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Abstract: This paper examines the performance of a naïve equally weighted buy-and-hold portfolio 
and optimization-based commodity futures portfolios for various lookback and holding periods 
using data from January 1986 to December 2018. The application of Monte Carlo simulation-based 
mean-variance and conditional value-at-risk optimization techniques are used to construct the 
robust commodity futures portfolios. This paper documents the benefits of applying a sophisticated, 
robust optimization technique to construct commodity futures portfolios. We find that a 12-month 
lookback period contains the most useful information in constructing optimization-based portfolios, 
and a 1-month holding period yields the highest returns among all the holding periods examined 
in the paper. We also find that an optimized conditional value-at-risk portfolio using a 12-month 
lookback period outperforms an optimized mean-variance portfolio using the same lookback 
period. Our findings highlight the advantages of using robust optimization for portfolio formation 
in the presence of return uncertainty in the commodity futures markets. The results also highlight 
the practical importance of choosing the appropriate lookback and holding period when using 
robust optimization in the commodity portfolio formation process. 
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1. Introduction 

Optimization-based portfolio construction techniques play a vital role in both pedagogy and 
practical applications of finance. Optimization based on mean-variance (MV) and conditional value-
at-risk (CVaR) is widely used in the finance literature. The mean-variance approach to portfolio 
construction considers both expected returns and the variance of the returns on risky assets to 
optimize portfolio weights and achieve the highest expected return for a given level of risk 
(Markowitz 1952). Following the seminal work of Markowitz (1952), numerous studies have explored 
the performance and characteristics of optimization-based portfolios: industry value-at-risk (Lwin et 
al. 2017), mean-variance efficiency in the presence of background risk (Huang and Yang 2020); asset 
weighting bounds (Green and Hollifield 1992); behavioral mean-variance portfolios (Bi et al. 2018); 
constrained portfolio estimation (Grauer and Shen 2000); the equally weighted portfolio (DeMiguel 
et al. 2009); mean-variance portfolios using factor models (Fan et al. 2008); various forms of 
optimization portfolios (Goldfarb and Iyengar 2003; Scherer 2007; Tütüncü and Koenig 2004; 
Zakamulin 2017); conditional value-at-risk (Lim et al. 2011); and worst-case optimization (Kim et al. 
2013). One of the shortfalls of the standard mean-variance approach is that it considers one set of data 
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realization but fails to consider many other possible realizations of data that may occur due to various 
sources of risk. 

The traditional optimization technique is often an unintentional error maximizer which 
frequently overweights uncertain statistics. Although it is intuitive and straightforward, the practical 
application of mean-variance analysis is problematic because as the number of assets grows, the 
weights of the individual assets do not approach zero as quickly as suggested by naïve notions of 
diversification (Green and Hollifield 1992). The added benefit of volatility and correlation 
information is often offset by the uncertainty with which you measure the statistics. Moreover, mean-
variance optimal portfolios are very sensitive to slight changes in input parameters. The presence of 
outliers heavily influences the outcomes of the conventional measure of covariance (Huo et al. 2012). 
Best and Grauer (1991) show that in the presence of a budget and non-negativity constraint, the 
portfolio weights, mean, and variance can be exceedingly sensitive to changes in individual asset 
means. For instance, an increase of 11.6% per annum in the mean of any stock in a portfolio can drive 
nearly half of the constituents away. Such sensitivity via input parameters is very problematic for 
portfolio optimization because accurate parameter estimation is complicated, particularly for returns 
(Michaud 1998). Thus, the results from various traditional optimization techniques should be used 
carefully. 

Robust estimation incorporates parameter uncertainty by defining a set of possible values, and 
the optimal solution represents the best choice when considering all of the possibilities from the 
uncertainty parameters. Aptly, robust estimation is about finding “good objective values” for all 
iterations of uncertain input parameters in an optimization problem (Tütüncü and Koenig 2004).1 
Additionally, robust optimization-based portfolios are less sensitive to input parameters (Ceria and 
Stubbs 2006). Robust optimization uses various robust approaches, including improving the 
robustness of inputs (Jorion 1986), reducing estimation errors using simulation techniques (Michaud 
and Michaud 2008), and allowing a combination of investor’s views on the model (Black and 
Litterman 1992). A portfolio constructed using robust optimization has a higher correlation between 
the actual expected returns and the alphas implied from the portfolios (Ceria and Stubbs 2006). 
Looking at robust measures of risk and return can provide a more reflective and accurate insight into 
return behavior (Kim and White 2004). As a result, robust estimation typically outperforms 
traditional mean-variance portfolios in a variety of investment scenarios since robust portfolios 
dampen the uncertainty and sensitivity issues of standard mean-variance analysis (Kim et al. 2013). 

Robust optimization has been used extensively in the field of operations and mathematical 
optics to analyze the characteristics of portfolio performance (Calafiore 2007; Elliott and Siu 2010; 
Goldfarb and Iyengar 2003; Natarajan et al. 2009; Shen and Zhang 2008; Zhu and Fukushima 2009). 
Most of the research relating to the computational advantages of robust optimization for investments 
utilizes broad market equity and volatility data (Goldfarb and Iyengar 2003; Ceria and Stubbs 2006; 
Post et al. 2019). Tütüncü and Koenig (2004) provide a more in-depth analysis of the equity markets 
by applying robust optimization techniques to large-cap growth, large-cap value, small-cap growth, 
and small-cap value and by comparing the behavior of estimates obtained via robust optimization to 
standard optimization approaches. They find that portfolios formed using robust optimization tend 
to have significantly improved worst-case behavior and demonstrate stability over long periods. 
More recently, Kim et al. (2017) conducted a comprehensive empirical analysis of the equity markets 
to endorse the practical use of robust optimization by investment managers. They find that robust 
portfolios are one of the most efficient investment strategies over the long-term (1984–2014) and 
intermediate-term (five-year sub-periods). Additionally, they note that robust optimization portfolios 
have lower levels of risk for similar levels of risk-adjusted returns compared to classical mean-
variance portfolios—that is, the optimized portfolios exhibit a relatively small worst-case loss 
measure, demonstrating their superiority at allocating risk relative to a set of conservative 
benchmarks. 

