.0476 1% 0.40% 0.35% 1.1318
5% 1.99% 1.92% 1.0386 5% 1.99% 1.86% 1.0746 5% 1.99% 1.76% 1.1318

10% 3.99% 3.84% 1.0386 10% 3.99% 3.71% 1.0745 10% 3.99% 3.52% 1.1317
15% 5.98% 5.76% 1.0385 15% 5.98% 5.56% 1.0744 15% 5.98% 5.28% 1.1316
20% 7.97% 7.67% 1.0385 20% 7.97% 7.41% 1.0743 20% 7.97% 7.04% 1.1314
25% 9.95% 9.58% 1.0384 25% 9.95% 9.26% 1.0742 25% 9.95% 8.79% 1.1312
30% 11.92% 11.48% 1.0383 30% 11.92% 11.10% 1.0740 30% 11.92% 10.54% 1.1309

Velocity 75.0% of c Velocity 87.5% of c Velocity 99.0% of c

σ Call Call’ Call/Call’ σ Call Call’ Call/Call’ σ Call Call’ Call/Call’

1% 0.40% 0.28% 1.2296 1% 0.40% 0.28% 1.4372 1% 0.40% 0.15% 2.6625
5% 1.99% 1.39% 1.2295 5% 1.99% 1.39% 1.4371 5% 1.99% 0.75% 2.6622

10% 3.99% 2.78% 1.2294 10% 3.99% 2.78% 1.4369 10% 3.99% 1.50% 2.6615
15% 5.98% 4.16% 1.2292 15% 5.98% 4.16% 1.4365 15% 5.98% 2.25% 2.6603
20% 7.97% 5.55% 1.2289 20% 7.97% 5.55% 1.4360 20% 7.97% 3.00% 2.6587
25% 9.95% 6.93% 1.2285 25% 9.95% 6.93% 1.4353 25% 9.95% 3.74% 2.6565
30% 11.92% 8.31% 1.2280 30% 11.92% 8.31% 1.4344 30% 11.92% 4.49% 2.6539

From the analysis in this section, it is clear that “relativistic arbitrages” are non
negligible and that whenever relativistic effects take place, financial contracts should be
redefined in a common time-like measure as for proper time.

Corollary 1. Under the same assumption as in Lemma 2 and for both the settlement reference
frame L and any other reference frame L′ as defined in Section 3, the fair price at time t of an
at-the-money call (or put) with time to maturity (T − t), on the settlement reference frame L and
an underlying with volatility σ, is given by,

Call = 2N
(σ

2

√
∆τ
)
− 1 where ∆τ =

√
(∆t)2 − (∆x)2

c2 (6)

4.2. Some Greeks

We look now into the so-called greeks of options that measure the price sensitivity
with respect to the various parameters. Given our assumptions concerning the moneyness
(S = K = 1) and interest rates (r = 0%), the relevant statistics are the theta and vega.

4.2.1. Theta

The greek Theta gives us, in a ceteris paribus situation, the rate of change, as time
passes, of the value, of an options portfolio.
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Lemma 3. From Lemma 2, for a reference frame L, with r = 0% and S = K = 1, the time decay,
or the rate of change of the value or an options portfolio, Theta (Θ), of an at-the-money call (or put)
with time to maturity T and an underlying with volatility σ is given by,

ΘCall = ΘPut =
∂Call

∂t
= − σ√

8π(T − t)
e−

σ2(T−t)
8 (7)

Proof. This proceeds directly from the time partial derivative of Lemma 2.

Lemma 4. From Proposition 1, for a reference frame L′, with r = 0% and S = K = 1, the time
decay, or the rate of change of the value or an options portfolio, Theta′ (Θ′), of an at-the-money call
(or put) with time to maturity T and an underlying with volatility σ is given by,

ΘCall′ = ΘPut′ =
∂Call′

∂t
= − σ√

8πγ(T − t)
e−

σ2(T−t)
8γ (8)

Proof. This proceeds directly from the time partial derivative of Proposition 1.

