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Abstract: Hidden Markov model (HMM) is a statistical signal prediction model, which has been
widely used to predict economic regimes and stock prices. In this paper, we introduce the application
of HMM in trading stocks (with S&P 500 index being an example) based on the stock price predictions.
The procedure starts by using four criteria, including the Akaike information, the Bayesian
information, the Hannan Quinn information, and the Bozdogan Consistent Akaike Information,
in order to determine an optimal number of states for the HMM. The selected four-state HMM is
then used to predict monthly closing prices of the S&P 500 index. For this work, the out-of-sample
R2

OS, and some other error estimators are used to test the HMM predictions against the historical
average model. Finally, both the HMM and the historical average model are used to trade the S&P 500.
The obtained results clearly prove that the HMM outperforms this traditional method in predicting
and trading stocks.

Keywords: hidden Markov model; stock prices; observations; states; regimes; predictions; trading;
out-of-sample R2; model validation

1. Introduction

Stock traders always wish to buy a stock at a low price and sell it at a higher price. However,
when is the best time to buy or sell a stock is a challenging question. Stock investments can have
a huge return or a significant loss due to the high volatilities of the stock prices. Many models
were used to predict stock executions such as the “exponential moving average” (EMA) and the
“head and shoulders” methods. However, many of the forecast models require a stationary of the
input time series. In reality, financial time series are often nonstationary, thus nonstationary time
series models are needed. Autoregression models have been modified by adding time-dependent
variables to adapt with the nonstationarity of time series. Geweke and Terui (1993) developed the
threshold autoregressive model for which its parameters depend on the value of a previous observation.
Juang and Rabiner (1985), Wong and Li (2000), and Frühwirth-Schnatter (2006) introduced mixture
models for time series. These models are the special case of the Markov Switching autoregression
models.

Based on the principal concepts of HMM, Hamilton (1989) developed a regime-switching model
(RSM) for a nonlinear stationary time series and business cycles. Researchers, such as Honda (2003),
Sass and Haussmann (2004), Taksar and Zeng (2007), and Erlwein et al. (2009), proved that the
regime-switching variables made significant improvements to portfolio selection models. The RSM
is not identical to the HMM introduced by Baum and Petrie (1966). The RSM’s parameters were
generated by an auto-regression model while HMM’s parameters were calibrated by maximizing the
log-likelihood of observation data. Although the RSM and HMM are both associated with regimes or
hidden states, the RSM should be viewed as a regression model that has a regime-shift variable as an
explanatory variable. Furthermore, HMM is a broader model that allows a more flexible relationship
between observation data and its hidden state sequence. The relationship can be presented by the
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observation probability functions corresponding to each hidden state. The common functions that
researchers used in the HMM models are the density function of normal, mixed normal, or exponential.

Recently, researchers have applied the HMM to forecast stock prices. Hassan and Nath (2005)
used HMM to predict the stock price for inter-related markets. Kritzman et al. (2012) applied HMM
with two states to predict regimes in market turbulence, inflation, and industrial production index.
Guidolin and Timmermann (2007) used HMM with four states and multiple observations to study asset
allocation decisions based on regime switching in asset returns. Ang and Bekaert (2002) applied the
regime shift model for international asset allocation. Nguyen (2014) used HMM with both single and
multiple observations to forecast economic regimes and stock prices. Gupta et al. (2012) implemented
HMM by using various observation data (open, close, low, high) prices of stock to predict its closing
prices. In our previous work Nguyen and Nguyen (2015), we used HMM for single observation
data to predict the regimes of some economic indicators and to make stock selections based on the
performances of these stocks during the predicted schemes.

In this study, we use the HMM for multiple independent variables: the open, low, high, and closing
prices of the U.S. benchmark index S&P 500. We limit the number of states of the HMM at six to keep
the model simple and feasible with cyclical economic stages. Four criteria used to select the best HMM
model are (1) the Akaike information criterion (AIC) Akaike (1974), (2) the Bayesian information criterion
(BIC) Schwarz (1978), (3) the Hannan–Quinn information criterion (HQC) Hannan and Quinn (1979),
and (4) the Bozdogan Consistent Akaike Information Criterion (CAIC) Bozdogan (1987). After selecting
the best model, we use the HMM to predict the S&P 500 price and compare the results with that of the
historical average return model (HAR). Finally, we apply the HMM and the HAR models to trade the
stock and confront their results.

