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Abstract: In this paper, which is the third installment of the author’s trilogy on margin loan pricing,
we analyze 1367 monthly observations of the U.S. broker call money rate, e.g., the interest rate at
which stockbrokers can borrow to fund their margin loans to retail clients. We describe the basic
features and mean-reverting behavior of this series and juxtapose the empirically-derived laws of
motion with the author’s prior theories of margin loan pricing (Garivaltis 2019a, 2019b). This allows
us to derive stochastic differential equations that govern the evolution of the margin loan interest rate
and the leverage ratios of sophisticated brokerage clients (namely, continuous-time Kelly gamblers).
Finally, we apply Merton’s (1974) arbitrage theory of corporate liability pricing to study theoretical
constraints on the risk premia that could be generated in the market for call money. Apparently,
if there is no arbitrage in the U.S. financial markets, the implication is that the total volume of call
loans must constitute north of 70% of the value of all leveraged portfolios.

Keywords: broker call rate; call money rate; margin loans; net interest margin; risk premium;
mean-reverting processes; vasicek model; Kelly criterion; monopoly pricing; arbitrage pricing

JEL Classification: C22; C58; D42; D53; E17; E31; E41; G17; G21

“Since those who rule in the city do so because they own a lot, I suppose they’re unwilling to
enact laws to prevent young people who’ve had no discipline from spending and wasting
their wealth, so that by making loans to them, secured by the young people’s property,
and then calling those loans in, they themselves become even richer and more honored.”

—Plato, The Republic, 380 B.C.

1. Introduction

This paper adds to the literature on margin loan behavior in the stock markets of developed
economies by estimating some mean-reverting stochastic processes for the U.S. broker call money rate
in both discrete and continuous time. The broker call rate is the interest rate that banks and other
financial institutions charge for short term credits to investment brokerages, who in turn loan the
money to their clients (at a markup) in the form of margin debt.

We combine these purely empirical specifications with the author’s prior theoretical formulas on
margin loan pricing (cf. with Garivaltis 2019a, 2019b) in order to derive empirical stochastic processes
that govern the time series for brokers’ margin loan interest rates and the (unobservable) leverage
ratios of their most well-heeled and sophisticated clients (e.g., continuous-time Kelly gamblers). Thus,
the present work enhances the literature by offering hybrid empirical/theoretical statistical models
of certain financial time series (e.g., the margin loan interest rates charged by brokers to their retail
clients) for which the existing set of historical data is either nonexistent or very spotty, at best.
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To be more specific, our particular contribution amounts to combining the empirical time series
for the U.S. broker call rate with the following two theoretical relationships derived by the author in
his prior work (e.g., in the first two installments of his Margin Loan Trilogy ).

� The instantaneous monopoly price of margin loans to Kelly (1956) gamblers:

r∗L =
1
2

rB +
1
2

(
ν− σ2

2

)
. (1)

� The negotiated interest rate under instantaneous Nash (1950) Bargaining1 with Kelly gamblers:

r∗L =
3
4

rB +
1
4

(
ν− σ2

2

)
. (2)

In these formulas, r∗L denotes the (continuously-compounded) margin loan interest rate charged
by the broker over the differential time step [t, t + dt], where ν := µ − σ2/2 is the asymptotic
(or logarithmic) growth rate of the stock market index, σ is the annual volatility, and µ is the annual
(arithmetic) drift rate. rB denotes the broker’s cost of funding (“broker call money rate”) for the
duration [t, t + dt]. These formulas are of great interest on account of their simplicity and their
practicality; naturally, the broker charges more if the underlying growth opportunity

dSt := µ dt + σ dWt (3)

d (log St) =

(
µ− σ2

2

)
dt + σ dWt, (4)

is more favorable (higher ν, lower σ). Because all the action (the broker posts a monopoly price,
or the principals Nash bargain over both the price and quantity of margin loans) happens over the
differential time step [t, t+ dt], the formulas apply equally well to a general situation whereby the stock
market index St is governed by time- and state-dependent parameters µ(St, t) and σ(St, t). The affine
relationships (1) and (2) imply that the net interest margin r∗L − rB must shrink whenever the broker
call rate rB increases; ceteris paribus, for a 100 basis point fluctuation in the broker call rate, only 50 bps
will pass through to the consumer (or 75 bps under Nash Bargaining).

The purpose of this article, then, is to use empirical data to divine the general laws of motion
of the U.S. broker call rate rB(t), and to study the logical consequences for the random behavior of
margin loan interest rates, risk premia, and the leverage ratios of continuous time Kelly gamblers.
The U.S. broker call money rate, which is published daily in periodicals like The Wall Street Journal
and Investor’s Business Daily, is so-named because stock brokers must be prepared to repay these
funds immediately upon “call” from the lending institution.

The paper is organized as follows. Section 2 describes our data set, which consists of some
1367 monthly observations (covering the years 1857–1970) published by the Federal Reserve Bank of
St. Louis (FRED). We estimate the mean-reverting (monthly) specification

Call Ratet+1 = 3.943
(0.08)

+ 0.597
(0.022)

×
(

Call Ratet − 3.943
(0.08)

)
+ 2.362× εt, (5)

1 This formula corresponds to one particular threat point, whereby the broker refuses to issue the client a margin loan
(or the client refuses to borrow any money). For the general Nash Bargaining solution (relative to an arbitrary threat point),
cf. with Garivaltis (2019b). If the monopoly market structure itself is taken as the threat point, then the negotiated interest
rate will of course be lower than the monopoly price. Note that the threat of no margin loans at all is apparently so severe
that the gambler is suddenly willing to pay more than the monopoly price.
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and use it to construct a classical method-of-moments estimator of the analogous Ornstein–Uhlenbeck
process (or Vasicek model) in continuous time. Inspired by the fact that Bankrate.com reports only the
two most recent monthly observations of the broker call rate, we develop some out-of-sample forecasts
based on the empirical AR(2) model