Figure 8 shows the surface of the ratio Theta/Theta′, for options with maturity T = 1
year, for σ = {1.0%, 5.0%, 10.0%, 15.0%, 20.0%, 25.0%, 30.0%}, r = 0%, at inception t = 0,
for the % velocities of c = {0.0%, 12.5%, 25.0%, 37.5%, 50.0%, 62.5%, 75.0%, 87.5%, 99.0%}
and S = K = 1. Theta′ is Theta for a reference frame that is moving and measures less
time for velocities >0. For our special case, with r = 0%, the values for Theta and Theta′

are equal to calls and puts. In Table 3, the values of Theta, Theta′ and Theta/Theta′, per
calendar day, can be verified.

Figure 8. Surface of the ratio Theta/Theta′ (for a Call or Put), displayed on the z axis, for velocities
ranging from 0.0%c to 99%c (y-axis) and the volatilities σ (x-axis) of 1%, 5%, 10%, 15%, 20%, 25% and
30%, for maturity T = 1 year. For simplicity, we consider the values at inception t = 0 and r = 0%
and both asset prices at inception and strike equal to one S = K = 1. Theta′ is Theta for a reference
frame that is moving and measures less time for velocities >0. Lemma 7’s proof shows that, for a
Call or a Put, the Theta/Theta′ and Vega/Vega′ ratios are equal. Thus, Figure 8 presents both ratios.
Vega′ is Vega for a reference frame that is moving and measures less time for velocities >0.
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Table 3. Values for Theta, Theta′ and the ratio Theta/Theta′ (for a Call or Put), per calendar day, for the volatilities 1.0%,
5.0%, 10.0%, 15.0%, 20.0%, 25.0% and 30.0%, for maturity T = 1 year and for the velocities 0.0%, 12.5%, 25.0%, 37.5%, 50.0%,
62.5%, 75.0%, 87.5% and 99.0% of c. For simplicity, we consider the values at inception t = 0 and r = 0% and both asset
prices at inception and strike equal to one S = K = 1. Theta′ is Theta for a reference frame that is moving and measures less
time for velocities >0.

Velocity 0.0% of c Velocity 12.5% of c Velocity 25.0% of c

σ Theta Theta’ Theta/Theta’ σ Theta Theta’ Theta/Theta’ σ Theta Theta’ Theta/Theta’

1% −0.001995 −0.001995 1.000000 1% −0.001995 −0.001987 1.003945 1% −0.001995 −0.001963 1.016265
5% −0.009970 −0.009970 1.000000 5% −0.009970 −0.009931 1.003942 5% −0.009970 −0.009811 1.016255

10% −0.019922 −0.019922 1.000000 10% −0.019922 −0.019844 1.003935 10% −0.019922 −0.019604 1.016225
15% −0.029837 −0.029837 1.000000 15% −0.029837 −0.029720 1.003923 15% −0.029837 −0.029362 1.016175
20% −0.039695 −0.039695 1.000000 20% −0.039695 −0.039541 1.003905 20% −0.039695 −0.039066 1.016104
25% −0.049480 −0.049480 1.000000 25% −0.049480 −0.049288 1.003883 25% −0.049480 −0.048700 1.016013
30% −0.059172 −0.059172 1.000000 30% −0.059172 −0.058945 1.003856 30% −0.059172 −0.058246 1.015903

Velocity 37.5% of c Velocity 50.0% of c Velocity 62.5% of c

σ Theta Theta’ Theta/Theta’ σ Theta Theta’ Theta/Theta’ σ Theta Theta’ Theta/Theta’

1% −0.001995 −0.001921 1.038613 1% −0.001995 −0.001856 1.074568 1% −0.001995 −0.001762 1.131821
5% −0.009970 −0.009600 1.038591 5% −0.009970 −0.009279 1.074525 5% −0.009970 −0.008810 1.131746