The stock price prediction process is based on the work of Hassan and Nath (2005). The authors
used HMM with the four observations: close, open, high, and low price of some airline stocks to
predict their future closing price using four states. In their work, the authors find a day in the past
that was similar to the recent day and used the price change in that date and price of the recent day to
predict a future closing price. Our approach is different from their work in three modifications. First,
we use the AIC, BIC, HQC, and the CAIC to test the performances of HMM with two to six states.
Second, we use the selected HMM model and multiple observations (open, close, high, low prices)
to predict the closing price of the S&P 500. Many statistic methods are used to evaluate the HMM
out-of-sample predictions over the results obtained by the benchmark the HAR model. Third, we also
go further by using the models to trade the S&P 500 using different training and predicting periods.

To test our model for out-of-sample predictions, we use the out-of-sample R square, Campbell
and Thompson (2008), and the cumulative squared predictive errors, Zhu and Zhu (2013) to compare
the performances of HMM and the historical average model.

This paper is organized as follows: Section 2 gives a brief introduction to the HMM and its
three main problems and corresponding algorithms. Section 3 describes the HMM model selections.
Section 4 tests the model for out-of-sample stock price predictions, and Section 5 gives conclusions.

2. A Brief Introduction of the Hidden Markov Model

The Hidden Markov model is a stochastic signal model introduced by Baum and Petrie (1966).
The model has the following main assumptions:

1. an observation at t was generated by a hidden state (or regime),
2. the hidden states are finite and satisfy the first-order Markov property,
3. the matrix of transition probabilities between these states is constant,
4. the observation at time t of an HMM has a certain probability distribution corresponding with a

possible hidden state.

Although this method was developed in the 1960s, a maximization method was presented in the
1970s Baum et al. (1970) to calibrate the model’s parameters of a single observation sequence. However,
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more than one observation can be generated by a hidden state. Therefore, Levinson et al. (1983)
introduced a maximum likelihood estimation method to train HMM with multiple observation
sequences, assuming that all the observations are independent. A completed training for the HMM
for multiple sequences was investigated by Li et al. (2000) without the assumption of independence
of these observation sequences. In this paper, we will present algorithms of HMM for multiple
observation sequences, assuming that they are independent.

There are two main categories of the hidden Markov model: a discrete HMM and a continuous
HMM. The two versions have minor differences, so we will first present key concepts of a discrete
HMM. Then, we will add details about a continuous HMM later.

2.1. Main Concepts of a Discrete HMM

A summary of the basic elements of an HMM model is given in Table 1. The parameters of an
HMM are the constant matrix A, the observation probability matrix B and the vector p, which is
summarized in a compact notation:

λ ≡ {A, B, p}.

If we have infinite symbols for each hidden state, the symbol vk will be omitted from the model,
and the conditional observation probability bik is written as:

bik = bi(Ot) = P(Ot|qt = Si).

If the probabilities are continuously distributed, we have a continuous HMM. In this study, we
assume that the observation probability is the Gaussian distribution; then, bi(Ot) = N (Ot = vk, µi, σi),
where µi and σi are the mean and variance of the distribution corresponding to the state Si, respectively.
Therefore, the parameters of HMM are

λ ≡ {A, µ, σ, p},

where µ and σ are vectors of means and variances of the Gaussian distributions, respectively.

Table 1. The basic elements of a hidden Markov model.

Element Notation/Definition

Length of observation data T
Number of states N

Number of symbols per state M
Observation sequence O = {Ot, t = 1, 2, . . . , T}
Hidden state sequence Q = {qt, t = 1, 2, . . . , T}

Possible values of each state {Si, i = 1, 2, . . . , N}
Possible symbols per state {vk, k = 1, 2, . . . , M}

Transition matrix A = (aij), aij = P(qt = Sj|qt−1 = Si), i, j = 1, 2, . . . , N
Vector of initial probability of being

in state (regime) Si at time t = 1 p = (pi), pi = P(q1 = Si), i = 1, 2, . . . , N

Observation probability matrix B = (bik), bik = P(Ot = vk|qt = Si), i = 1, 2, . . . , N and k = 1, 2, . . . , M.