Call Ratet+1 = 1.215
(0.112)

+ 0.456
(0.026)

·Call Ratet + 0.235
(0.026)

·Call Ratet−1 + 2.297× εt. (6)

Section 3 juxtaposes the empirical specifications (5) and (6) with the theoretical pricing formula (1)
to derive stochastic differential and difference equations that must govern the evolution of the margin
loan interest rates charged by stock brokers. As an application, we deduce and simulate the implied
law of motion for the leverage ratios of continuous time Kelly gamblers. Finally, Section 4 applies
Merton’s (1974) arbitrage theory of corporate liability pricing to derive theoretical constraints on the
risk premia that could be generated in the market for call money. Based on Fortune’s (2000) suggestion,
we model a situation whereby stock brokers are not willing or able to hedge the default risks of their
margin loans; at the same time, they must pledge their customers’ securities as collateral to the banks
and financial institutions who lend in the market for call money. This environment generates positive
risk premia because the banks are exposed to a credit event whereby the retail client defaults on his
margin loan, and the broker in turn defaults on its debt to the banks that (partially) funded the loan.
Our numerical work indicates that, in comparing the prevailing (low) U.S. Treasury yields with the
broker call rate (which is 4.25% as of this writing), the implied loan-to-value ratios of retail borrowers
are north of 70 percent. This is an absurd figure (for one thing, it contradicts U.S. Regulation-T), and it
seems to indicate that U.S. banks are earning substantial arbitrage profits on the spread of the call rate
over the risk-free rate. Section 5 concludes the paper.

Related Literature

The present paper adds to a substantial and exciting literature that studies the empirical aspects
of margin lending by investment brokerages in the United States and other developed economies
(most notably, Japan). However, most of these papers concentrate on the regulatory aspects of setting
the proper margin requirements, and the consequences that this regulation can have for stock market
volatility and asset returns. Thus, the present work offers some unique perspectives and direct insights
into empirical margin loan pricing dynamics, insights that are sorely lacking in the existing literature.

Fortune (2001) studies the mechanisms by which margin loans increase the variability of
prices in the stock market. Lepetit et al. (2008) construct an interesting empirical study of how
European banks’ expansion into fee-based services affected their margin loan pricing during the period
1996–2002. Hirose et al. (2009) examine empirical investor behaviors in the Japanese stock market,
wherein margin trading is dominated by small (retail) investors. They conclude that information on
the number of margin purchases can be predictive of future asset returns, especially of small-cap
stocks over short periods of time. Speaking of the Japanese market, Hardouvelis and Peristiani (1992)
find that an increase of the margin requirements in the First Section of the Tokyo Stock Exchange will
typically lead to a decline in margin borrowing, trading volume, and the conditional volatility of daily
returns. They find that, coincidentally, individual traders who make the most active use of margin
loans also seem to be in possession of superior market-timing abilities. More recently, Hardouvelis and
Theodossiou (2002) considered asymmetry in the relation between initial margin requirements and
stock market volatility across different bull and bear markets. They found that it is preferable (from a
regulatory perspective) to lower the margin requirements in bear markets and to raise them in bull
markets, so as to prevent pyramiding effects. Watanabe (2002) investigates the autocorrelation of daily
returns on the Tokyo Stock Exchange and finds evidence that an increase in margin requirements will
correspondingly increase the level of autocorrelation in stock returns. His result contrasts with the
empirical findings of Sentana and Wadhwani (1992), who found that margin requirements have no
significant effect on the autocorrelation of U.S. stock returns.
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2. Broker Call Rate

2.1. Basic Description of the Data

We proceed to analyze T := 1367 monthly observations of the broker call money rate (1
January 1857 through 1 November 1970, annual interest rates, in percent) as published by the
Federal Reserve Bank of St. Louis’ macrohistory database (FRED). In order to find agreement with
the author’s prior work on margin loan pricing (Garivaltis 2019a, 2019b), we must deal with the
continuously-compounded annual interest rate, as follows:

yt := Continuously-Compounded Interest Ratet

= 100× log
(

1 +
Interest Ratet

100

)
= Interest Ratet −

(Interest Ratet)
2

200
+

(Interest Ratet)
3

30, 000
− · · · (7)

Figure 1 gives a plot of the time series (yt)
T
t=1; the grey bars on the figure indicate National Bureau

of Economic Research (NBER) recessions, which have typically corresponded to precipitous declines in
the interest rate. The time series exhibits several obvious structural breaks, viz., in the 1870s, the 1900s,
and the 1920s. However, the present study focuses most of its attention on the mean-reverting aspects
of the U.S. broker call rate; the author plans to study possible hidden (Markovian) regime changes
in a future paper. For the sake of smoothing out the choppy appearance of (yt)

T
t=1, Figure 2 plots the

12-month simple moving average (SMA) given by

yt :=
1

12

11

∑
j=0

yt−j. (8)

Table 1 contains basic descriptive information about the broker call rate; in our sample, the call
money rate averaged 3.95%, with a standard deviation of 2.95% from its long-run mean. The mean
absolute deviation was 1.95%. Although at times the broker call rate has spiked to levels as high as
47.8%, the historical 95th percentile is a more palatable 8.16%.