                                                                 
 

1  In practice, there are many different definitions of robustness based on various mathematical formulations. 
See Kim et al. (2016) for an overview of several optimization methodologies. 
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To date, a question that has not been addressed in the literature is whether robust optimization 
provides an advantage in portfolio construction in the commodity futures markets. Similar to the 
equity markets, active management in the commodity futures markets are concerned with the 
outperformance of a naïve benchmark portfolio (Gorton and Rouwenhorst 2006; Bhardwaj et al. 
2015). Therefore, our objective in this paper is to examine whether robust optimization-based 
commodity portfolios outperform a naïve buy-and-hold commodity futures portfolio. Additionally, 
we aim to document the risk and return characteristics of such robust commodity portfolios. 

There are three-fold contributions of this paper to commodity futures research. First, we address 
data uncertainty by comparing the performance of an equally weighted portfolio against the more 
sophisticated optimization-based commodity portfolios. Second, we document the most informative 
lookback period in the robust optimization portfolio formation process. Third, we document the 
optimal holding period for the robust optimzation portfolio formation process. 

We focus on robust optimization constructed on the traditional mean-variance and conditional 
value-at-risk measures of risk to create optimally weighted futures portfolios for five diverse 
commodity sectors—foods and fibers, grains and oilseeds, livestock, energy, and precious metals. 
The motivation for investment among commodity sectors, as opposed to individual commodity 
futures, is due to a preference for diversification among heterogenous assets (Adhikari and Putnam 
2020). The simulated data are generated using a normal distribution with a mean and covariance 
matrix of prior returns from either a 12-, 15-, or 18-month lookback period. The expected weights are 
calculated on a rolling basis by optimizing the objective function, using the simulated data, and 
rebalancing at the end of each holding period (i.e., one month). This process is repeated from January 
1986 through December 2018. We analyze the performance metrics of three MV robust optimization-
based portfolios based on the three lookback periods—MV12, MV15, and MV18—and three CVaR 
robust optimization-based portfolios conditioned on the three lookback periods—CVaR12, CVaR15, 
and CVaR18. The optimal performing robust portfolios are subsequently evaluated over 1, 3, 6, 9, and 
12-month holding periods.  

Our empirical results show that both the MV and CVaR robust optimization-based portfolios 
conditioned on return data over the prior 12 months (MV12 and CVaR12, respectively) outperform a 
naïve buy-and-hold portfolio of commodity futures on a nominal and risk-adjusted basis. We find 
that the robust optimization-based portfolios formed using both 15-month and 18-month lookback 
periods fail to outperform an equally weighted commodity futures portfolio. These findings are 
thought-provoking because they highlight the advantages of robust optimization for dealing with 
the uncertainty and sensitivity of the inputs in commodity futures portfolio formation. However, 
they also suggest a lack of efficacy when return data beyond 12 months is incorporated into the 
optimization process. 

Since the annual lookback period produces the most desirable results of all the portfolios, we 
subsequently examine the performance metrics of the MV12 and CVaR12 robust optimization-based 
portfolios over alternative holding periods. Comparing 1, 3, 6, 9, and 12-month holding periods, we 
document that the 1-month holding period portfolio with a 12-month lookback yields superior 
performance relative to the other holding periods. Our results suggest that practitioners may benefit 
from utilizing robust estimation in the commodity futures markets at this particular investment 
horizon. Overall, the MV12 and CVaR12 portfolio results are consistent with Kim et al. (2017) who 
find that the robust optimization-based portfolios are superior investment return strategies on a 
nominal and risk-adjusted basis, relative to a passive benchmark portfolio. Yet, our findings do 
highlight greater value-at-risk compared to that of the equity markets.2 

The remainder of the paper is organized as follows: Section 2 describes the data and 
methodological approach. Section 3 describes our results. Section 4 offers concluding remarks. 

2. Data and Methodology 

                                                                 
 

2  It is worth noting that there is an elliptical constraint on the standard deviation of returns in Kim et al. (2017) that is not 
assumed in our robust estimation process which may impact on the discrepancy in findings. 
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2.1. Commodity Sample and Returns Construction 

Our empirical analysis focuses on 29 different commodities from five different sectors of the 
commodity futures markets, namely, food and fibers, grains and oilseeds, livestock, energy, and 
precious metals. Table 1 provides a detailed list of the commodity futures in each sector. 

Table 1. Commodity Futures by Sector. 

Sector Commodities 
Foods and Fibers Cocoa, Coffee, Orange Juice, Sugar #11, Cotton, Lumber 

Grains and Oilseeds Corn #2, Oats, Rough Rice #2, Soybeans, Soybean Meal, Soybean Oil, 
Wheat, Barley, Canola 

Livestock Feeder Cattle, Live Cattle, Lean Hogs, Pork Bellies 
Energy Crude Oil, Heating Oil #2, Unleaded Gas, Natural Gas, Propane 

Precious Metals Copper, Gold, Palladium, Platinum, Silver 
Notes: This table shows the commodity futures represented in each commodity sector. All 
commodity futures prices are extracted from the Commodity Research Bureau (CRB). 

