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Abstract: This article investigates the effectiveness of TAIEX (Taiwan Stock Exchange) futures, Taiwan
50 futures, and nonfinance nonelectronics subindex (NFNE) futures for cross hedging the price risk
of stock sector indices traded on the Taiwan stock exchange. A state-dependent volatility spillover
GARCH hedging strategy is developed to capture the regime switching global equity volatility
spillover effect. Empirical results show that the NFNE futures exhibit superior effectiveness as an
instrument for hedging stock sector exposures compared with the TAIEX and Taiwan 50 futures.
Simultaneous hedge using both NFNE and MSCI (Morgan Stanley Capital International) world index
futures further improves the hedging effectiveness compared with the hedging strategy using only
the NFNE futures. This shows the importance of hedging the global equity systematic risk of stock
sectors by considering the comovement between domestic and global equity markets.

Keywords: Markov regime switching; multiple futures hedging; volatility spillover; multivariate
GARCH; cross hedging

JEL Classification: C32; C51; G10

1. Introduction

It is well documented that the joint distribution of spot and futures returns is time varying. The
implication of the time-varying joint distribution property for futures hedging is that in implementing
an optimal futures hedging strategy, the hedger has to estimate the time-varying minimum variance
hedge ratio (MVHR) (Baillie and Myers 1991; Kroner and Sultan 1993; Park and Switzer 1995).
A considerable number of studies have been devoted to investigating futures hedging effectiveness
by estimating the time-varying MVHR with a variety of multivariate GARCH (Generalized
AutoRegressive Conditional Heteroskedasticity) models (Gagnon and Lypny 1998; Brooks et al. 2002;
Byström 2003; Lafuente and Novales 2003; Lee and Yoder 2007a; Fernandez 2008; Choudhry 2009;
Arouri et al. 2011; Chang et al. 2011; Pan et al. 2014; Cifarelli and Paladino 2015; Lai and Lien 2017;
Park and Shi 2017; Sukcharoen and Leatham 2017). A general finding is that dynamic futures hedging
is superior to conventional static hedging using constant MVHR.

Sarno and Valente (2000, 2005a, 2005b) found that the dynamic relationship between spot and
futures returns may be characterized by regime shifts. To account for the changing market condition in
implementing the optimal dynamic hedging strategy, a variety of regime switching GARCH models
have been developed to estimate the regime switching time-varying MVHR (Lee and Yoder 2007a,
2007b; Alizadeh et al. 2008; Lee 2009a, 2009b, 2010; Lee and Tsang 2011; Sheu and Lee 2014; Dark 2015;
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Lai et al. 2017). In general, regime switching GARCH models exhibit superior hedging performance
compared with their state-independent counterparts.

When hedging the price risk of a spot holding, hedgers normally apply the corresponding
futures which are highly correlated with the underlying asset. When corresponding futures are not
traded in the market, a closely related futures contract is required to implement the cross hedging
strategy. For instance, Lee and Tsang (2011) considered a cross hedging strategy using American
Depositary Receipts (ADRs) for hedging the price risk of individual stock. Adams and Gerner (2012)
investigated the cross hedging performance of WTI (West Texas Intermediate), Brent, gasoil,
and heating oil forwards to manage jet fuel spot price exposure. Ratner and Chiu (2013) examined the
potential risk-reducing benefits of credit default swaps (CDS) against the price risk of the U.S. stock
market sectors.

Taking into account the comovement between assets or markets might further improve futures
hedging effectiveness. Fernandez (2008) analyzed a portfolio of metals traded on the London Metal
Exchange and concluded that neglecting cross correlations leads to biased estimates of the optimal
hedge ratios and the degree of hedging effectiveness. Lee and Tsang (2011) also found benefits of
adding stock index futures in addition to ADRs for hedging single stock futures. Wu et al. (2011)
investigated the volatility spillover effect from oil futures to corn spot and futures. They found that
hedging performance is improved only marginally after adding additional crude oil futures to corn
futures for hedging the corn spot exposure. The spillover model by Wu et al., however, does not
account for the regime switching effect.

This paper investigates the performance of market index futures for the purpose of cross hedging
the price risks of stock sector indices traded on the Taiwan stock exchange. Because there are no
corresponding sector index futures for most of the sector indices traded on the Taiwan futures exchange,
three domestic market indices futures—the TAIEX (Taiwan Stock Exchange) futures, the Taiwan
50 futures, and the nonfinance nonelectronics subindex (NFNE) futures—are applied to cross hedge
the stock sector exposures. In this paper, we investigate the effectiveness of these futures as an
instrument for cross hedging the price risk of stock sector holdings. Empirical results show that
the NFNE futures exhibit superior hedging performance. We also consider simultaneous hedging
using both NFNE and MSCI (Morgan Stanley Capital International) world index futures to hedge the
domestic and global equity systematic risks of stock sectors with a regime switching volatility spillover
GARCH (RSVSG) model.

The remainder of the article is organized as follows. The Markov regime switching volatility
spillover GARCH (RSVSG) model is specified in Section 2. Section 3 presents the measurements of
hedging performance, minimum variance hedge ratio (MVHR), and volatility spillover ratio. This is
followed by discussions of data and empirical results. A conclusion ends the article.