Figure 3 shows a histogram of the realizations (yt)
1,367
t=1 = (Call Ratet)

1,367
t=1 . On that score,

making use of Gaussian basis functions and a bandwidth of h := 0.502, we have the estimated
population density function

f̂ (y) := 0.000581×
1,367

∑
t=1

0.138(y−Call Ratet)
2
, (9)

which is plotted in Figure 4. To help visualize the internal correlation structure of the call money rate,
Figure 5 gives a plot of the sample autocorrelation function

ρ̂j := 0.0000843×
1,367

∑
t=j+1

(yt − 3.95)
(
yt−j − 3.95

)
, (10)

where j ∈ {0, . . . , 12} denotes the number of lags, in months. The sample correlation coefficient for
successive monthly observations is ρ̂1 = 59.7%. In order to control for any confounding effects that
the interim observations

(
yt−j+1, yt−j+2, . . . , yt−1

)
could possibly have on the observed relationship

between yt−j and yt, Figure 6 supplements the sample correlogram with a 24-month plot of the sample
partial autocorrelation function. As illustrated by the figure, the partial autocorrelations start to lose
their statistical significance for lags in excess of 12 months.
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Figure 1. Monthly observations of the U.S. broker call money rate (continuously-compounded,
in percent) from 1 January 1857 through 1 November 1970. The grey bars indicate NBER recessions.

Figure 2. 12-month simple moving average of the broker call rate (in percent). The grey bars indicate
National Bureau of Economic Research (NBER) recessions.

Figure 3. Histogram for the U.S. broker call rate (continuously-compounded, in percent). Bin width :=
25 basis points; values > 10% are not pictured.
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Table 1. Summary statistics for monthly observations of the U.S. broker call money rate.

Sample Statistic Value

Observation frequency Monthly
Number of observations (T) 1367

Time span 114 years
Average 3.95%

Minimum 0.25%
Maximum 47.77%

Standard deviation 2.95%
Coefficient of variation 0.746

Mean absolute deviation 1.95%
Skewness 4.62

5th percentile 1%
50th percentile (median) 3.69%

95th percentile 8.16%

Basic Quantitative Description of the Broker Call Money Rate (1857:01–1970:11).

Figure 4. Estimated population density f̂ (y) for the U.S. broker call rate (Gaussian kernel,
bandwidth := 0.502). The modes are ≈ 1.4% and 4.4%.
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Figure 5. The 12-month sample correlogram for the U.S. broker call rate.
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Figure 6. 24-month plot of the sample partial autocorrelation function of the U.S. broker call rate.

2.2. Reversion to the Mean

Drawing some inspiration from the sample autocorrelation function as depicted in Figure 5,
we proceed to estimate a stationary first-order autoregressive model of (yt)

T
t=1. This amounts to the

linear stochastic difference equation

Call Ratet+1 = α + ρ ·Call Ratet + σεt, (11)

or, equivalently,
(1− ρL) yt+1 = α + σεt, (12)

where L denotes the lag operator. The deep parameters are α, ρ, and σ, and the stochastic shocks (εt)
T
t=1

are assumed to be unit white noise, e.g., they are serially uncorrelated, E [εt] ≡ 0, and Var [εt] ≡ 1.
The contemporaneous disturbance εt is assumed to be uncorrelated with Call Ratet.

Under this terminology, the long-run mean of the (continuously-compounded) interest rate is
given by

µ := E [Call Ratet] =
α

1− ρ
, (13)

and the stationary variance and standard deviation are equal to

v := Var [Call Ratet] =
σ2

1− ρ2 (14)

and
s := Std(Call Ratet) =

√
v =

σ√
1− ρ2

. (15)

Of course, the (aptly named) parameter ρ in this AR(1) model is equal to the Pearson correlation
coefficient of successive monthly interest rates:

ρ = Corr(Call Ratet, Call Ratet−1). (16)

More generally (cf. with Fuller 1976), the population autocorrelation function of the process
(yt)

∞
t=1 is given by

Corr(Call Ratet, Call Ratet−j) = ρj. (17)
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If we let θ := 1 − ρ and re-arrange the empirical specification (11), we obtain the following
equivalent representations :

Call Ratet+1 − µ = ρ× (Call Ratet − µ) + σεt, (18)

Call Ratet+1 −Call Ratet = ∆ (Call Ratet) = −θ × (Call Ratet − µ) + σεt, (19)

where θ represents the rate of monthly mean reversion per 100 basis points of deviation from the
equilibrium level. The coefficients α, ρ can be recovered from the new parameters µ, θ via the relations
α = θ × µ and ρ = 1− θ.

Table 2 gives the parameter estimates that obtain when fitting the empirical relationship
yt+1 = α + ρyt + σεt via ordinary least squares (OLS). The linear regression is illustrated in Figure 7,
which plots the broker call rate versus its lagged values. Thus, our empirical law of motion for the call
money rate is

Call Ratet+1 = 3.943
(0.08)

+ 0.597
(0.022)

×
(

Call Ratet − 3.943
(0.08)

)
+ 2.362× εt, (20)

∆ (Call Ratet) = −0.403
(0.022)

×
(

Call Ratet − 3.943
(0.08)

)
+ 2.362× εt. (21)

This means that for every 100 basis points of deviation from its long-run average of 3.94%,
the broker call rate is expected to close the gap at a rate of 40 basis points per month. However, this
mean-reverting behavior is corrupted by random disturbances whose average (root-mean-squared)
magnitude is 2.36% per month.

Table 2. Parameter estimates for mean-reverting model of the U.S. broker call money rate. *** p-value < 0.01.

Parameter/Regression Statistic Est./Value 95% Interval

α (Intercept) 1.587 *** (0.107) [1.377,1.797]
ρ (Correlation of successive observations) 0.597 *** (0.022) [0.555,0.64]

1÷ ρ (Root of 1− ρL) 1.674
θ = 1− ρ (Monthly rate of mean-reversion) 0.403

µ = α÷ θ (Long-run mean) 3.943
σ (Root-mean-squared prediction error) 2.362

s := σ÷
√

1− ρ2 (Long-run standard deviation) 2.944
Mean absolute residual 1.124

5th percentile absolute residual 0.0958
50th percentile (median) absolute residual 0.853

95th percentile absolute residual 2.787

OLS Estimates for the Mean-Reverting Specification (R2 = 36%; standard errors in parentheses).