10% −0.019922 −0.019183 1.038520 10% −0.019922 −0.018543 1.074390 10% −0.019922 −0.017607 1.131514
15% −0.029837 −0.028733 1.038401 15% −0.029837 −0.027777 1.074165 15% −0.029837 −0.026378 1.131126
20% −0.039695 −0.038233 1.038235 20% −0.039695 −0.036965 1.073850 20% −0.039695 −0.035110 1.130583
25% −0.049480 −0.047667 1.038022 25% −0.049480 −0.046094 1.073446 25% −0.049480 −0.043792 1.129886
30% −0.059172 −0.057019 1.037762 30% −0.059172 −0.055149 1.072952 30% −0.059172 −0.052409 1.129034

Velocity 75.0% of c Velocity 87.5% of c Velocity 99.0% of c

σ Theta Theta’ Theta/Theta’ σ Theta Theta’ Theta/Theta’ σ Theta Theta’ Theta/Theta’

1% −0.001995 −0.001622 1.229571 1% −0.001995 −0.001388 1.437207 1% −0.001995 −0.000749 2.662454
5% −0.009970 −0.008110 1.229446 5% −0.009970 −0.006938 1.436985 5% −0.009970 −0.003746 2.661768

10% −0.019922 −0.016209 1.229056 10% −0.019922 −0.013871 1.436290 10% −0.019922 −0.007491 2.659625
15% −0.029837 −0.024289 1.228406 15% −0.029837 −0.020790 1.435133 15% −0.029837 −0.011233 2.656058
20% −0.039695 −0.032338 1.227497 20% −0.039695 −0.027691 1.433514 20% −0.039695 −0.014973 2.651072
25% −0.049480 −0.040348 1.226328 25% −0.049480 −0.034566 1.431436 25% −0.049480 −0.018709 2.644676
30% −0.059172 −0.048307 1.224902 30% −0.059172 −0.041411 1.428900 30% −0.059172 −0.022440 2.636879

The data show that the rate of change of the option value is lower for Theta′ than for
Theta. This is due to the lesser time of the option life, measured by the moving MP, which
is not in agreement with the time decay measured by the stationary MP. The moving MP,
if travelling at a constant speed, measures less time than the one year of the option time to
maturity. This accounts for the time decay for fewer days according to his reference frame.

4.2.2. Vega

The greek Vega presents us, in a ceteris paribus situation, the rate of change of the
value of an options portfolio, with respect to the underlying asset volatility. Vega′ is Vega
for a reference frame that is moving and measures less time for velocities >0. For our
special case, with r = 0%, the values for Vega and Vega′ are equal to calls and puts. In
Table 4, the values of Vega, Vega′ and Vega/Vega′, per calendar day, can be verified.
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Table 4. Values for Vega, Vega′ and the ratio Vega/Vega′ (for a Call or Put), per calendar day, for the volatilities 1.0%, 5.0%,
10.0%, 15.0%, 20.0%, 25.0% and 30.0%, for maturity T = 1 year and for the velocities 0.0%, 12.5%, 25.0%, 37.5%, 50.0%,
62.5%, 75.0%, 87.5% and 99.0% of c. For simplicity, we consider the values at inception t = 0 and r = 0% and both asset
prices at inception and strike equal to one S = K = 1. Vega′ is vega for a reference frame that is moving and measures less
time for velocities >0.

Velocity 0.0% of c Velocity 12.5% of c Velocity 25.0% of c

σ Vega Vega’ Vega/Vega’ σ Vega Vega’ Vega/Vega’ σ Vega Vega’ Vega/Vega’

1% 0.398937 0.398937 1.000000 1% 0.398937 0.397370 1.003945 1% 0.398937 0.392552 1.016265
5% 0.398818 0.398818 1.000000 5% 0.398818 0.397252 1.003942 5% 0.398818 0.392438 1.016255

10% 0.398444 0.398444 1.000000 10% 0.398444 0.396882 1.003935 10% 0.398444 0.392082 1.016225
15% 0.397822 0.397822 1.000000 15% 0.397822 0.396267 1.003923 15% 0.397822 0.391490 1.016175
20% 0.396953 0.396953 1.000000 20% 0.396953 0.395408 1.003905 20% 0.396953 0.390661 1.016104
25% 0.395838 0.395838 1.000000 25% 0.395838 0.394306 1.003883 25% 0.395838 0.389599 1.016013
30% 0.394479 0.394479 1.000000 30% 0.394479 0.392964 1.003856 30% 0.394479 0.388304 1.015903