2. Regime Switching Volatility Spillover GARCH (RSVSG) Model

This paper envisions a regime switching volatility spillover GARCH (RSVSG) model to hedge
the price risk of stock sector holdings with both domestic and global stock index futures. RSVSG
is an extension of the state-independent volatility spillover GARCH hedging model suggested by
Wu et al. (2011) such that all system parameters are subject to regime shifting. The specification of
RSVSG is given below:

Let Rt =

[
rc,t

r f ,t

]
denote a 2× 1 vector of returns with rc,t and r f ,t being the stock sector index

returns and domestic stock index futures returns, respectively. Without considering the volatility
spillover from the global stock market to the domestic market,

Rt = εt,st (1)
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where εt,st =
[

εc,t,st ε f ,t,st

]′
is a vector of state-dependent shocks, “′” denotes transpose, and st

stands for the state variable assumed to follow a first-order two-state Markov process with logistic
transition probabilities function given by

Pr(st = 1|st−1 = 1) =
exp(p0)

1 + exp(p0)
(2)

Pr(st = 2|st−1 = 2) =
exp(q0)

1 + exp(q0)
(3)

where p0 and q0 are unconstrained parameters to be estimated along with unknown system parameters
via maximum likelihood estimation. εc,t,st and ε f ,t,st are state-dependent idiosyncratic shocks of stock
sector index and domestic stock index futures, respectively. Specifically,

εt,st | ψt−1 ∼ N(0, Ht,st) (4)

where ψt−1 is the information set available at time t− 1 and Ht,st is a state-dependent conditional
covariance matrix assumed to have a bivariate diagonal regime switching BEKK (Baba–Engle–
Kraft–Kroner) GARCH (Engle and Kroner 1995) specification (Lee and Yoder 2007a) given by

Ht,st =

[
hcc,t,st hc f ,t,st

h f c,t,st h f f ,t,st

]
=

[
γcc,st 0
γ f c,st γ f f ,st

]′[
γcc,st 0
γ f c,st γ f f ,st

]
+[

αcc,st 0
0 α f f ,st

]′
εt−1ε

′
t−1

[
αcc,st 0

0 α f f ,st

]
+

[
βcc,st 0

0 β f f ,st

]′
Ht−1

[
βcc,st 0

0 β f f ,st

] (5)

where hii,t,st , i ∈ {cc, f f } are the volatilities of stock sector index and domestic stock index futures
returns, respectively, and hc f ,t,st is the covariance of stock sector index and domestic stock index futures
returns. Let rW,t be the world stock index futures returns given by

rW,t = eW,t,st =
√

hW,tεW,t,st (6)

where εW,t,st is the normalized state-dependent global stock shock and hW,t is the volatility of world
stock index futures returns assumed to follow a regime switching GARCH(1,1) process:

hW,t,st = γW,st + αW,st e
2
W,t−1,st

+ βW hW,t−1,st . (7)

When we consider the volatility spillover from the global stock market to the domestic stock
sector index and domestic stock index futures markets, Equation (1) is modified to

Rt = et,st + εt,st (8)

where et,st stands for the state-dependent shocks from the global market to domestic markets, specified
as

et,st =

[
ϕst

ωst

]
eW,t,st (9)

and ϕst and ωst are state-dependent volatility spillover parameters for the stock sector index and
domestic stock index futures, respectively1. When we take into account both the effects of regime
switching and global volatility spillover, Equations (2)–(9) constitute the specification of the regime

1 Because the state probability is time varying, ϕst and ωst are also time varying after taking the weighted average using
state probabilities.
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switching volatility spillover GARCH (RSVSG). The variance and covariance dynamics in RSVSG
are both state dependent and time varying and subject to the well-known path dependency problem.
We follow the recombining procedures of Gray (1996) and Lee and Yoder (2007a) to solve the path
dependency problem.

3. Measurements of Hedging Performance, Minimum Variance Hedge Ratio (MVHR), and
Volatility Spillover Ratio

The hedging effectiveness (HE) is measured based on the percentage variance reductions of a
hedging strategy over the unhedged position given by

HE =
Var(rc,t)−Var

(
rp,t
)

Var(rc,t)
× 100 (10)

where Var
(
rp,t
)

and Var(rc,t) are the variances of the hedged portfolio and the unhedged spot position,
respectively. The return on hedged portfolio rp,t is equal to rc,t − χ̂ f ,t|t−1r f ,t when the exposure
on stock sector indices is hedged with only the domestic stock index futures and equal to rp,t =

rc,t − χ̂ f ,t|t−1r f ,t − χ̂W,t|t−1rI,t when the exposure is hedged with both domestic stock index futures
and world stock index futures. χ̂ f ,t|t−1 and χ̂W,t|t−1 are, respectively, the hedge ratios for domestic
stock index futures and world stock index futures given by

[
χ̂ f ,t|t−1
χ̂W,t|t−1

]
=


ĥc f ,t|t−1 ĥW,t|t−1−ĥ f W,t|t−1 ĥcW,t|t−1

ĥ f ,t|t−1 ĥW,t|t−1−ĥ f W,t|t−1
ĥcW,t|t−1 ĥ f ,t|t−1−ĥ f W,t|t−1 ĥc f ,t|t−1

ĥ f ,t|t−1 ĥW,t|t−1−ĥ f W,t|t−1

 (11)

where ĥ f ,t|t−1 and ĥW,t|t−1 are, respectively, the estimated conditional variances of domestic stock
index futures and world stock index futures and ĥij,t|t−1, i, j ∈ {c, f , W} is the estimated conditional
covariance of asset i and asset j.