Solving the first-order difference Equation (11) for Call Ratet in terms of Call Rate0, one gets the
expression (cf. with Hamilton 1994)

Call Ratet =
1

1− ρL
(α + σεt−1)

= µ + ρt × (Call Rate0 − µ) + σ
t−1

∑
s=0

ρt−1−sεs

= 3.943
(0.08)

+ 0.597
(0.022)

t ×
(

Call Rate0 − 3.943
(0.08)

)
+ 2.362×

t−1

∑
s=0

0.597
(0.022)

t−1−sεs. (22)
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Thus, our general forecast for the broker call rate t months hence (normalizing today’s date to 0) is

E [Call Ratet|Call Rate0] = 3.943
(0.08)

+ 0.597
(0.022)

t ×
(

Call Rate0 − 3.943
(0.08)

)
. (23)

Figure 7. Scatterplot of the monthly broker call rate versus its lagged values. The least-squares line is
ŷt+1 = 1.587 + 0.597× yt. LOESS (locally estimated scatterplot smoothing) bandwidth := 0.5.

The corresponding root-mean-squared forecast error is

Std (Call Ratet|Call Rate0) =
σ√

1− ρ2

√
1− ρ2t = s

√
1− ρ2t

= 2.944×
√

1− 0.356t. (24)

Figure 8 plots the root-mean-squared forecast error against time for t ∈ {0, . . . , 6}.

Figure 8. Root-mean-squared forecast errors (in percent) for up to six months ahead.
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Example 1 (Out-of-Sample Predictions). As of this writing2, Bankrate.com reports the following information
about the U.S. call money rate:

� One year ago, the broker call rate was y0 := 3.5%, (y0 − µ = −0.443).
� One month ago, the broker call rate was y11 = 4.25%, (y11 − µ = 0.307).
� The current U.S. call money rate (as of this writing) is also y12 = 4.25%.

Thus, from the standpoint of a month ago, today’s call money rate would have been forecasted to be 4.13% (cf.
with Figure 9), for a prediction error of 0.12%. From the standpoint of a year ago, today’s call money rate
would have been forecasted to be 3.94%, for a prediction error of 0.31%. These errors compare favorably with the
root-mean-squared errors plotted in Figure 8.

Figure 9. 12-month forecast for the broker call rate (starting from y0 := 4.25% on 18 May 2019).

2.3. AR(2) Model

Taking our cue from the fact that Bankrate.com only reports the two most recent monthly
observations of the broker call rate, we proceed to estimate a (stationary) second-order autoregressive
model for the sake of lowering our root-mean-squared prediction error. Thus, we have the empirical
specification

yt+1 = c + φ1yt + φ2yt−1 + σεt, (25)

or, equivalently, (
1− φ1L− φ2L2

)
yt+1 = c + σεt. (26)

The long-run mean is

µ := E [yt] =
c

1− φ1 − φ2
, (27)

and the unconditional variance (cf. with Fuller 1976) is

v := Var [yt] =
(1− φ2) σ2

(1 + φ2)
[
(1− φ2)

2 − φ2
1

] . (28)

When expressed in mean-deviation form, our empirical specification amounts to

yt+1 − µ = φ1(yt − µ) + φ2(yt−1 − µ) + σεt, (29)

2 That was on 18 May 2019.



Int. J. Financial Stud. 2019, 7, 56 11 of 23

or equivalently,
∆yt := yt+1 − yt = −(1− φ1)(yt − µ) + φ2(yt−1 − µ) + σεt. (30)

Table 3 summarizes the results of the autoregression. Our estimated relationship is

Call Ratet+1 = 1.215
(0.112)

+ 0.456
(0.026)

·Call Ratet + 0.235
(0.026)

·Call Ratet−1 + 2.297εt . (31)

For the sake of calculating the general forecast E [yt|y0, y1], we must solve the following
(deterministic) difference equation (cf. with Spiegel 1971):

yt+1 = c + φ1yt + φ2yt−2. (32)

A particular solution is of course given by yp
t :≡ µ. In order to solve the associated

homogeneous equation
yt+1 = φ1yt + φ2yt−2, (33)

we will require the roots of the characteristic equation

λ2 − φ1λ− φ2 = 0, (34)

which are

λ1,2 =
φ1 ±

√
φ2

1 + 4φ2

2
= 0.764,−0.308. (35)

Thus, the general solution of the difference Equation (32) is

E [yt|y0, y1] = µ +
1

λ2 − λ1

{
[λ2 (y0 − µ)− (y1 − µ)] λt

1 + [y1 − µ− λ1 (y0 − µ)] λt
2
}

= 3.938− 0.933×
{
[−0.308 (y0 − 3.938)− (y1 − 3.938)] 0.764t

+ [y1 − 3.938− 0.764 (y0 − 3.938)] (−0.308)t }. (36)

Figure 10 compares the 12-month forecasts of our estimated AR(1) and AR(2) models, given the
two most recent observations y0 := 4.25 and y1 := 4.25. Note that the AR(2) forecast exhibits a
significantly slower rate of mean-reversion than its AR(1) counterpart. On that score, Figure 11
plots the two models’ responses to an exogenous 100 basis point impulse in the broker call rate.
After six months, the persistent effect on the broker call rate amounts to 14 basis points under the
AR(2) model; at the 12-month mark, the marginal effect dissipates to just three basis points.

Table 3. Parameter estimates for AR(2) model of the U.S. broker call money rate. *** p-value < 0.01.