We extract daily futures price data for the full sample of commodities from the Commodity 
Research Bureau (CRB) from January 1, 1986 to December 31, 2018. We compute the daily returns on 
each future contract using either the nearest- or the next nearest-to-delivery contract. More 
specifically, the daily return series are constructed using the nearby futures contract, of a given 
commodity, until one month before the contract’s expiration and then rolled over to the next-nearby 
contract.3 Daily futures’ returns are computed as follows, using the rolling contract approach:  r , = F , − F ,F ,  (1) 

where, F ,  is the daily price of the futures contract i on day t on the nearest-to-delivery contract 
with expiration date T, and F ,  is the daily price of the same contract on day t + 1. Monthly return 
series are attained by compounding daily returns to a monthly frequency.4 Once the monthly returns 
for each commodity are computed, they are then assigned to their respective sector, and an equally-
weighted average is computed for the month. The sector returns are computed in this manner for the 
entire sample of commodities. 

2.2. Robust Optimization 

In constructing the robust optimization-based portfolios, the inputs are unknown at the time the 
problem must be solved. This uncertainty makes the optimization problem exceptionally challenging 
because even a small change in the data and inputs can make the optimal solution meaningless 
(Jorion 1986). Such uncertainty may arise due to many factors; for instance, fluctuations in the 
covariance matrix, the variability of market risk over time, imprecise model approximation, and of 
course, uncertainty in the mean vector. Therefore, it is imperative to have a methodology capable of 
handling input uncertainty in applied portfolio management. 

There are multiple approaches to account for data uncertainty in optimization. Set-based 
uncertainty and probabilistic uncertainty are the two most popular approaches to deal with data 
ambiguity in the optimization problem. Each of these techniques helps to obtain solutions that are 
good for most realizations of data and provides immunization against the effect of data uncertainty. 
Under the set-based uncertainty models, it is assumed that the data belong to a set with different 
constraints without making any assumptions about the relative likelihood of the various data points 

                                                                 
 

3  Returns are always calculated on the same contract and we do not include the return on collateral associated with the 
futures contract in the calculation. 

4  Asness et al. (2013) and Moskowitz et al. (2012) create a monthly series with the same procedure; specifically, to convert 
the daily returns to monthly returns the following formula is applied: R = ∏ + 1∈ − 1 . 
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within that set (Goldfarb and Iyengar 2003; Tütüncü and Koenig 2004). We appeal to the probabilistic 
uncertainty approach that uses a probability distribution to account for different outcomes in the data 
(Kim et al. 2016). 

Let     be the n-dimensional random vector of returns with joint density P( ) and f( , ) 
be a function of decision vector = (w , w, … w ) where w  is the proportion of money invested in 
asset i and random vector of returns r. The expected value and the variance of the function f( , ) 
are given by:  =  f( , ) = f( , )P( )d  (2) 

 = Var f( , ) = f( , )  P( )d − f( , )  (3) 

For a given confidence level α ∈ (0,1), the conditional value-at-risk is defined as:  CVaR f( , ) = 1(1 − α) f( , )P( )d( , ) ( , )  (4) 

where, VaR f( , ) = min γ: Pr (f( , ) ≤ γ) ≥ α . 
There are various approaches to uncertainty transmission in the mean, variance, and CVaR 

calculations. We focus on Monte Carlo integration to approximate the values of these measures. 
Under the Monte Carlo integration, we sample many scenarios for the uncertain data from a 
distribution that contains the possible values. For each sample, we estimate the values of the decision 
vector. If there are m samples, then the expected value of the decision vector is:  

= 1m ( ) (5) 

where, ( ) is some function of f( , ). 
The primary benefit of robust portfolio optimization is that portfolios are formed by solving 

optimization problems that are based on the classic mean-variance problem. Thus, robust 
optimization is a simple extension aimed at achieving enhanced and more stable performance for 
mean-variance investors. The standard Markowitz’s mean-variance optimization problem can be 
stated in the following form:  minimize 12  − θ  s. t. = 1 

(6) 

where, θ ≥ 0 is the risk-aversion coefficient. 
Let us assume that the investor is facing the investment opportunity set where a riskless bond is 

paying the risk-free rate (r ). Then the portfolio expected return (μ ) and volatility (σ ) are given 
by:   μ = ( − r ) + r  and σ =   (7) 

and the efficient portfolio can be obtained by maximizing the Sharpe ratio:  max ( − r )√   s. t. = 1 (8) 

where we impose the additional constraint that 0 ≤ w ≤ 0.75 so as not to overweight a portfolio 
into a given sector. 

In addition to the Markowitz mean-variance optimization problem, a different approach that 
minimizes the CVaR is very widely used by both academics and practitioners. The CVaR 
optimization technique, which was proposed by Rockafellar and Uryasev (2000), does not depend on 
any distributional assumptions for returns. Following Rockafellar and Uryasev (2000), CVaR can be 
defined as follows:  
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min, α + 1(1 − β)  E(f( , ) − α)  (9) 

where, α is the (1 − β)-quantile of the loss distribution tail, (x)  is x if x > 0 and 0 if x ≤ 0. The 
above problem can be restated as a linear optimization problem by introducing auxiliary variables 
(z ), one for each observation in the sample as follows:  

min, , α + 1q(1 − β) z  

s.t. + α + z ≥ 0 and z ≥ 0 for k = 1, … , q 

(10) 

where we similarly impose the additional constraint that 0 ≤ w ≤ 0.75.  An advantage of this 
formulation is that it allows us to minimize the CVaR of a portfolio via linear programming. 