We also compare the economic benefits of different hedging models using a mean–variance
expected utility function (Kroner and Sultan 1993; Gagnon and Lypny 1998; Lee and Yoder 2007a,
2007b; Sheu and Lee 2014; Lai et al. 2017) given by

E
[
U
(
rp,t
)
|ψt−1

]
= E

[
rp,t|ψt−1

]
− κVar

(
rp,t|ψt−1

)
(12)

where κ is the coefficient of absolute risk aversion and E stands for the expectation operator.
Because portfolio managers are usually more concerned about the variability of negative losses, the

semivariance metric is employed to remove the effect of upside gains from the variance. Mathematically,
this can be expressed as (Alizadeh et al. 2008)

sv(−) = 1
T

T

∑
t=1

{
min

(
0, rp,t − τ

)}2 (13)

where T is the sample size and τ is the target return which is set to zero in order to distinguish
between positive and negative realized portfolio returns. A short hedger is concerned about negative
semivariance and a long hedger is concerned about positive semivariance.

According to Equations (8) and (9), under the assumption of no correlation between the
normalized idiosyncratic shocks in domestic stock sector index and global stock index futures or
between the normalized idiosyncratic shocks in domestic stock index futures and global stock index
futures, the state-dependent conditional variances of domestic stock sector index and domestic stock
index futures returns are given by

Var(rc,t|ψt−1, st) = hc,t,st + ϕ2
st hW,t,st (14)
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Var
(

r f ,t|ψt−1, st

)
= h f ,t,st + ω2

st hW,t,st . (15)

The state-dependent spillover ratio measures the proportion of the variances of domestic
markets caused by the volatility spillover from global market shocks under different market regimes.
The state-dependent volatility spillover ratios for domestic stock sector index and domestic stock index
futures are respectively given by

VRc,t,st =
ϕ2

st ht,W,st

ht,c,st + ϕ2
st ht,W,st

(16)

VR f ,t,st =
ω2

st ht,W,st

ht, f ,st + ω2
st ht,W,st

. (17)

Accordingly, the correlation between global stock index futures and domestic stock sector index
and the correlation between global stock index futures and domestic stock index futures are respectively
given by

ρcW,t,st =
1√

hc,t,st
ϕ2

st h2
W,t,st

+ 1
(18)

ρ f W,t,st =
1√

h f ,t,st
ω2

st h2
W,t,st

+ 1
. (19)

4. Data Description and Empirical Results

The proposed regime switching volatility spillover GARCH (RSVSG) model was applied to the
local contracts of TAIEX futures, Taiwan 50 futures, nonfinance nonelectronics subindex (NFNE)
futures and global MSCI world index futures to hedge the spot exposure of Taiwan stock sector indices
including textiles, communication and internet, transportation, retailing, automobiles, and plastics and
chemicals. Spot and futures prices are Wednesday closing prices obtained from Datastream for the
period from 20 May 2009 to 28 December 2016 to match the earliest available data for MSCI world index
futures. All data are denominated in USD in line with the currency of global MSCI world index futures.
Estimation of all models was conducted using data for up to 2015 (inclusive) and the remaining data
were used for out-of-sample analysis. Returns of each price series were computed as the changes in the
natural logarithms of prices multiplied by 100. We compared the hedging performance of the trivariate
regime switching volatility spillover GARCH (RSVSG) model with those of the state-independent
trivariate volatility spillover GARCH (VSG) and the state-independent bivariate BEKK GARCH,
which does not account for the volatility spillover effect. We investigated whether simultaneous
hedging by adding additional MSCI world index futures under regime switching improves futures
hedging effectiveness.

Table 1 shows the summary statistics of spot and futures returns. Most of the unconditional mean
returns are positive and quite small. The automobile industry has the largest unconditional mean return
among all data investigated with a value of only 0.246%. The automobile industry, however, has the
largest return volatility with a standard deviation of 3.867. According to the skewness, leptokurtosis,
and significant Jarque–Bera statistics, the unconditional distributions of spot and futures returns are
all asymmetric, fat-tailed, and non-Gaussian. This justifies the importance of modelling the spot and
futures returns with more flexible regime switching GARCH models.

Table 2 shows the estimates of unknown parameters of the RSVSG using both NFNE and MSCI
world index futures. p0 and q0 are the parameters of the logistic transition probabilities functions.
Take textiles, for instance; the estimates of p0 and q0 are 2.829 and 1.954, respectively. According to
Equations (2) and (3), the transition probability from low volatility state to high volatility state is 0.587
and the transition probability from high volatility state to low volatility state is 0.179. Figure 1 shows
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the regime probabilities of being in State 1. In the covariance equation, the persistence in volatility
is measured with α2

ii,st
+ β2

ii,st
, i ∈ {c, f } and st ∈ {1, 2}. For textiles, α2

cc,1 + β2
cc,1 and α2

cc,2 + β2
cc,2

are, respectively, 0.349 and 0.184, and α2
f f ,1 + β2

f f ,1 and α2
f f ,2 + β2

f f ,2 are, respectively, 0.745 and 0.045.
The volatility persistence of textiles spot and NFNE futures is higher in the low volatility state (State 1).
Figures 2 and 3 show the state-dependent volatilities of textiles spot and NFNE futures, respectively.
The average volatilities are, respectively, 2.020 and 3.781 for textiles spots in the low and high volatility
states and are, respectively, 1.833 and 2.633 for NFNE futures in the low and high volatility states.