Parameter/Regression Statistic Est./Value 95% Interval

c (Intercept) 1.215 *** (0.112) [0.995,1.434]
φ1 (Weight on first lagged value) 0.456 *** (0.026) [0.405,0.508]

φ2 (Weight on second lagged value) 0.235 *** (0.026) [0.184,0.287]
µ = c÷ (1− φ1 − φ2) (Long-run mean) 3.938
σ (Root-mean-squared prediction error) 2.297

s (Long-run standard deviation) 2.945
Mean absolute residual 1.046

5th percentile absolute residual 0.0778
50th percentile (median) absolute residual 0.716

95th percentile absolute residual 2.884
Roots of lag polynomial 1− φ1L− φ2L2 {1.309, −3.248}
Characteristic roots (of λ2 − φ1λ− φ2) {0.764, −0.308}

OLS Estimates for the AR(2) Specification (R2 = 39%; standard errors in parentheses).
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Figure 10. 12-month forecast comparison for AR(1) and AR(2) models of the broker call rate, given the
two most recent observations y0 := 4.25 and y1 := 4.25 (as of 18 May 2019).
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Figure 11. Comparison of model responses to an exogenous 100 basis point impulse in the broker
call rate.

2.4. Vasicek Model

To better understand the short-term (intra-month) fluctuations of the broker call rate, we use our
monthly AR(1) parameter estimates to help fit an Ornstein–Uhlenbeck model of interest rate evolution
in continuous time (cf. with Mikosch 1998). Vasicek (1977) was the first researcher who used the
Ornstein–Uhlenbeck processes to model the mean-reverting behavior of interest rates. In our context,
we have the following stochastic differential equation (the time t being measured in months):

d (Call Ratet) = −θ × (Call Ratet − µ) dt + σ dWt. (37)
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Equivalently, we have the integrated form (cf. with Mikosch 1998)

Call Ratet = Call Rate0 − θ
∫ t

0
(Call Rates − µ) ds + σWt, (38)

where Wt is a standard Brownian motion and dWt := ε×
√

dt is its instantaneous change in position
over the differential time step [t, t + dt]. The parameter µ := E [Call Ratet] represents the stationary
mean, or long-run equilibrium level, of the broker call money rate. The parameter

− θ :=
E [d (Call Ratet) |Call Ratet]

Call Ratet − µ

/
dt (39)

denotes the instantaneous rate of mean-reversion, e.g., the expected rate of change in the interest rate
as a percentage of its current deviation from the long-run average. Finally, the parameter

σ2 :=
Var [d (Call Ratet) |Call Ratet]

dt
(40)

represents the local variance of interest rate changes per unit time.
The solution of the Ornstein–Uhlenbeck equation (cf. with Mikosch 1998) is

Call Ratet = µ + exp
(
−θt

)
× (Call Rate0 − µ) + σ

∫ t

0
exp

(
−θ(t− s)

)
dWs, (41)

and the stationary (long-term) standard deviation is

Std(Call Ratet) =
σ√
2θ

. (42)

The corresponding t-month ahead forecast is

E [Call Ratet|Call Rate0] = µ + exp
(
−θt

)
× (Call Rate0 − µ) , (43)

and the root-mean-squared forecast error is

Std (Call Ratet|Call Rate0) =
σ√
2θ
×
√

1− exp
(
−2θt

)
. (44)

In order to reconcile the conditional forecast function (43) with the AR(1) forecast
E [Call Ratet|Call Rate0] = µ + ρt × (Call Rate0 − µ), we must have

µ := µ = 3.943 and (45)

θ := − log ρ = 0.516. (46)

In order to reconcile the long-run standard deviation (42) with its AR(1) counterpart s = σ÷√
1− ρ2, we must have

σ := s
√
−2 log ρ = σ

√
−2 log ρ

1− ρ2 = 2.99. (47)

Thus, the following three equations summarize our estimated law of (continuous) motion for the
U.S. broker call rate.

Differential Form:

d (Call Ratet) = −0.516× (Call Ratet − 3.943) dt + 2.99× dWt, (48)
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Integral Form:

Call Ratet = Call Rate0 − 0.516
∫ t

0
(Call Rates − 3.943) ds + 2.99×Wt, (49)

Explicit Form:

Call Ratet = 3.943 + 0.597t × (Call Rate0 − 3.943) + 2.99×
∫ t

0
0.597t−sdWs. (50)

Figure 12 plots the result of an intra-month simulation of the U.S. broker call rate, starting from
an initial level of y0 := 4.25.
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Figure 12. Intra-month simulation of the (continuously-compounded) U.S. broker call rate (y0 := 4.25).

3. Implications for Margin Loan Pricing

For the sake of this section, so as to avoid any confusion, all interest rates, standard deviations,
drifts, etc. will now be reported as numbers belonging to the unit interval [0, 1] (rather than as
percentages between 0 and 100).

In the author’s prior work on margin loan pricing in continuous time (Garivaltis 2019a, 2019b),
he derived the simple theoretical relationship

Margin Loan Interest Ratet =
Broker Call Ratet

2
+ C, (51)

where C is a constant that is independent of the broker call rate and independent of the time t. This was
done by assuming that the broker’s sole (representative) client is a continuous time Kelly gambler
(cf. with Luenberger 1998) who borrows cash over each differential time step [t, t + dt] for the sake of
leveraged betting on a single risk asset (say, the market index) whose price St follows the geometric
Brownian motion

dSt := St ×
(

µS dt + σS dWS
t

)
, (52)

d (log St) =

(
µS −

σ2
S

2

)
dt + σS dWS

t . (53)
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Here, we have used the symbol dWS(t) to denote the standard Brownian motion that drives
the asset price; the drift and volatility are µS and σS, respectively. The corresponding Kelly bet
(cf. with Thorp 2006) for this market over the interval [t, t+ dt] amounts to the client betting the fraction

b(rL) :=
µS − rL

σ2
S

(54)

of his wealth on the stock, where rL denotes the continuously-compounded interest rate charged by
the broker for the duration [t, t + dt]. Thus, the instantaneous quantity of margin loans demanded per
dollar of client equity (e.g., the instantaneous demand curve) is given by the formula

q(rL) := b(rL)− 1 =

(
µS

σ2
S
− 1
)
− 1

σ2
S
× rL. (55)