2.3. Algorithms for Robust Optimization under Uncertainty 

First, we calculate three different sets of a sample mean vector and covariance matrix using 
either the past 12, 15, or 18 months of historical returns. Second, we simulate 10,000 samples for each 
lookback window using each sample mean vector and covariance matrix with 5000 observations. 
Third, we calculate the optimal commodity sector weights for each sample and estimate the weights 
vector for period t as the expected value of 10,000 simulation weights. Finally, we use this expected 
value of the sectoral weights obtained in period t  to invest in period t + 1. The portfolios are 
subsequently rebalanced every month on a rolling basis—that is, new optimal weights are calculated 
at the beginning of each month for each commodity sector. As discussed in Kim et al. (2017), investors 
utilizing robust portfolios will not rebalance with a high frequency since robust portfolios are less 
sensitive to changes in the market, and the aim is not to chase growth-potential assets aggressively. 

The lookback, or estimation, period is a critical component to robust estimation. The lookback 
refers to how long historical data is used for parameter estimation when optimizing and re-
optimizing the portfolios each at the end of each holding period. We opt to use lookback periods of 
12, 15, and 18 months to provide an adequate amount of observations to form the covariance matrix 
and estimate parameters. 5  Our minimum monthly lookback period (12) is consistent with the 
lookback period of 2 to 12 months of past returns established in the momentum literature, a signal 
which has worked well out-of-sample over time and across geography (Asness et al. 2013). 

2.4. Performance Metrics 

Following the prior research of Kim et al. (2017), we identify several metrics to analyze the 
performance of the commodity portfolios. Table 2 provides a summary and description of the 
performance metrics used to analyze the risk and return features of the seven relevant portfolios—
one naïve buy-and-hold benchmark portfolio and six robust optimization-based portfolios formed from 
investment in five commodity sectors. We present and discuss our empirical findings in Section 3. 
  

                                                                 
 

5  In fact, when the past 24 months of return data are used in the robust portfolio optimization process, both the MV and 
CVaR portfolios further underperform the naïve buy-and-hold benchmark. 
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Table 2. Performance Metrics. 

Performance Metric Description 

Arithmetic mean 
Reported as the average monthly return expressed as an annualized 

percentage. 

Standard deviation 
Reported as the average monthly standard deviation expressed as an 

annualized percentage. 

Geometric mean 
Reported as the average monthly return expressed as an annualized 

percentage. 
Cumulative return Reported as the portfolio return over the full sample period. 
Sample skewness Reported as a monthly average. 

Sample excess kurtosis Reported as a monthly average. 

Sharpe ratio 
Reported as the average excess monthly return divided by the monthly 

standard deviation, where the risk-free rate is obtained from Ken 
French’s website. 

Tracking error 

Reported as the monthly average standard deviation of the difference 
between a commodity portfolio returns and the value-weighted market 
index of returns from the Center for Research in Security Prices (CRSP). 
The CRSP market index return is obtained from Ken French’s website. 

Information ratio 
Reported as the excess monthly return of a portfolio in excess of the 

CRSP value-weighted market index of returns divided by the tracking 
error. 

CAPM alpha 
Reported as the average monthly alpha computed following Jensen 

(1968) expressed as an annualized percentage, where the market factor 
is obtained from Ken French’s website. 

CAPM beta 
Reported as the average monthly beta computed following Sharpe 

(1964), where the market factor is obtained from Ken French’s website. 

Treynor ratio 
Reported as the average excess monthly return divided by the monthly 

portfolio beta, where the risk-free rate is obtained from Ken French’s 
website. 

Sortino ratio 
Reported as the average excess monthly return divided by the monthly 
standard deviation of negative asset returns, where the risk-free rate is 

obtained from Ken French’s website. 

Historical 95% VaR 
Reported as the average expected 1-month loss with 95% certainty, 

based on historical returns. 

Normal 95% VaR 
Reported as the average expected 1-month loss with 95% certainty, 

under normality. 

Historical 95% CVaR 
Reported as the average expected 1-month loss beyond the VaR with 

95% certainty, based on normality. 

Normal 95% CVaR 
Reported as the average expected 1-month loss beyond the VaR with 

95% certainty, based on historical returns. 

M-square 

Reported as the average monthly return of a portfolio plus the product 
of the average monthly Sharpe ratio of the equally weighted 

benchmark and the average deviation of the standard deviation of the 
portfolio under consideration from the benchmark portfolio. 

Notes: This table shows the description of the performance metrics that are calculated for all 
commodity portfolios. The Ken French data library for the broad market and risk-free data can 
be found at https: //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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3. Results 

3.1. Sectoral Risk and Returns Analysis 

The underlying commodities we use in this study are diverse. Such diversity tends to manifest 
itself in smaller return correlations between constituents of different sectors rather than members 
categorized within the same sector (Adhikari and Putnam 2020). This heterogeneity can be viewed 
through the lens of distributional returns. Figure 1 plots the return distributions of the five 
commodity sectors. The energy sector exhibits a noticeable positive moderate skewness. The three 
other commodity sectors show little, if any, skewness. The foods and fibers, as well as livestock 
sectors, demonstrate slim, light tails (platykurtic) while the other return distributions more or less 
follow a standard normal distribution. Finally, the varying “peakedness” of the sector distributions 
highlights the potential usefulness of robust estimation in developing optimal portfolio allocations 
because of the marked dissimilarities. 