2.2. Main Problems and Solutions

Three main questions when applying the HMM to solve a real-world problem are expressed as

1. Given the observation data O = {Ot, t = 1, 2, . . . , T} and the model parameters λ = {A, B, p},
calculate the probability of observations, P(O|λ).

2. Given the observation data O = {Ot, t = 1, 2, . . . , T} and the model parameters λ = {A, B, p},
find the “best fit” state sequence Q = {q1, q2, . . . , qT} of the observation sequence.
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3. Given the observation sequence O = {Ot, t = 1, 2, . . . , T}, calibrate HMM’s parameters, λ =

{A, B, p}.

These problems have been solved by using the algorithms summarized below:

1. Find the probability of observations: Forward or backward algorithm by Baum and Egon (1967)
and Baum and Sell (1968).

2. Find the “bet fit” hidden states of observations: Viterbi algorithm by Viterbi (1967).
3. Calibrate parameters for the model: Baum–Welch algorithm by Baum and Petrie (1966).

2.3. Algorithms

The HMM has four main algorithms: the forward, the backward, the Viterbi, and the Baum–Welch
algorithms. Readers can find the four algorithms for a single observation sequence in Nguyen and
Nguyen (2015). The most important of the HMM’s algorithms is the Baum–Welch algorithm, which
calibrates parameters for the HMM given the observation data. The Baum–Welch method, or the
expectation modification (EM) method, is used to find a local maximizer, λ∗, of the probability function
P(O|λ). The algorithm was introduced by Baum et al. (1970) to estimate the parameters of HMM for
a single observation. Then, in 1983, the algorithm was extended to calibrate HMM’s parameters for
multiple independent observations Levinson et al. (1983). In 2000, the algorithm was developed for
multiple observations without the assumption of independence of the observations, Li et al. (2000).
In this paper, we use these three HMM’s algorithms (forward, backward, and Baum–Welch) for
multiple independent observation sequences so that we will present the algorithms (Algorithms
A.1–A.3) in the Appendix A. These algorithms for multiple independent observation sequences are
written based on the work of Baum and Egon (1967), Baum and Sell (1968) and Rabiner (1989).

3. HMM for Stock Price Prediction

The hidden Markov model has been widely used in the financial mathematics area to predict
economic regimes or predict stock prices. In this paper, we explore a new approach of HMM in
predicting stock prices and trading stocks. In this section, we discuss how to use the Akaike information
criterion (AIC) Akaike (1974), the Bayesian information criterion (BIC) Schwarz (1978), the Hannan–
Quinn information criterion (HQC) Hannan and Quinn (1979), and the Bozdogan Consistent Akaike
Information Criterion (CAIC) Bozdogan (1987) to test the HMM’s performances with different numbers
of states. We will then present how to use HMM to predict stock prices. Finally, we will use the
predicted results to trade the stocks.

We choose one of the common benchmarks for the U.S. stock market, the Standard & Poor’s
500 index (S&P 500) to implement our model. The S&P 500 was monthly data from January 1950 to
November 2016 and was taken from finance.yahoo.com. The summary of the data is presented in
Table 2.

Table 2. Summary of S&P 500 index monthly prices from 1 March 1950 to 11 January 2016.

Price Min Max Mean Std.

Open 16.66 2173.15 504.06 582.20
High 17.09 2213.35 520.46 599.28
Low 16.66 2147.56 486.91 562.96
Close 17.05 2213.35 506.73 584.98

3.1. Model Selection

Choosing a number of hidden states for the HMM is a critical task. In the section, we use four
common criteria: the AIC, the BIC, the HQC, and the CAIC to evaluate the performances of HMM
with different numbers of states. These criteria are suitable for HMM because, in the model training
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algorithm, the Baum–Welch Algorithm A.3, the EM method was used to maximize the log-likelihood
of the model. We limit numbers of states from two to six to keep the model simple and feasible to stock
prediction. These criteria are calculated using the following formulas, respectively:

AIC = −2 ln(L) + 2k, (1)

BIC = −2 ln(L) + k ln(M), (2)

HQC = −2 ln(L) + k ln(ln(M)), (3)

CAIC = −2 ln(L) + k(ln(M) + 1), (4)

where L is the likelihood function for the model, M is the number of observation points, and k is
the number of estimated parameters in the model. In this paper, we assume that the distribution
corresponding with each hidden state is a Gaussian distribution; therefore, the number of parameters,
k, is formulated as k = N2 + 2N − 1, where N is numbers of states used in the HMM.