Equivalently, the broker faces the inverse (instantaneous) demand curve

rL =
(

µS − σ2
S

)
− σ2

S × q (56)

for the duration [t, t + dt]. On account of the fact that the broker has constant marginal cost (viz. the
broker call rate), the corresponding monopoly midpoint price is

Margin Ratet =
Marginal Costt + Choke Price

2

=
Call Ratet

2
+

µS − σ2
S

2
=

Call Ratet

2
+

1
2

(
νS −

σ2
S

2

)
, (57)

where the parameter νS := µS − σ2
S/2 represents the expected compound (logarithmic) growth rate of

the market index (say, the S&P 500). Thus, our constant C is given by

C :=
νS
2
−

σ2
S

4
. (58)

Given the backdrop of our mean-reverting empirical model of the broker call rate, the theoretical
pricing formula (51) implies that the margin loan interest rates charged by brokers must also follow an
Ornstein–Uhlenbeck process. For, we have

d (Margin Ratet) =
d (Call Ratet)

2
= − θ

2
(Call Ratet − µ) dt +

σ

2
dWt. (59)

Bearing in mind that Call Ratet = 2× (Margin Ratet − C), we get the law of motion

d (Margin Ratet) = −θ ×
(

Margin Ratet −
µ

2
− C

)
dt +

σ

2
dWt. (60)

Thus, we conclude that the long-run average of the margin loan interest rate charged by stock
brokers should be µ/2+C, and that margin loan prices should exhibit the same level of mean reversion
(θ) as the broker’s cost of funding. However, the random fluctuations in the margin loan interest rate
should have half the magnitude of the corresponding movements in the broker call rate.

Following Garivaltis (2019b), if we use the stylized parameters νS := 0.09, σS := 0.15, and µS :=
νS + σ2

S/2 to represent the (annual) dynamics of the S&P 500 index, then we get C = 0.03938. Thus,
our hybrid empirical/theoretical model of the margin loan interest rate is

d (Margin Ratet) = −0.516× (Margin Ratet − 0.05909) + 0.01495× dWt. (61)
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On account of the linear relationship b = (µS − rL)÷ σ2
S between the margin loan interest rate

and the bet size b, it follows that the client’s quantity q = b− 1 of margin loans per dollar of equity
must also follow an Ornstein-Uhlenbeck process. A straightforward calculation shows that

dbt = dqt = −θ ×
(

qt −
µS − µ

2σ2
S

)
dt− σ

2σ2
S

dWt, (62)

where the time t is measured in months and Wt is the standard Brownian motion that drives the broker
call rate. Thus, the leverage ratio of the (representative) Kelly gambler reverts to its long-term mean of
(µS − µ)÷

(
2σ2

S
)

at the same rate θ as the broker call rate and the margin loan interest rate. Given our
empirical findings, we have the concrete (monthly) law of motion:

dbt = −0.516× (bt − 2.0338) dt− 0.6644× dWt. (63)

Thus, the long-term average leverage ratio of continuous time Kelly gamblers is b := 2.0338,
for an average quantity of q := $1.0338 borrowed per dollar of client equity. The (stationary) standard
deviation of the clients’ leverage ratios is

Std (bt) =
σ

2σ2
S

√
2θ

= 0.654. (64)

Figure 13 plots a 12-month simulation of the leverage ratios of Kelly gamblers, assuming an initial
value of b0 := 2.
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Figure 13. The 12-month simulation of Kelly gamblers’ leverage ratios (b0 := 2).

“A fuller account would address the pledging of customers’ securities by broker-dealers to
obtain loans from financial institutions.”

— Fortune (2000), in the New England Economic Review.

4. Arbitrage Pricing of Call Loans

In this section, we use Merton’s (1974, 1992) no-arbitrage approach to corporate liability pricing
to derive theoretical formulas for the broker call rate and the net interest margin that banks should
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earn on such loans. On that score, we let r denote the risk-free rate of interest, and we let R denote
the broker call rate, where ρ := R− r > 0 is the corresponding risk premium. The broker himself
charges his retail customers a margin loan interest rate of R > R. We assume that the (representative)
brokerage client borrows D dollars to finance the purchase of a single share of a risky stock or index,
whose initial price at time 0 is S0. The client’s initial equity is E0 := S0 − D > 0. As usual, we assume
that the asset price follows the geometric Brownian motion

dSt := St × (µ dt + σ dWt) , (65)

where µ is the annual drift rate, σ is the annual volatility, and Wt is a standard Brownian motion3.
Interest is assumed to compound continuously over the loan term [0, T], so that the client’s accumulated
margin loan (debit) balance at time t is DeRt. Thus, his equity fluctuates according to the random
process Et := St − DeRt.

If the broker was willing or able to continuously monitor the client’s account for solvency, then
there would be no credit risk, for, on account of the continuous sample path of (Et)t∈[0,T], the broker
could liquidate the account the instant that Et = 0 (or some other threshold E). Thus, under continuous
monitoring, there is certainly no risk to the bank that funded part of the margin loan; in this case,
the no-arbitrage axiom dictates that R = r. In order to have R > r in equilibrium, we must start with a
situation whereby it is possible for the retail client to default on his margin loan. Thus, as in Fortune
(2000) and Garivaltis (2019a), we assume that the broker does not monitor the client’s account for
solvency until some given maturity date, T.

However, if the broker is willing to maintain a dynamically precise short position in the risk asset
(cf. with Fortune 2000 and Garivaltis 2019a), then it is possible, in the sense of Black and Scholes (1973),
to completely “eliminate risk” through continuous trading in the underlying. In this happenstance,
the no-arbitrage principle implies a unique margin loan interest rate R > r, but it fails to give us
a characterization of the call money rate, since there is no actual risk to the bank that funded the
margin loan. Thus, in order to generate risk premia in the call money market, we must make the
twin assumptions:

� The broker does not check the client’s portfolio for solvency until the maturity date, T.
� The broker is not willing or able to hedge his own default risk.