 
Figure 1. Empirical Distributions of Monthly Commodity Futures’ Sector Returns. Notes: 
This figure shows the distribution of monthly returns for the five commodity sectors over 
the sample period from January 1986 to December 2018. “Foods” represents the foods and 
fibers sector, “Grains” represents the grains and oilseeds sector, and “Metals” represents 
the precious metals sector. 

Figure 2 provides additional insights into the return behavior of the commodity sectors. In terms 
of cumulative total returns, the energy and precious metal sectors are the run-away winners. In 
contrast, the grains and oilseeds sectors are the worst performers during the sample period. Most of 
the commodity sectors show favorable performance in the early-to-mid 2000s, followed by a sharp 
downturn coinciding with the 2008 global financial crisis. Yet, it is apparent that the sectors do not 
comove together strongly. An equally weighted investment in the five commodity sectors seemingly 
yields obvious diversification benefits. However, the question we seek to answer is how the robust 
optimization-based portfolios perform compared to such a naïve buy-and-hold benchmark 
composed of the same constituents. 
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Figure 2. Cumulative Monthly Returns by Commodity Sector. Notes: This figure shows the 
cumulative monthly returns of the five commodity sectors used in this study for January 
1986 to December 2018. 

Table 3 summarizes the key performance metrics of the commodity sectors used in our analysis. 
As shown in the table, the energy sector yields the highest average (cumulative) return of 7.64% 
(243.72%) among the five commodity sectors. The precious metals sector narrowly follows the energy 
sector with an average (cumulative) return of 7.20% (230.11%), followed by the livestock sector, which 
lags further with an average (cumulative) return of 3.47% (112.74%). Interestingly, the foods and 
fibers and the grains and oilseeds sectors yield significantly lower average (cumulative) returns of 
1.07% (35.01%) and 0.20% (6.58%), respectively. The table also indicates that the energy sector has the 
highest volatility with an annualized standard deviation of 31.38%; this is roughly 1.5 to 2 times that 
of the other commodity sectors. The precious metals, energy, and livestock sectors offer the best risk-
adjusted returns (i.e., Sharpe, Treynor, and Sortino ratios), respectively. 

The results presented in Table 3 show interesting variation in terms of both returns and risk 
across the commodity groups. While returns and volatility are useful metrics for understanding asset 
behavior, an essential component for evaluating performance is potential severe loss scenarios. Since 
extreme fluctuations can be detrimental to returns, we look at both value-at-risk (VaR) and 
conditional value-at-risk. Based on all statistical measures, the energy sector is the most susceptible 
and prone to significant losses, followed by precious metals and the grains and oilseeds sectors. 
Overall, there is tremendous variation in the performance profiles among the five commodity sectors. 
Therefore, the groups serve our objective of a diverse set of investments to use in the robust 
optimization portfolio formation process. 
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Table 3. Performance by Commodity Sector. 

Statistics Foods Grains Livestock Energy Metals 
Arithmetic Mean (%) 1.0662 0.1996 3.4703 7.6406 7.2003 

Standard Deviation (%) 15.7008 19.1108 17.0492 31.3845 18.2431 
Geometric Mean (%) −0.1667 −1.5985 1.9863 2.6406 5.4434 

Cumulative Returns (%) 35.0131 6.5806 112.7373 243.7192 230.1109 
Sample Skewness 0.1328 0.3862 0.0607 0.6909 0.0068 

Sample Excess Kurtosis 0.9356 3.1046 0.4567 3.0975 2.3497 
Sharpe Ratio (%) −0.0384 −0.0446 0.0045 0.0390 0.0605 

Tracking Error (%) 0.0560 0.0648 0.0646 0.0971 0.0607 
Information Ratio (%) −0.1466 −0.1377 −0.0966 −0.0302 −0.0539 

CAPM Alpha (%) 0.2201 0.2008 0.0442 0.1818 0.2621 
CAPM Beta 0.0040 0.0008 0.0645 0.0339 0.0222 

Treynor Ratio (%) −0.1460 −0.1362 −0.0964 −0.0301 −0.0539 
Sortino Ratio (%) −0.0539 −0.0630 0.0064 0.0605 0.0900 

Historical 95% VaR 6.5260 8.6736 7.9052 13.5137 8.0517 
Normal 95% VaR 7.3668 9.0577 7.8108 14.2868 8.0812 

Historical 95% CVaR 9.0241 12.3231 10.1816 17.8220 11.4665 
Normal 95% CVaR 9.2607 11.3630 9.8673 18.0726 10.2818 

M-Square (%) −0.0081 −0.0084 −0.0063 −0.0048 −0.0038 
Notes: This table presents the performance metrics for each commodity sector over the 
sample period from January 1986 to December 2018. The sector returns are constructed by 
averaging the monthly futures returns assigned to each group. “Foods” represents the 
foods and fibers sector, “Grains” represents the grains and oilseeds sector, and “Metals” 
represents the precious metals sector. 