Table 1. Summary statistics of weekly returns (in percentages).

Textiles Communication and Internet Transportation Retailing

Mean 0.086 0.028 −0.111 0.147
Maximum 9.232 6.265 7.658 9.363
Minimum −11.979 −8.869 −11.430 −11.416

SD 2.953 2.171 2.938 2.727
Skewness −0.478 −0.414 −0.437 −0.317
Kurtosis 4.548 4.679 4.293 4.333

Jarque–Bera 54.808 *** 57.960 *** 40.306 *** 36.042 ***

Automobile Plastics and Chemicals TAIFEX Futures Taiwan 50 Futures
Mean 0.246 0.114 0.085 0.106

Maximum 12.810 8.512 6.392 6.540
Minimum −14.360 −11.618 −10.015 −10.328

SD 3.867 2.786 2.560 2.588
Skewness −0.279 −0.478 −0.546 −0.330
Kurtosis 3.940 4.605 3.897 3.493

Jarque–Bera 19.770 *** 57.683 *** 33.023 *** 11.215 ***

Taiwan NFNE Futures MSCI World Index Futures
Mean 0.090 0.192

Maximum 7.668 7.941
Minimum −9.659 −10.044

SD 2.579 2.173
Skewness −0.490 −0.577
Kurtosis 4.113 5.134

Jarque–Bera 36.371 *** 97.375 ***

Note: *** indicates significance at the 1% level and returns (in percentage) are calculated as the differences in the
logarithm of prices multiplied by 100. NFNE, MSCI, and TAIEX stand for nonfinance nonelectronics subindex,
Morgan Stanley Capital International and Taiwan Stock Exchange, respectively.

Table 2. Estimates of unknown parameters of the regime switching volatility spillover GARCH
(RSVSG). Data estimation period is from 20 May 2009 to 30 December 2015.

Textiles Retailing Transportation Textiles Retailing Transportation

Transition Probability Spillover Equation
p0 2.829 1.525 0.653 γW1 1.137 0.000 0.000

(0.399) *** (0.576) *** (0.430) * (0.463) *** (0.041) (0.083)
q0 1.954 −0.352 1.332 αW1 0.240 0.270 0.166

(0.566) *** (0.453) (0.468) *** (0.098) *** (0.126) ** (0.082) ***
Covariance Equation βW1 0.242 0.544 0.379

γcc1
3 −1.270 0.152 1.165 (0.154) * (0.085) *** (0.094) ***

(0.396) *** (0.531) (0.267) *** ϕ1 0.768 0.600 0.495
γcc2 3.604 1.480 2.277 (0.086) *** (0.080) *** (0.107) ***

(0.414) *** (0.765) ** (0.859) *** ω1 0.763 0.719 0.391
γc f 1 −0.418 0.377 1.203 (0.071) *** (0.074) *** (0.112) ***

(0.293) * (0.282) * (0.210) *** γW2 7.291 3.046 1.314
γc f 2 2.313 0.657 2.317 (2.446) *** (5.129) (0.649) ***

(0.302) *** (0.585) (0.199) *** αW2 0.220 0.000 0.118
γ f f 1 0.014 0.001 −0.002 (0.153) * (0.039) (0.086) *

(0.059) (0.040) (0.076) βW2 0.049 1.000 0.874
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Table 2. Cont.

Textiles Retailing Transportation Textiles Retailing Transportation

γ f f 2 1.158 0.002 0.245 (0.284) (1.212) (0.185) ***
(0.510) *** (0.022) (0.974) ϕ2 0.544 0.775 0.701

αcc1 0.000 0.021 0.038 (0.131) *** (0.168) *** (0.090) ***
(0.035) ** (0.056) (0.065) ω2 0.739 0.844 0.841

αcc2 −0.029 −0.050 0.000 (0.092) *** (0.138) *** (0.073) ***
(0.163) (0.147) (0.04)

α f f 1 0.000 0.080 −0.076
(0.049) (0.071) (0.087)

α f f 2 −0.145 0.066 0.000
(0.128) (0.153) (0.018)

βcc1 0.591 0.781 0.236
(0.194) * (0.075) *** (0.210)

βcc2 0.428 1.365 −0.835
(0.269) *** (0.155) *** (0.332) ***

β f f 1 0.863 0.845 −0.169
(0.050) * (0.057) *** (0.315)

β f f 2 −0.156 1.286 0.091
(0.303) *** (0.135) *** (0.571)

LL 2 −1797.51 −1781.97 −1827.45

Communication
and Internet Automobile Plastics and

Chemicals
Communication

and Internet Automobile Plastics and
Chemicals

Transition Probability Spillover Equation
p0 1.624 2.208 1.463 γW1 0.000 0.000 0.000

(1.122) * (0.829) *** (0.485) *** (0.050) (0.080) (0.076)
q0 0.001 −0.013 0.026 αW1 0.234 0.196 0.279

(0.036) (0.098) (0.202) (0.114) ** (0.224) (0.198) *
Covariance Equation βW1 0.579 0.593 0.512

γcc1
3 (0.564) 0.163 0.711 (0.188) *** (0.147) *** (0.102) ***

(0.691) (0.768) (0.340) ** ϕ1 0.436 0.863 0.760
γcc2 2.729 2.936 2.172 (0.058) *** (0.110) *** (0.078) ***