In this environment, we now have the possibility of a “default cascade” whereby the client
defaults on his margin loan at T, and this in turn causes the broker to default on his debt to the money
market. Accordingly, we will assume that the broker borrows d < D dollars on the money market for
the sake of funding the D dollar margin loan; the remaining D− d dollars of the margin loan constitute
the broker’s own equity. That is, we have the decomposition

Total Leveraged Portfolio Value = Client’s Equity

+ Broker’s Equity + Call Loan Balance. (66)

Equivalently, this means that for 0 ≤ t < T, we have

Broker’s Equityt = St − Et − deRt = DeRt − deRt

= Broker’s Assetst − Broker’s Liabilitiest. (67)

3 For the purposes of this section, we are using a fresh “namespace,” whereby the symbols µ, σ, ρ, Wt, T, etc. are divorced
from what they stood for in the prequel.
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Following Fortune (2000) and Garivaltis (2019a), we assume that the retail client will abandon his
account at T if ET ≤ 0, leaving the broker with collateral worth ST . Thus, the broker’s assets at the end
of the loan term amount to

min
(

ST , DeRT
)

, (68)

and the broker’s final equity is equal to

min
(

ST , DeRT
)
− deRt. (69)

If the broker’s final equity is ≤ 0, then he himself will default on his debt to the money market,
leaving his creditors with collateral in the amount of min

(
ST , DeRT

)
. Thus, the final payoff that

accrues at T to the bank that made the call loan is

min
{

min
(

ST , DeRT
)

, deRt
}
= min

(
ST , deRt

)
, (70)

where we have made use of the fact that d < D and R < R. Table 4 summarizes the three possible
credit events faced by the call lender.

Table 4. The three possible credit events faced by the call lender.

Credit Event Upshot

ST ≥ DeRT No defaults.
deRT ≤ ST < DeRT Retail client defaults but broker does not.

ST < deRT Retail client and broker both default.

The propagation of margin loan risk in Black–Scholes markets.

Assuming that the bank’s call money was itself borrowed at the risk-free rate r, the bank’s final
profit (loss) is

πT := min
(

ST , deRT
)
− derT . (71)

Making use of the fact that min (x, y) = x + y−max (x, y), we have

πT = ST + deRT −max
(

ST , deRT
)
− derT

= ST − derT −
[
max

(
ST , deRT

)
− deRT

]
= ST − derT −max (ST − K, 0) , (72)

where K := deRT . That is to say, the bank’s (random) profit πT amounts to the final payoff of the
following portfolio:

� Long one share of the stock
� Short d dollars at the risk-free rate of interest
� Short one European-style call option at a strike price of K := deRT .

Naturally, the bank can hedge its (net long) exposure to the underlying (e.g., the bank has de
facto written a covered call) by shorting a dynamically precise amount of the retail client’s portfolio.
In order to prevent riskless arbitrage opportunities, the time-0 expected present value of the bank’s
profit with respect to the equivalent martingale measure (Q) must be zero:

e−rTEQ
0 [πT ] = S0 − d− BSCall (S0, 0, K, r, σ, T) = 0. (73)
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Recalling the Black and Scholes (1973) formula

BSCall (S0, 0, K, r, σ, T) = S0N(d1)− Ke−rT N(d2), (74)

where

d1 :=
log (S0/K) +

(
r + σ2/2

)
T

σ
√

T
(75)

and
d2 := d1 − σ

√
T, (76)

and simplifying, we get the following equation characterizing the broker call rate:

d
S0

=
N(−d1)

1− N(d2)× exp (ρT)
, (77)

where ρ := R− r is the risk premium for call money,

− d1 =
log (d/S0) +

(
ρ− σ2/2

)
T

σ
√

T
, (78)

and the ratio d÷ S0 represents the percentage of the portfolio that has been financed by call money.
As usual, N(•) denotes the cumulative normal distribution function.

Note that the broker call rate R does not depend on the drift µ or on the margin loan interest rate
R that the broker charges its clients. The characterization (77) of R is not particular to the numerical
levels of d and S0; it only depends on their ratio d÷ S0. Similarly, the numbers r and R only matter to
(77) in so far as their difference ρ := R− r is featured prominently. That is to say (cf. with Merton 1974,
1992), the risk premium for call money depends only on the following credit characteristics:

� T (the loan term);
� d÷ S0 (the loan-to-value ratio);
� σ (the volatility of the collateral).

The bank’s net exposure to the underlying in state (St, t) is equal to (cf. with Wilmott 1998):

∆(S, t) :=
∂

∂S
[
S− dert − BSCall (S, t, K, r, σ, T)

]
= 1− N(d1) = N(−d1). (79)

Thus, ∆ = N(−d1) represents the (dynamic) percentage of the retail client’s portfolio that must
be sold short by banks in order to hedge their counterparty risk.

Figure 14 plots the implied loan-to-value ratio d÷ S0 and the implied short position ∆ = N(−d1)

for different values R of the broker call rate. Here, we have assumed a risk-free rate of r := 2.088%
(which is the current 5-year U.S. Treasury yield as of this writing), a 90-day loan term (T := 90÷ 365),
and a conservative value of σ := 40% annual stock market volatility.

Thus, we have obtained the following (“puzzling”) conclusion: even under the conservative
assumptions of a long (90-day) loan term and very high (40%) annual stock market volatility,
the no-arbitrage axiom implies that 72.3% (!!) of the value of all U.S. leveraged portfolios has been
financed by call money. This means that the sum total of broker and client equity must amount to only
27.7% of the value of all leveraged portfolios. These figures contradict the well-known legal constraint
(e.g., U.S. Regulation-T) on retail margin debt:

d÷ S0 ≤ D÷ S0 ≤ 0.5︸ ︷︷ ︸
U.S. Regulation-T.