Velocity 37.5% of c Velocity 50.0% of c Velocity 62.5% of c

σ Vega Vega’ Vega/Vega’ σ Vega Vega’ Vega/Vega’ σ Vega Vega’ Vega/Vega’

1% 0.398937 0.384106 1.038613 1% 0.398937 0.371254 1.074568 1% 0.398937 0.324452 1.131821
5% 0.398818 0.383999 1.038591 5% 0.398818 0.371157 1.074525 5% 0.398818 0.324388 1.131746

10% 0.398444 0.383665 1.038520 10% 0.398444 0.370856 1.074390 10% 0.398444 0.324187 1.131514
15% 0.397822 0.383110 1.038401 15% 0.397822 0.370354 1.074165 15% 0.397822 0.323852 1.131126
20% 0.396953 0.382334 1.038235 20% 0.396953 0.369654 1.073850 20% 0.396953 0.323384 1.130583
25% 0.395838 0.381338 1.038022 25% 0.395838 0.368754 1.073446 25% 0.395838 0.322783 1.129886
30% 0.394479 0.380125 1.037762 30% 0.394479 0.367658 1.072952 30% 0.394479 0.322050 1.129034

Velocity 75.0% of c Velocity 87.5% of c Velocity 99.0% of c

σ Vega Vega’ Vega/Vega’ σ Vega Vega’ Vega/Vega’ σ Vega Vega’ Vega/Vega’

1% 0.398937 0.324452 1.229571 1% 0.398937 0.277578 1.437207 1% 0.398937 0.149838 2.662454
5% 0.398818 0.324388 1.229446 5% 0.398818 0.277538 1.436985 5% 0.398818 0.149832 2.661768

10% 0.398444 0.324187 1.229056 10% 0.398444 0.277412 1.436290 10% 0.398444 0.149812 2.659625
15% 0.397822 0.323852 1.228406 15% 0.397822 0.277202 1.435133 15% 0.397822 0.149779 2.656058
20% 0.396953 0.323384 1.227497 20% 0.396953 0.276909 1.433514 20% 0.396953 0.149733 2.651072
25% 0.395838 0.322783 1.226328 25% 0.395838 0.276532 1.431436 25% 0.395838 0.149673 2.644676
30% 0.394479 0.322050 1.224902 30% 0.394479 0.276072 1.428900 30% 0.394479 0.149601 2.636879

Lemma 5. From Lemma 2, for a reference frame L, with r = 0% and S = K = 1, the rate of
change of the value or an options portfolio, with respect to the underlying asset volatility, Vega (ν),
of an at-the-money call (or put) with time to maturity T and an underlying with volatility σ, is
given by,

νCall = νPut =
∂Call

∂σ
=

√
T − t
2π

e−
σ2(T−t)

8 (9)

Proof. This proceeds directly from the volatility partial derivative of Lemma 2.

Lemma 6. From Proposition 1, for a reference frame L′, with r = 0% and S = K = 1, the rate of
change of the value or an options portfolio, with respect to the underlying asset volatility, Vega′

(ν′), of an at-the-money call (or put) with time to maturity T and an underlying with volatility σ, is
given by,

νCall′ = νPut′ =
∂Call′

∂σ
=

√
T − t
2πγ

e−
σ2(T−t)

8γ (10)

Proof. This proceeds directly from the volatility partial derivative of Proposition 1.
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Lemma 7. The ratio of Theta/Theta′ is equal to the ratio of Vega/Vega′. From Lemmas 3–6 we
have,

ΘCall
ΘCall′

=
ΘPut
ΘPut′

=
νCall
νCall′

=
νPut
νPut′

=
√

γe
σ2(T−t)(1−γ)

8γ (11)

Proof. This proceeds directly from Lemmas 3–6.