(0.520) *** (1.434) ** (0.699) *** ω1 0.781 0.688 0.725
γc f 1 0.424 0.093 0.743 (0.094) *** (0.067) *** (0.074) ***

(0.282) * (0.514) (0.475) * γW2 2.976 5.378 2.880
γc f 2 1.868 0.785 1.173 (9.570) (18.033) (8.560)

(1.070) *** (0.211) *** (0.376) *** αW2 0.000 0.128 0.000
γ f f 1 −0.001 0.000 0.000 (0.035) (0.316) (0.040)

(0.031) (0.030) (0.115) βW2 1.000 0.872 1.000
γ f f 2 0.516 0.000 0.228 (2.055) (4.023) (2.150)

(3.655) (0.044) (1.430) ϕ2 0.485 1.048 0.949
αcc1 −0.075 0.014 0.120 (0.137) *** (0.264) *** (0.147) ***

(0.121) (0.033) (0.081) * ω2 0.727 0.897 0.794
αcc2 0.485 −0.010 0.185 (0.204) *** (0.116) *** (0.122) ***

(0.273) ** (0.104) (0.121) *
α f f 1 −0.130 0.063 0.072

(0.120) (0.083) (0.091)
α f f 2 0.153 −0.129 0.098

(0.265) (0.106) (0.102)
βcc1 0.662 0.853 0.699

(0.126) *** (0.077) *** (0.057) ***
βcc2 −0.395 1.278 0.990

(1.109) (0.251) *** (0.329) ***
β f f 1 0.805 0.956 0.760

(0.124) *** (0.031) *** (0.063) ***
β f f 2 0.948 1.089 1.162

(0.743) (0.105) *** (0.088) ***
LL 2 −1762.47 −1933.01 −1615.74

1 Figures in parentheses are standard errors and *, **, and *** indicate significance at the 10% level, 5% level, and 1%
level, respectively; 2 LL stands for the log likelihood value; 3 State 1 is the low volatility state.
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The spillover equation shows the parameter estimates of the volatility dynamic of MSCI world
index futures and the spillover factors ϕst and ωst . Figure 4 shows the state-dependent volatilities of
MSCI world index futures. The average volatilities are equal to 1.862 and 2.92 in the low and high
volatility states, respectively. The state-dependent volatility spillover ratios defined in Equations (16)
and (17) measure the state-dependent proportion of the variances of domestic markets caused by the
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volatility spillover from global market shocks. The state-dependent spillover ratio is a function of
spillover factors, the volatility of domestic market, and the volatility of MSCI world index futures.
Figures 5 and 6 show the state-dependent volatility spillover ratios of textiles spot and NFNE futures,
respectively. The average volatility spillover ratios are, respectively, 0.409 and 0.275 for textiles spot in
the low and high volatility states and are, respectively, 0.469 and 0.540 for NFNE futures in the low
and high volatility states. The volatility spillover from the global market is higher in the NFNE futures
than in the textiles spot for both regimes.
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Table 3 shows the out-of-sample hedging effectiveness without considering the effects of regime
switching and volatility spillover. We compare the hedging performance of TAIEX futures, Taiwan
50 futures, and NFNE futures with the hedging strategy implemented with the state-independent
bivariate BEKK GARCH model. Taking the textiles sector, for instance, the variance of the unhedged
spot position is 6.745. When hedging the spot exposures with TAIEX futures, Taiwan 50 futures,
and NFNE futures, the variances on hedged portfolio returns are 2.983, 3.198, and 2.966 or variance
reductions of 55.78%, 52.59%, and 56.03%, respectively. Hedging the spot exposure on the textiles
sector with NFNE futures exhibits the highest variance reductions: the improvements are 0.25% and
3.44% compared with the TAIEX and Taiwan 50 futures, respectively.

Adopting NFNE futures for hedging the spot exposure creates the highest variance reductions
for textiles, transportation, automobile, and plastics and chemicals sectors. The Taiwan 50 futures
create the highest variance reductions for the retailing sector and the communication and internet
sector, and the TAIEX futures show poor hedging effectiveness. Overall, we find that the NFNE futures
perform better than the Taiwan 50 and TAIEX futures. We further calculate the utility gains of hedging
with NFNE futures. The hedger is assumed to have an expected utility function given by Equation (12)
with the coefficient of absolute risk aversion κ equal to 4 (Lee 2009a, 2009b, 2010; Sheu and Lee 2014;
Lai et al. 2017)2. Taking the textiles sector, for example, the utility gains of NFNE futures are 0.075 and
0.963 compared with the TAIEX and Taiwan 50 futures, respectively. Again, the NFNE futures create
the highest utility gains for the textiles, transportation, automobile, and plastics and chemicals sectors.
This is consistent with the results of the variance reductions.