To train HMM’s parameters, we use a historical observed data of a fixed length T,

O = {O(1)
t , O(2)

t , O(3)
t , O(4)

t , t = 1, 2, . . . , T},

where O(i) with i = 1, 2, 3, or 4 represents the open, low, high or closing price of a stock, respectively.
For the HMM with a single observation sequence, we use only closing price data,

O = Ot, t = 1, 2, . . . , T,

where Ot is the stock closing price at time t. We use S&P 500 monthly data to train the HMM and
calculate these AIC, BIC, HQC, and CAIC. Each time, we use a block of length T = 120 (ten year
period) of S&P 500 prices, O = (open, low, high, close), to calibrate HMM’s parameters and calculate
the AIC and BIC numbers. The first block of data is the S&P 500 monthly prices from December 1996
to November 2006. We use the set of data to calibrate HMM’s parameters using the Baum–Welch
Algorithm A.3. Then we use the parameters to calculate the probability of the observations, which
is the likelihood L of the model, using the forward algorithm A.1. Finally, we use the likelihood to
calculate the criteria using formulas (1)–(4). We choose initial parameters for the first calibration as
follows:

A =(aij), aij =
1
N

,

p =(1, 0, .., 0),

µi =µ(O) + Z, Z ∼ N (0, 1),

σi =σ(O),

(5)

where i, j = 1, . . . , N and N (0, 1) is the standard normal distribution.
For the second calibration, we move the ten-year data upward one month, we have a new data

set from January 1997 to December 2006 and use the calibrated parameters from the first calibration
as initial parameters. We repeat the process 120 times for 120 blocks of data by moving the block of
data forward. The last block of data is the monthly prices from November 2006 to November 2016.
The AIC, BIC, HQC, and CAIC of the 120 calibrations are presented in Figures 1 and 2. In all of these
four criteria, a model with a lower criterion value is better. Thus, the results from Figures 1 and 2
show that the four-state HMM is the best model among the two to six state HMMs. Therefore, we will
use HMM with four states in stock price predicting and trading. We want to note that, for a different
stock using these criteria, we may have another optimal number of states for the HMM. Therefore,
we suggest that, before applying the HMM to predict prices for a stock, researchers should use some
of the criteria to choose a number of states of the HMM that works the best for the stock.
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Figure 1. AIC (left) and BIC (right) for 120 HMM’s parameter calibrations using S&P 500 monthly prices.

Figure 2. HQC (left) and CAIC (right) for 120 HMM’s parameter calibrations using S&P 500 monthly prices.

3.2. Out-of-Sample Stock Price Prediction

In this section, we will use the HMM to predict stock prices and compare the predictions with the
real stock prices, and with the results of using the historical average return method. We use S&P 500
monthly prices from January 1950 to November 2016.

We first introduce how to predict stock prices using HMM. The prediction process can be divided
into three steps. First, HMM’s parameters are calibrated using training data and the probability is
calculated (or likelihood) of the observation of the data set. Then, we will find a “similar data” set in
the past that has a similar likelihood to that of the training data. Finally, we will use the difference
of stock prices in the last month of the founded sequence with the price of the consecutive month to
predict future stock prices. This prediction approach is based on the work of Hassan and Nath (2005).
However, the authors predicted daily prices of four airline stocks while we predict monthly prices of
the U.S. benchmark market, the S&P 500. Suppose that we want to predict closing price at time T + 1
of the S&P 500. In the first step, we will choose a fixed time length D of the training data (we call D
is the training window) and then use the training data from time T− D + 1 to T to calibrate HMM’s
parameters, λ. We assume that the observation probability bi(k), defined in Section 1, is Gaussian
distribution, so the matrix B, in the parameter λ = {A, B, p}, is a two by N matrix of means, µ,
and variances, σ, of the N normal distributions, where N is the number of states. The initial HMM’s
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parameters for the calibration were calculated by using formula (5). The training data is the four
sequences: open, low, high, and closing price:

O = {O(1)
t , O(2)

t , O(3)
t , O(4)

t , t = T − D + 1, T − D + 2, . . . , T}.