3.2. Portfolio Risk and Returns 

Figure 3 shows the cumulative returns of the naïve buy-and-hold equally weighted commodity 
futures portfolio relative to the MV robust optimization-based portfolios for the sample period from 
January 1986 to December 2018. The figure illustrates a “horse race” of sorts between the MV12, 
MV15, and MV18 portfolios against the benchmark. The MV12 pointedly outperforms the equally 
weighted benchmark, over virtually the entire sample period. The MV15 portfolio both outperforms 
and underperforms the benchmark portfolio over time, ultimately underachieving relative to the 
benchmark when the sample period ends. The MV18 portfolio underperforms the passive benchmark 
portfolio over the entire sample. 
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Figure 3. Performance of Equally Weighted and MV Optimization-based Commodity 
Portfolios. Notes: This figure shows the cumulative return for the naïve buy-and-hold 
benchmark portfolio relative to the mean-variance robust optimization-based portfolios 
over the sample period from January 1986 to December 2018. Equally weighted represents 
the naïve buy-and-hold benchmark portfolio. MV12, MV15, and MV18 represent the robust 
optimization-based mean-variance portfolios that use a 12-month, 15-month, and 18-month 
lookback period of returns, respectively, with a one-month portfolio holding period. 

Similarly, Figure 4 shows a horse race for the CVaR optimization-based portfolios relative to the 
long-only naïve benchmark. The findings in relation to the lookback periods are quite similar to the 
mean-variance portfolios in Figure 3. The CVaR12 markedly outperforms the equally weighted 
benchmark. The CVaR15 portfolio over and underperforms the benchmark at various points over the 
sample period, ultimately falling short of the benchmark portfolio by the end of 2018. The CVaR18 
portfolio consistently performs the worst of all robust optimization-based portfolios. However, 
unlike the MV18 portfolio, the CVaR18 portfolio performance tends to hug much closer to the 15-
month look back portfolio (i.e., CVaR15) post-2008. Overall, it is apparent that the robust estimation 
procedure utilizing a 12-month lookback period performs far superior to the other portfolios 
conditioned on longer lookback periods. 

 
Figure 4. Performance of Equally Weighted and CVaR Optimization-based Commodity Portfolios. 
Notes: This figure shows the cumulative return for the naïve buy-and-hold benchmark portfolio 
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relative to the robust optimization-based portfolios over the sample period from January 1986 to 
December 2018. Equally weighted represents the naïve buy-and-hold benchmark portfolio. CVaR12, 
CVaR15, and CVar18 represent the robust optimization-based conditional value-at-risk portfolios that 
use a 12-month, 15-month, and 18-month lookback period of returns, respectively, with a one-month 
portfolio holding period. 

Table 4 summarizes the performance metrics for the benchmark portfolio and all the robust 
optimization-based portfolios. Following standard practices in the commodity literature (Rad et al. 
2020; Bakshi et al. 2017; Erb and Harvey 2006; Miffre and Rallis 2007; Szymanowska et al. 2014), we 
compare the performance of the sophisticated robust optimization-based portfolios to the equally 
weighted buy-and-hold benchmark. The average (cumulative) returns for the best-performing MV12 
and CVaR12 portfolios are the 4.72% (145.42%) and 4.69% (144.58%); in contrast, the returns for the 
benchmark portfolio (EW) are 3.46% (107.21%). The annualized standard deviations of MV12 and 
CVaR12 are 15.59% and 15.55%, respectively. The benchmark portfolio, on the other hand, only has 
a standard deviation of 11.41%. The standard deviations of the 15- and 18-month lookback portfolios 
are all higher than their comparable 12-month counterpart, even though these portfolios have lower 
returns. 

Table 4. Performance Metrics by Commodity Portfolio. 

Statistics EW MV12 MV15 MV18 CVaR12 CVAR15 CVaR18 
Arithmetic Mean (%) 3.4571 4.7156 3.0853 2.2482 4.6876 2.3093 2.3355 

Standard Deviation (%) 11.4143 15.5863 15.8840 16.0667 15.5513 15.6294 16.0739 
Geometric Mean (%) 2.7800 3.4714 1.7792 0.9629 3.4493 1.0537 1.0478 

Cumulative Returns (%) 107.2094 145.4249 95.8390 70.1003 144.5779 71.9832 72.7921 
Sample Skewness −0.5860 0.6603 −0.2534 0.8613 0.6664 −0.2570 0.8595 

Sample Excess Kurtosis 3.1129 12.0746 6.7088 10.6254 12.1978 6.1192 10.7345 
Sharpe Ratio (%) 0.0095 0.0294 0.0003 −0.0144 0.0290 −0.0137 −0.0129 

Tracking Error (%) 0.0477 0.0555 0.0561 0.0573 0.0555 0.0560 0.0573 
Information Ratio (%) −0.1181 −0.0834 −0.1057 −0.1155 −0.0838 −0.1172 −0.1142 

CAPM Alpha (%) 0.1852 0.2218 0.2231 0.2014 0.2205 0.2084 0.2014 
CAPM Beta 0.0153 0.0173 0.0114 0.0092 0.0173 0.0091 0.0096 

Treynor Ratio (%) −0.1192 −0.0823 −0.1059 −0.1129 −0.0827 −0.1174 −0.1117 
Sortino Ratio (%) 0.0129 0.0444 0.0004 −0.0213 0.0437 −0.0189 −0.0190 

Historical 95% VaR 5.0998 5.8583 6.7128 6.4342 5.8908 6.6751 6.3910 
Normal 95% VaR 5.1362 7.0161 7.2886 7.4435 7.0017 7.2309 7.4398 

Historical 95% CVaR 7.7301 9.2222 10.6792 10.2852 9.2187 10.7611 10.2213 
Normal 95% CVaR 6.5130 8.8962 9.2046 9.3815 8.8776 9.1162 9.3787 

M-Square (%) −0.0055 −0.0047 −0.0059 −0.0066 −0.0047 −0.0065 −0.0065 

Notes: This table shows the performance metrics for the commodity portfolios over the sample period 
from January 1986 to December 2018. EW represents the naïve buy-and-hold benchmark. MV12, 
MV15, and MV18 represent the robust optimization-based mean-variance portfolios that use a 12-
month, 15-month, and 18-month lookback period of returns, respectively. Similarly, CVaR12, 
CVaR15, and CVar18 represent the robust optimization-based conditional value-at-risk portfolios that 
use a 12-month, 15-month, and 18-month lookback period of returns, respectively. 