Table 4 shows the out-of-sample hedging effectiveness of RSVSG. RSVSG captures the effects of
both global volatility spillover and regime switching and hedges the spot exposures using both NFNE
and MSCI world index futures. Figures 7 and 8 respectively show the hedge ratios of NFNE futures and
MSCI world index futures for textiles estimated with RSVSG. Taking the textiles sector, for example,
the variance of the unhedged spot position is equal to 6.745. When we apply the state-independent
bivariate BEKK hedging strategy using only NFNE futures, the variance is 2.966—a variance reduction
of 56.03%. If we take into account the volatility spillover effect from MSCI world index futures to
domestic textiles sector and NFNE futures using a state-independent volatility spillover (VSG) model,
the variance is 2.946—a variance reduction of 56.32%. Applying MSCI world index futures for hedging
textiles spot exposure improves the hedging effectiveness. VSG is superior to BEKK for textiles,
retailing, transportation, and communication and internet, but inferior to BEKK for automobiles and
for plastics and chemicals. When we consider the effects of both volatility spillover and regime
switching using both NFNE and MSCI world index futures, the variance of the hedged portfolio return
by applying RSVSG is 2.930. The improvement by RSVSG in percentage variance reductions is 0.53%
and 0.23% compared with the VSG and BEKK models, respectively. The incremental utility gains
of RSVSG over VSG and BEKK are 0.135 and 0.053, respectively. Since most of the utility gains are
positive for the data considered, hedging the stock sector exposure with additional MSCI world index
futures under regime switching improves hedging effectiveness.

2 Because all hedged portfolio returns are pretty small, the value of the expected utility is dominated by the second moment
of the hedged portfolio return. Although it is not reported here, we find that hedging results are robust to the choice of the
coefficient of absolute risk aversion for a wide range of κ (κ = 1, 4, 20). A hedging strategy with lower volatility has higher
expected utility regardless the choice of the coefficient of absolute risk aversion.
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Table 3. Out-of-sample hedging effectiveness without regime switching and global volatility spillover effects estimated with bivariate BEKK GARCH model.

Variance of Hedged
Portfolio Return

Percentage Variance
Reduction 1

Improvement of NFNE
Futures over Other Futures 2

Hedged Portfolio
Returns

Expected Weekly
Utility 3

Utility Gain of NFNE Futures
over Other Futures 4

Textiles
Unhedged 6.745 0.086

TAIEX 2.983 55.78% 0.25% −0.457 −12.389 0.075
Taiwan 50 3.198 52.59% 3.44% −0.485 −13.277 0.963

NFNE subindex 2.966 56.03% −0.450 −12.314

Retailing
Unhedged 4.481 0.147

TAIEX 2.457 45.17% −2.46% −0.104 −9.932 −0.451
Taiwan 50 2.394 46.56% −3.85% −0.137 −9.714 −0.669

NFNE subindex 2.567 42.71% −0.114 −10.383

Transportation
Unhedged 5.132 −0.111

TAIEX 2.028 60.49% 3.93% −0.477 −8.588 0.815
Taiwan 50 2.127 58.56% 5.86% −0.517 −9.025 1.252

NFNE subindex 1.826 64.42% −0.468 −7.773

Communication and Internet
Unhedged 3.166 0.028

TAIEX 1.485 53.10% −3.81% 0.006 −5.933 −0.474
Taiwan 50 1.238 60.91% −11.62% −0.035 −4.985 −1.422

NFNE subindex 1.606 49.29% 0.016 −6.407

Automobile
Unhedged 6.921 0.246

TAIEX 2.026 70.73% 2.34% −0.394 −8.497 0.672
Taiwan 50 1.950 71.82% 1.25% −0.439 −8.241 0.416

NFNE subindex 1.864 73.07% −0.370 −7.825

Plastics and Chemicals
Unhedged 4.404 0.114

TAIEX 1.096 75.12% 11.85% 0.124 −4.258 2.095
Taiwan 50 1.054 76.06% 10.91% 0.068 −4.150 1.987

NFNE subindex 0.574 86.97% 0.133 −2.163

Note: 1 Percentage variance reductions are calculated as the differences of the variance of unhedged position and the estimated variance of alterative models over the variance of unhedged
position, multiplied by 100; 2 Improvement of NFNE futures over other futures is defined as the difference of the percentage variance reduction of hedging with NFNE futures and the
percentage variance reduction of hedging with TAIEX futures and Taiwan 50 futures estimated with a bivariate BEKK GARCH model; 3 Expected weekly utility is calculated based on
Equation (12); 4 Utility gain of NFNE futures over other futures is defined as the difference of the expected utilities of hedging with NFNE futures over the expected utilities of hedging
with TAIEX futures and Taiwan 50 futures estimated with a bivariate BEKK GARCH model; 5 Estimation of all models was conducted using data from 20 May 2009 to 30 December 2015;
the data from 6 January 2016 to 28 December 2016 were used for out-of-sample analysis.
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Table 4. Out-of-sample hedging effectiveness evaluated with variance reduction and utility gain under regime switching and global volatility spillover effects.