. (80)
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Figure 14. The implied loan-to-value ratios (d÷ S0) and hedge ratios (∆) for different values of the
broker call rate (r := 2.088%, T := 90÷ 365, σ := 40%).

To avoid this logical contradiction, we must admit the possibility that the banks and financial
institutions that lend call money to stock brokers in the United States may be earning substantial
arbitrage profits on the spread over the risk-free rate.

Note well that varying the term of the call loan is of no great help in resolving the puzzle; indeed,
Figure 15 plots the implied maturities T that would rationalize different values R of the broker call
rate, assuming the parameters r := 2.088%, σ := 40%4, and d÷ S0 := 50%. For the currently observed
call rate of 4.25%, we get an implied loan term of 1.75 years and an implied delta in the amount of 6.6%
of the retail client’s portfolio.
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Figure 15. The implied loan terms (T) and hedge ratios (∆) for different values of the broker call rate
(r := 2.088%, σ := 40%, d÷ S0 := 50%).

4 Here, we have used the stylized value σ := 40% as a very conservative gauge of market volatility.
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5. Summary and Conclusions

This paper contributed to the empirical literature on margin loans in the stock markets
of developed economies by taking a novel approach to some financial time series (specifically,
brokers’ margin loan interest rates and the leverage ratios of their most sophisticated clients) that
have been historically difficult to observe by the econometrician. Specifically, we derived hybrid
empirical/theoretical models of these stochastic processes by combining empirical data on the U.S.
broker call money rate (e.g., stock brokers’ overnight cost of funding) with the author’s prior theoretical
formulas on pricing margin loans to Kelly gamblers (Garivaltis 2019a, 2019b).

Thus, we described and analyzed a collection of 1367 monthly observations of the U.S. broker call
rate (1857:01 through 1970:11) supplied by the Federal Reserve Bank of St. Louis (FRED). Our estimated
AR(1) specification (and corresponding Ornstein–Uhlenbeck model) indicates that for every 100 basis
points of deviation from its long-term average of 3.943%, the (continuously-compounded) broker call
rate will revert to the mean at an expected rate of 40.3 basis points per month, but this reversion is
disturbed by monthly innovations whose root-mean-squared magnitude is 2.362%. Buoyed by the fact
that Bankrate.com reports the two most recent observations of the broker call money rate (4.25% as of
this writing), we constructed an AR(2) model that reduced the monthly root-mean-squared prediction
error (in-sample) by 6.5 basis points, to 2.297%.

We proceeded to reconcile this empirical law of motion with following theoretical relationship
(Garivaltis 2019a), based on instantaneous monopoly pricing of margin loans to Kelly gamblers:

Margin Loan Interest Ratet =
1
2
(Broker Call Ratet) +

1
2

(
νS −

σ2
S

2

)
, (81)

where νS denotes the long-run compound annual (logarithmic) growth rate of the stock market, and σS
is its annual volatility. Under this arrangement, only half of the random movements in the broker
call rate get passed on to retail consumers. Assuming the stylized parameter values νS := 0.09 and
σS := 0.15 for the S&P 500 index, we obtained a hybrid empirical/theoretical law of motion for the
margin loan interest rate charged by stock brokers:

d (Margin Ratet) = −0.516× (Margin Ratet − 5.909) dt + 1.495× dWt. (82)

Thus, the margin loan interest rate will display the same rate of (continuous) mean-reversion as
does the broker call rate; the unanticipated instantaneous changes in the margin rate (=1.495× dWt)
will be half the size of the corresponding movements in the broker call rate. We then derived a
stochastic differential equation that governs the (monthly) leverage ratios (bt) of continuous time
Kelly gamblers:

dbt = −0.516× (bt − 2.0338) dt− 0.6644× dWt. (83)

Hence, our empirical finding is that the long-term average interest rate on margin loans should be
5.9%, and that the leverage ratios of sophisticated brokerage clients should oscillate randomly about
an equilibrium level of 2.03:1.

Finally, we used Merton’s (1974) no-arbitrage method to uniquely characterize the correct risk
premium ρ := R− r that commercial banks should earn on their loans to stock brokers. We assumed
that brokers loan money to retail clients at a marked-up rate of R > R; to generate risk premia in
the market for call money, we had to assume that stock brokers are not willing or able to short their
customers’ portfolios for the sake of hedging the default risk.

Thus, we modeled a situation whereby commercial banks are exposed to the risk of a cascaded
default, meaning that the retail client defaults on his margin loan and the brokerage in turn defaults
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on its debt to the money market. The commercial bank can hedge this risk by shorting the dynamically
precise fraction

∆ = N

(
log(d/St) +

(
ρ− σ2/2

)
(T − t)

σ
√

T − t

)
, (84)

of the retail client’s portfolio at time t, where T is the maturity date of the call loan, ρ is the risk
premium for call money, d/St is the percentage of the client’s portfolio that is financed with call money
(as opposed to broker equity and client equity), and σ is the annual volatility of the collateral.

Under very conservative assumptions (40% annual volatility and a 90-day loan term),
we concluded that call lenders’ current level of exposure to the stock market amounts to ∆ = 4.4%
of the value of all leveraged portfolios in the United States. Comparing the current broker call rate
of 4.25% with the prevailing U.S. Treasury yields, we found that the implied loan-to-value ratio is
north of 70%. This is absurd on account of U.S. Regulation-T, which caps the loan-to-value ratios of
retail margin borrowers at 50%. In order to alleviate this apparent contradiction, we must live with the
possibility that U.S. banks who deal in the market for call money could in fact be earning substantial
arbitrage profits on the spread of the broker call rate over the risk-free rate.
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