Given the disparity in return and risk measures between the MV12 and CVaR12 portfolios and 
the equally weighted benchmark portfolio, it is natural to compare risk-adjusted returns to see if, in 
fact, the outperformance of the 12-month lookback portfolios is simply due to increased portfolio 
risk. The risk-adjusted measures, namely the Sharpe, Treynor, and Sortino ratios, elucidate the 
superiority of the MV12 and CVaR12 portfolios. In all cases, the risk-adjusted measures are superior 
to that of the benchmark portfolio. The same is not true of the 15- and 18-month look back portfolios. 
Hence, the outperformance of the MV12 and CVaR12 portfolios can be attributed to the optimal 
allocations through robust estimation. These results are consistent with the findings of Zhang et al. 
(2017) who find that a robust futures strategy outperforms a corresponding non-robust strategy in 
out-of-sample tests in the face of ambiguity aversion. We conclude that the performance of an equally 
weighted benchmark portfolio is suboptimal compared to the MV12 and CVaR12 robust optimization 
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portfolios. Our findings highlight the benefits of applying sophisticated, robust optimization while 
forming a portfolio consisting of commodity futures. This view has also recently found support 
within the research of Rad et al. (2020). They document the benefits of applying a sophisticated 
weighting scheme to enhance the performance of long-short commodity portfolios. 

3.3. Optimal Performance by Holding Period 

Given that the 12-month lookback and 1-month holding period provides superior return results 
against the benchmark portfolio for both the MV and CVaR optimization methodologies, we further 
investigate the properties of these portfolios by looking at various holding periods to see if the 
performance metrics can be further enhanced. Table 5 presents the results for the MV12 portfolio by 
holding period, where “HP” refers to holding period, and the succeeding integer refers to the number 
of months the weights are maintained before the portfolio is rebalanced. The statistics in the second 
column (HP1) correspond to the results found in the third column of Table 4 (MV12)—this is obvious 
since the initial portfolio analysis was conducted using only 1-month holding periods. For instance, 
the average (cumulative) return for the three-month holding period portfolio (HP3) is 3.27% 
(101.40%). We consistently find that as the holding period is extended, there is a decline in the 
portfolio’s return—that is, there is an inverse relationship between holding period and portfolio 
return performance for the arithmetic, geometric, and cumulative returns. Risk-adjusted measures 
have an inverse relationship as well, despite no obvious correlation emerging between the holding 
period and portfolio standard deviation. Overall, we find a reasonable increase in the value-at-risk 
measures as the holding period increases. The rise in risk is not linear, but it is clear that longer 
holding periods equate to additional value-at-risk while achieving lower average returns. 

Table 5. Performance Metrics by Holding Period for MV Optimization Portfolio using a 12-Month 
Lookback Period. 

Statistics HP1 HP3 HP6 HP9 HP12 
Arithmetic Mean (%) 4.7156 3.2670 3.2149 2.9777 2.8339 

Standard Deviation (%) 15.5863 16.2129 16.1022 15.9408 16.4617 
Geometric Mean (%) 3.4714 1.9352 1.9033 1.6893 1.4789 

Cumulative Returns (%) 145.4249 101.3997 99.8060 92.5416 88.1293 
Sample Skewness 0.6603 0.5784 0.5969 0.4159 0.7399 

Sample Excess Kurtosis 12.0746 10.4462 10.0213 7.6699 6.2305 
Sharpe Ratio (%) 0.0294 0.0034 0.0025 −0.0016 −0.0040 

Tracking Error (%) 0.0555 0.0566 0.0561 0.0582 0.0589 
Information Ratio (%) −0.0834 −0.1023 −0.1040 −0.1035 −0.1042 

CAPM Alpha (%) 0.2218 0.2333 0.2404 0.1644 0.1804 
CAPM Beta 0.0173 0.0115 0.0110 0.0149 0.0129 

Treynor Ratio (%) −0.0823 −0.1008 −0.1025 −0.1024 −0.1026 
Sortino Ratio (%) 0.0444 0.0050 0.0037 −0.0024 −0.0061 

Historical 95% VaR 5.8583 6.5522 6.9092 6.5516 6.7393 
Normal 95% VaR 7.0161 7.4301 7.3817 7.3243 7.5833 

Historical 95% CVaR 9.2222 9.9578 10.2224 9.9530 9.9973 
Normal 95% CVaR 8.8962 9.3858 9.3241 9.2472 9.5690 

M-Square (%) −0.0047 −0.0058 −0.0058 −0.0060 −0.0061 
Notes: This table shows the performance metrics for the mean-variance optimization-based 
commodity portfolios utilizing a 12-month lookback by holding period, over the sample period 
January 1986 to December 2018. HP1, HP3, HP6, HP9, and HP12 represent the 1-, 3-, 6-, 9-, and 12-
month portfolio holding periods, respectively. 