Lemma 7 proves that, for a Call or a Put, the Theta/Theta′ and Vega/Vega′ ratios
are equal. Consequently, Figure 8 presents both ratios. The data show that the rate of
change of the option value, in respect to volatility is lower for Vega′ than for Vega. This
is due to the lower time of the option’s life, measured by the moving MP, which is not in
agreement with the time measured by the stationary MP. The moving MP, if travelling
at a constant speed, measures less time than the one year of the option time to maturity;
therefore, the volatility is reflected in a minor period. Lemma 2 and Proposition 1 prove,
respectively, that Call = Put and Call′ = Put′. A MP that is long in a portfolio of one Call
(or a Put), from reference frame L and long on a Put′ (or a Call), from reference frame L′,
measures the portfolio valuation given by Call − Put′ = Call′ − Put. Table 5, presents the
values for Call = Put, Call′ = Put′ and the difference Call − Put′ = Call′ − Put for the
volatilities 1.0%, 5.0%, 10.0%, 15.0%, 20.0%, 25.0% and 30.0%, for maturity T = 1 year and
for the velocities 0.0%, 12.5%, 25.0%, 37.5%, 50.0%, 62.5%, 75.0%, 87.5% and 99.0% of c. For
simplicity, we consider the values at inception t = 0 and r = 0% and both asset prices at
inception and strike equal to one S = K = 1.

Table 5. Values for Call = Put, Call′ = Put′ and the difference Call − Put′ = Call′ − Put for T = 1, volatilities 1.0%, 5.0%,
10.0%, 15.0%, 20.0%, 25.0% and 30.0%, and for velocities 0.0%, 12.5%, 25.0%, 37.5%, 50.0%, 62.5%, 75.0%, 87.5% and 99.0% of
c. For simplicity, we consider the values at inception t = 0, r = 0% and both asset prices at inception and strike equal to one
S = K = 1. Lemma 2 and Proposition 1 prove, respectively, that Call = Put and Call′ = Put′.

Velocity 0.0% of c Velocity 12.5% of c Velocity 25.0% of c

σ Call Call’ Call-Put’ =
Put-Call’ σ Call Call’ Call-Put’ =

Put-Call’ σ Call Call’ Call-Put’ =
Put-Call’

1% 0.40% 0.40% 0.000% 1% 0.40% 0.40% 0.002% 1% 0.40% 0.39% 0.006%
5% 1.99% 1.99% 0.000% 5% 1.99% 1.99% 0.008% 5% 1.99% 1.96% 0.032%
10% 3.99% 3.99% 0.000% 10% 3.99% 3.97% 0.016% 10% 3.99% 3.92% 0.064%
15% 5.98% 5.98% 0.000% 15% 5.98% 5.96% 0.023% 15% 5.98% 5.88% 0.096%
20% 7.97% 7.97% 0.000% 20% 7.97% 7.93% 0.031% 20% 7.97% 7.84% 0.127%
25% 9.95% 9.95% 0.000% 25% 9.95% 9.91% 0.039% 25% 9.95% 9.79% 0.158%
30% 11.92% 11.92% 0.000% 30% 11.92% 11.88% 0.047% 30% 11.92% 11.73% 0.189%

Velocity 37.5% of c Velocity 50.0% of c Velocity 62.5% of c

σ Call Call’ Call-Put’ =
Put-Call’ σ Call Call’ Call-Put’ =

Put-Call’ σ Call Call’ Call-Put’ =
Put-Call’

1% 0.40% 0.38% 0.015% 1% 0.40% 0.37% 0.028% 1% 0.40% 0.35% 0.046%
5% 1.99% 1.92% 0.074% 5% 1.99% 1.86% 0.138% 5% 1.99% 1.76% 0.232%
10% 3.99% 3.84% 0.148% 10% 3.99% 3.71% 0.277% 10% 3.99% 3.52% 0.464%
15% 5.98% 5.76% 0.222% 15% 5.98% 5.56% 0.414% 15% 5.98% 5.28% 0.695%
20% 7.97% 7.67% 0.295% 20% 7.97% 7.41% 0.551% 20% 7.97% 7.04% 0.925%
25% 9.95% 9.58% 0.368% 25% 9.95% 9.26% 0.687% 25% 9.95% 8.79% 1.154%
30% 11.92% 11.48% 0.440% 30% 11.92% 11.10% 0.822% 30% 11.92% 10.54% 1.380%