Variance of Hedged
Portfolio Return

Percentage Variance
Reduction 1

Improvement of RSVSG
over VSG and BEKK 2

Hedged Portfolio
Returns

Expected Weekly
Utility 3

Utility Gain of RSVSG
over VSG and BEKK 4

Textiles
Unhedged 6.745 0.086

BEKK 2.966 56.03% 0.53% −0.450 −12.314 0.135
VSG 2.946 56.32% 0.23% −0.448 −12.233 0.053

RSVSG 2.930 56.56% −0.458 −12.180

Retailing
Unhedged 4.481 0.147

BEKK 2.567 42.71% 4.36% −0.114 −10.383 0.791
VSG 2.405 46.32% 0.74% −0.102 −9.722 0.131

RSVSG 2.372 47.06% −0.104 −9.591

Transportation
Unhedged 5.132 −0.111

BEKK 1.826 64.42% −0.43% −0.468 −7.773 −0.094
VSG 1.800 64.93% −0.95% −0.466 −7.664 −0.203

RSVSG 1.849 63.98% −0.473 −7.867

Communication and Internet
Unhedged 3.166 0.028

BEKK 1.606 49.29% 2.05% 0.016 −6.407 0.244
VSG 1.554 50.93% 0.40% −0.005 −6.220 0.057

RSVSG 1.541 51.33% 0.001 −6.162

Automobile
Unhedged 6.921 0.246

BEKK 1.864 73.07% 0.10% −0.370 −7.825 0.023
VSG 1.977 71.43% 1.74% −0.386 −8.294 0.492

RSVSG 1.857 73.17% −0.375 −7.802

Plastics and Chemicals
Unhedged 4.404 0.114

BEKK 0.574 86.97% −1.64% 0.133 −2.163 −0.300
VSG 0.710 83.88% 1.44% 0.106 −2.733 0.270

RSVSG 0.646 85.32% 0.123 −2.463

Note: 1 Percentage variance reductions are calculated as the differences of the variance of unhedged position and the estimated variance of alterative models over the variance of unhedged
position, multiplied by 100; 2 Improvement of RSVSG over VSG and BEKK is defined as the difference of the percentage variance reduction of hedging with RSVSG and the percentage
variance reduction of hedging with VSG and BEKK; 3 Expected weekly utility is calculated based on Equation (12); 4 Utility gains of RSVSG over VSG and BEKK are defined as the
differences of the expected utilities of hedging with RSVSG over the expected utilities of hedging with VSG and BEKK; 5 Estimation of all models was conducted using data from 20 May
2009 to 30 December 2015; data from 6 January 2016 to 28 December 2016 were used for out-of-sample analysis.
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Because multiple futures hedging applies more futures contracts and is more costly to implement,
we further investigate the superiority of RSVSG over BEKK and VSG by taking transaction costs into
account. Taking textiles, for instance, if the hedger uses BEKK hedging, the average weekly utility is
UBEKK = −0.450− 4(2.966) ≈ −12.314. With RSVSG hedging, the average weekly utility is URSVSG =

−0.458− 4(2.930) ≈ −12.180. The hedger’s net benefit from using RSVSG hedging over BEKK hedging
is equal to URSVSG −UBEKK − C = 0.135− C, where C stands for the net average weekly transaction
cost. If C < 0.135 (in percentage) or 13.5 basis points, RSVSG hedging is preferred to BEKK hedging.
Since the typical round trip transaction costs are around 0.03% (Lai et al. 2017), the net average weekly

transaction cost between RSVSG and BEKK is defined as C = 1
T

T
∑

t=1
(CRSVSG − CBEKK), where CRSVSG =

0.03%× |χ̂ f ,t|t−1 − χ̂ f ,t−1|t−2|+ 0.03%× |χ̂W,t|t−1 − χ̂W,t−1|t−2|. Accordingly, the net average weekly
transaction cost is equal to 0.03%× (0.046 + 0.055)− 0.03%× 0.017 = 0.00223%, or 0.223 basis points,
which is smaller than 13.5 basis points. A mean–variance expected-utility-maximizing hedger would
adopt RSVSG hedging even after taking account of the transaction costs. Similarly, the net average
weekly transaction cost between RSVSG and VSG is equal to 0.03% × (0.046 + 0.055) − 0.03% ×
(0.021 + 0.017) = 0.00189%, or 0.189 basis points, which is smaller than 5.3 basis points, the net benefit
from using RSVSG hedging over VSG hedging.

Table 5 presents the hedging effectiveness evaluated with semivariance reduction and semi-utility
gain under regime switching and global volatility spillover effects. Negative and positive semivariance
reflect the downside variation of hedged portfolio for short and long hedgers’ positions, respectively.
Again, most of the incremental semi-utility gains of RSVSG over VSG and BEKK are positive. We reach
the same conclusion that hedging the stock sector exposure with additional MSCI world index futures
under regime switching improves hedging effectiveness.
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Table 5. Out-of-sample hedging effectiveness evaluated with semivariance reduction and semi-utility gain under regime switching and global volatility spillover effects.

Semivariance of Hedged
Portfolio Return

Percentage Semivariance
Reduction 1

Improvement of RSVSG
over VSG and BEKK 2

Hedged Portfolio
Returns

Expected Weekly
Semi-Utility 3

Semi-Utility Gain of RSVSG
over VSG and BEKK 4

Textiles
Short hedgers’ positions (negative semivariance)

Unhedged 3.896 0.086
BEKK 2.085 46.49% 0.80% −0.450 −8.789 0.117
VSG 2.068 46.91% 0.38% −0.448 −8.722 0.050

RSVSG 2.054 47.29% −0.458 −8.672

Long hedgers’ positions (positive semivariance)
Unhedged 2.779 0.086

BEKK 1.027 63.06% 1.30% −0.450 −4.556 0.136
VSG 1.010 63.67% 0.69% −0.448 −4.487 0.067

RSVSG 0.991 64.36% −0.458 −4.420

Retailing
Short hedgers’ positions (negative semivariance)

Unhedged 2.135 0.147
BEKK 1.323 38.05% 7.26% −0.114 −5.404 0.630
VSG 1.181 44.69% 0.62% −0.102 −4.826 0.052