Table 6 shows the metrics for the CVaR12 portfolio by holding period. The statistics for the 
CVaR12 portfolio across the five different holding periods mirrors that of the MV12 portfolio. For 
instance, an inverse relationship exists between the holding period and returns, as well as the holding 
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period and risk-adjusted measures. Value-at-risk also rises in a non-linear fashion with the holding 
period. Taken together, Tables 5 and 6 clearly demonstrate that a 1-month holding period (i.e., HP1) 
generates superior return performance at a lower risk compared to the other holding periods, 
regardless of optimization methodology chosen. 

Table 6. Performance Metrics by Holding Period for CVaR Optimization Portfolio using 12-Month 
Lookback Period. 

Statistics HP1 HP3 HP6 HP9 HP12 
Arithmetic Mean (%) 4.6878 3.1452 3.1313 2.9732 2.8119 

Standard Deviation (%) 15.5513 16.1615 16.0486 15.9299 16.3438 
Geometric Mean (%) 3.4495 1.8229 1.8290 1.6876 1.4750 

Cumulative Returns (%) 144.5836 97.6744 97.2473 92.4031 87.4524 
Sample Skewness 0.6665 0.5738 0.5911 0.4486 0.6995 

Sample Excess Kurtosis 12.1978 10.5528 10.1023 7.8684 5.8570 
Sharpe Ratio (%) 0.0290 0.0013 0.0011 −0.0017 −0.0044 

Tracking Error (%) 0.0555 0.0564 0.0559 0.0582 0.0586 
Information Ratio (%) −0.0838 −0.1044 −0.1055 −0.1036 −0.1051 

CAPM Alpha (%) 0.2205 0.2345 0.2417 0.1643 0.1807 
CAPM Beta 0.0173 0.0110 0.0106 0.0149 0.0128 

Treynor Ratio (%) −0.0827 −0.1028 −0.1039 −0.1024 −0.1035 
Sortino Ratio (%) 0.0437 0.0019 0.0016 −0.0025 −0.0067 

Historical 95% VaR 5.8908 6.5674 6.9211 6.5630 6.7529 
Normal 95% VaR 7.0017 7.4156 7.3631 7.3195 7.5291 

Historical 95% CVaR 9.2186 9.9688 10.2255 9.9368 9.9135 
Normal 95% CVaR 8.8776 9.3651 9.2990 9.2411 9.5006 

M–Square (%) −0.0047 −0.0059 −0.0059 −0.0060 −0.0061 
Notes: This table shows the performance metrics for the conditional value-at-risk optimization-based 
commodity portfolios utilizing a 12-month lookback by holding period, over the sample period 
January 1986 to December 2018. HP1, HP3, HP6, HP9, and HP12 represent the 1-, 3-, 6-, 9-, and 12-
month portfolio holding periods, respectively. 

4. Concluding Remarks 

This paper studies commodity futures returns over the 33-year period ranging from January 
1986 to December 2018. In order to address data uncertainty faced by investors, we utilize robust 
estimation to form commodity portfolios using both the conventional MV and CVaR framework. 
First, we create robust optimization-based portfolios by conditioning on prior return data using 12-, 
15-, or 18-month lookback periods to generate the covariance matrix. Next, we simulate the return-
risk outcomes for each lookback window using the respective sample mean vector and covariance 
matrix to create the optimal portfolio weights for each commodity sector. Finally, the portfolios are 
held for one month and are then recalibrated for the next one month holding period on a rolling basis. 
In total, we analyze the performance metrics of three MV robust optimization-based portfolios over 
three lookback periods and three CVaR robust optimization-based portfolios over the same three 
lookback periods. 

The performance of the robust portfolios is compared against a naïve equally weighted buy-and-
hold benchmark portfolio of commodity futures. The results indicate that portfolios constructed 
using robust optimization with a 12-month lookback (MV12 and CVaR12) outperform both the 
benchmark portfolio as well as the other robust optimization-based portfolios. These findings suggest 
that the utility of historical returns beyond 12 months sharply deteriorates when used as input in 
forming robust portfolio weights. Our findings are consistent with Kim et al. (2017) that robust 
optimization-based portfolios can offer returns well beyond what a passive benchmark can offer. 
However, our findings are qualified, as only a lookback period of 12 months produces superior risk-
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adjusted returns. A more in-depth analysis of the holding period for the MV12 and CVarR12 
portfolios shows that the 1-month holding period is optimal. Overall, our findings suggest that the 
naïve equally weighting scheme traditionally employed in commodity portfolio constructions can be 
enhanced by using the sophisticated, robust optimization technique.  

The key contributions of this paper are to address data uncertainty faced by investors in the 
commodity futures markets, evaluate the performance of robust-optimized portfolios against a buy-
and-hold equally weighted portfolio, and examine the most informative lookback and holding 
periods in the commodity portfolio formation process. Our findings suggest that the naïve equally 
weighted scheme traditionally employed in the portfolio formation process can be improved by the 
use of a more sophisticated robust optimization technique. A practical implementation of robust 
optimization in the financial markets may provide valuable benefits to investors. The methodology 
can efficiently handle a class of interior-point optimizers that are capable of managing second-order 
constraints and can produce better weights than the classical mean-variance approach under 
uncertainty. Nonetheless, while risk-adjusted returns outperform a naïve benchmark, an 
implementation of this approach will have more value-at-risk for investors. 
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