Velocity 75.0% of c Velocity 87.5% of c Velocity 99.0% of c

σ Call Call’ Call-Put’ =
Put-Call’ σ Call Call’ Call-Put’ =

Put-Call’ σ Call Call’ Call-Put’ =
Put-Call’

1% 0.40% 0.28% 0.121% 1% 0.40% 0.28% 0.121% 1% 0.40% 0.15% 0.249%
5% 1.99% 1.39% 0.607% 5% 1.99% 1.39% 0.607% 5% 1.99% 0.75% 1.245%
10% 3.99% 2.78% 1.213% 10% 3.99% 2.78% 1.213% 10% 3.99% 1.50% 2.489%
15% 5.98% 4.16% 1.817% 15% 5.98% 4.16% 1.817% 15% 5.98% 2.25% 3.731%
20% 7.97% 5.55% 2.418% 20% 7.97% 5.55% 2.418% 20% 7.97% 3.00% 4.970%
25% 9.95% 6.93% 3.017% 25% 9.95% 6.93% 3.017% 25% 9.95% 3.74% 6.203%
30% 11.92% 8.31% 3.611% 30% 11.92% 8.31% 3.611% 30% 11.92% 4.49% 7.431%
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Although the results here presented depend upon the fact that we assumed S =
K = 1, t = 0 and r = 0%, these assumptions can be easily relaxed with the appropriate
straightforward generalization of the results in Equations (4) and (5), for any s, K and r.

5. Conclusions

This paper presents evidence for the future/theoretical need to incorporate relativity
in finance models. Sooner or later, trading with market participants in different reference
frames will be possible. At the same time, relativity has already begun to be introduced into
financial models—sometimes without consistency. That is, more often than not, physical
effects are used without taking into account their (physical) nature.

Here, we define key physical concepts and definitions and propose a simple market
set up—based upon the special theory of relativity (STR)—to consider relativistic effects
whenever market participants may belong to two (or more) different reference frames.
To illustrate such effects in option pricing and hedging, we departed from the classical
Black–Scholes model and showed that pricing and hedging ratios would vary considerably
depending on which reference frame one considers. We showed that time dilation effects
on the prices of plain vanilla European options were significant and particularly sizable
for long maturity options on volatile underlings as the velocity grew. The sensitivity of
prices—greeks—were also subject to meaningful effects.

Thus, to avoid arbitrages or erroneous evaluations, we propose the usage of the
physical concept of proper time in the setup of financial contracts for market participants.
In this manner, both prices and greeks would depend only on the proper time, which is
invariant across different reference frames.

Overall, we established the following ”relativistic axioms”: (1) For all financial events
and market participants, when different inertial reference frames are involved, a settlement
spacetime reference frame must be considered to serve as a benchmark. (2) When only time
incorporates relativity effects, then proper time is the time measure that makes the asset or
financial instrument pricing model invariant, to all inertial reference frames. All market
participants should follow the financial event proper time—i.e., deal or asset duration—to
evaluate the asset or financial instrument pricing conditions.

The results here presented can be generalized to other assets. Natural candidates, due
to the important effects time has on them, are fixed income instruments. The reason why
we opted for options has to do with the fact that we could set the interest rate to be zero,
while, when dealing with fixed income instruments, by definition, we cannot. By setting
r = 0%, we could focus on the time dilation effects alone, leaving the time value of money
aside. The inclusion time value of money and its interaction with time dilation effects is
the natural next step.

Taking a different direction, future studies can cover inertial reference frames with ac-
celerations and gravity, moving toward the general theory of relativity (GTR) and bringing
the theory developments to a more real scenario. Finally, developments may also be con-
ducted regarding spatial arbitrage techniques, high frequency trading and by performing
empirical test on models along with the introduction of relativity theory.
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