RSVSG 1.168 45.31% −0.104 −4.774

Long hedgers’ positions (positive semivariance)
Unhedged 2.265 0.147

BEKK 1.208 46.66% 1.71% −0.114 −4.947 0.165
VSG 1.174 48.18% 0.20% −0.102 −4.798 0.016

RSVSG 1.169 48.38% −0.104 −4.781

Transportation
Short hedgers’ positions (negative semivariance)

Unhedged 3.048 −0.111
BEKK 1.318 56.78% 0.16% −0.468 −5.738 0.015
VSG 1.291 57.65% −0.71% −0.466 −5.629 −0.094

RSVSG 1.313 56.94% −0.473 −5.723

Long hedgers’ positions (positive semivariance)
Unhedged 2.066 −0.111

BEKK 0.692 66.49% 0.84% −0.468 −3.237 0.064
VSG 0.689 66.65% 0.69% −0.466 −3.222 0.049

RSVSG 0.675 67.33% −0.473 −3.173
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Table 5. Cont.

Semivariance of Hedged
Portfolio Return

Percentage Semivariance
Reduction 1

Improvement of RSVSG
over VSG and BEKK 2

Hedged Portfolio
Returns

Expected Weekly
Semi-Utility 3

Semi-Utility Gain of RSVSG
over VSG and BEKK 4

Communication and Internet
Short hedgers’ positions (negative semivariance)

Unhedged 1.516 0.028
BEKK 0.796 47.46% 0.04% 0.016 −3.170 −0.012
VSG 0.818 46.01% 1.49% −0.005 −3.279 0.097

RSVSG 0.796 47.50% 0.001 −3.182

Long hedgers’ positions (positive semivariance)
Unhedged 1.602 0.028

BEKK 0.778 51.40% 3.55% 0.016 −3.098 0.213
VSG 0.713 55.50% −0.55% −0.005 −2.857 −0.029

RSVSG 0.722 54.95% 0.001 −2.885

Automobile
Short hedgers’ positions (negative semivariance)

Unhedged 4.012 0.246
BEKK 1.323 67.01% 2.33% −0.370 −5.664 0.370
VSG 1.412 64.81% 4.54% −0.386 −6.033 0.739

RSVSG 1.230 69.34% −0.375 −5.294

Long hedgers’ positions (positive semivariance)
Unhedged 2.794 0.246

BEKK 0.642 77.04% 0.68% −0.370 −2.936 0.072
VSG 0.694 75.16% 2.57% −0.386 −3.162 0.298

RSVSG 0.622 77.72% −0.375 −2.865

Plastics and Chemicals
Short hedgers’ positions (negative semivariance)

Unhedged 2.044 0.114
BEKK 0.219 89.27% 0.91% 0.133 −0.744 0.064
VSG 0.241 88.19% 1.99% 0.106 −0.860 0.179

RSVSG 0.201 90.18% 0.123 −0.680

Long hedgers’ positions (positive semivariance)
Unhedged 2.385 0.114

BEKK 0.361 84.85% −0.93% 0.133 −1.312 −0.099
VSG 0.401 83.17% 0.75% 0.106 −1.500 0.088

RSVSG 0.383 83.92% 0.123 −1.411

Note: 1 Percentage variance reductions are calculated as the differences of the variance of unhedged position and the estimated variance of alterative models over the variance of unhedged
position, multiplied by 100; 2 Improvement of RSVSG over VSG and BEKK is defined as the difference of the percentage variance reduction of hedging with RSVSG and the percentage
variance reduction of hedging with VSG and BEKK; 3 Expected weekly utility is calculated based on Equation (12); 4 Utility gains of RSVSG over VSG and BEKK are defined as the
differences of the expected utilities of hedging with RSVSG over the expected utilities of hedging with VSG and BEKK; 5 Estimation of all models was conducted using data from 20 May
2009 to 30 December 2015; data from 6 January 2016 to 28 December 2016 were used for out-of-sample analysis.
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5. Conclusions

There are two main questions investigated in this paper. First, because there are no corresponding
sector futures for most sector indices traded on the Taiwan stock exchange, closely related futures
must be applied for cross hedging the spot exposures on stock sectors. This article investigated the
effectiveness of three potential futures as an instrument for cross hedging—TAIEX futures, Taiwan
50 futures, and NFNE futures. Second, since the domestic market is affected by global shocks
and the shock spillover from the global market might depend on the state of market conditions,
a regime switching volatility spillover GARCH hedging strategy was developed to investigate if
simultaneous hedging using both domestic stock index futures and MSCI world index futures under
regime switching increases hedging effectiveness.

Empirical results show that adopting NFNE futures for hedging the spot exposure creates the
highest variance reductions for textiles, transportation, automobile, and plastics and chemicals sectors.
TAIEX futures has the poorest hedging performance. Overall, we find that the NFNE futures perform
better than the Taiwan 50 and TAIEX futures. Applying MSCI world index futures to capture the
global stock systematic risk and hedging the spot exposures with both NFNE and MSCI world index
futures improves hedging effectiveness. VSG is superior to BEKK for textiles, retailing, transportation,
and communication and internet sectors. When we take into account the effects of both global volatility
spillover and regime switching, the RSVSG hedging strategy exhibits superior hedging performance
compared with the VSG and BEKK GARCH models. This shows the importance of hedging the
stock sector price risks using both NFNE futures and MSCI world index futures implemented with a
state-dependent volatility spillover model.
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