We then calculate the probability of observation, P(O|λ). In the second step, we move the
block of data backward by one month to have new observation data Onew = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t =

T−D, T−D+ 1, . . . , T− 1} and calculate P(Onew|λ). We keep moving blocks of data backward month
by month until we find a data set O∗, (O∗ = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T∗ − D + 1, T∗ − D, . . . , T∗}),

such that P(O∗|λ) ' P(O|λ). In the final step, we estimate the stock’s closing price for time T + 1,
O(4)

T+1, by using the following formula:

O(4)
T+1 = O(4)

T + (O(4)
T∗+1 −O(4)

T∗ )× sign(P(O|λ)− P(O∗|λ)). (6)

Similarly, to predict stock price at time T + 2, we will use new training data O: O =

{O(1)
t , O(2)

t , O(3)
t , O(4)

t , t = T − D, T − D + 2, . . . , T + 1} to predict stock price for the time T + 2.
The calibrated HMM’s parameters λ in the first prediction were used as the initial parameters for the
second prediction. We repeat the three-step-prediction process for the second prediction and so on.
For convenience, we use the training window D equal to the out-of-sample forecast period. In practice,
we can choose an out-of-sample of any length, but, for the training window D, due to the efficiency of
model simulations, we should determine a proper length based on the characteristics of chosen data.

The results of ten-years out-of-sample data (D = 120) are presented in Figure 3, in which the
S&P 500 historical data from January 1950 to October 2006 was used to predict its stock prices from
November 2006 to November 2016. We can see from Figure 3 that the HMM captures well the price
changes around the economic crisis time from 2008–2009. Results of predictions for other time periods
are presented in Figures A1 and A2 of Appendix A.
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Figure 3. Predicted S&P 500 monthly prices from November 2006 to November 2016 using four-state HMM.

3.3. Model Validation

To test our predictions, we used the out-of-sample R2 statistics, R2
OS, introduced by Campbell

and Thompson (2008). Many researchers have employed the statistic measure to evaluate their
forecasting models. Campbell and Thompson (2008) used the out-of-sample R2

OS to compare the
performances of the stock return prediction model inspired by Welch and Goyal (2008) and that of
the historical average return model. The authors used monthly total returns (including dividend)
of S&P 500. Rapach et al. (2010) use the out-of-sample R2

OS to test the efficiency of their combination
approach to the out-of-sample equity premium forecasting against the historical average return method.



Int. J. Financial Stud. 2018, 6, 36 8 of 17

Zhu and Zhu (2013) also used the out-of-sample R2
OS to show their regime-switching combination

forecasts of excess returns gain relative to the historical average model. All of these above approaches
were based on a regression model for multi-economic variables to predict stock returns.

The out-of-sample R2
OS is calculated as follows. First, a time series of returns is divided into two

sets: the first m points were called the in-of-sample data set, and the last q points were called the
out-of-sample data set. Then, the out-of-sample Rr

OS for forecasted returns is defined as:

R2
OS = 1− ∑

q
t=1(rm+t − r̂m+t)2

∑D
t=1(rm+t − r̃m+t)2

, (7)

where rm+t is the real return at time m + t, r̂m+t is the forecasted return from the desired model,
and r̃m+t is the forecasted return from the competing model. We can see from the Equation (7) that the
R2

OS evaluates the reduction in the mean squared predictive error (MSPE) of two models. Therefore,
if the out-of-sample R2

OS is positive, then the desired model performed better than the competing
model. The historical average return method is used as a benchmark competing model, for which the
forecasted return for the next time step is calculated as the average of historical returns up to the time,

r̃t+1 =
1
t

t

∑
i=1

ri.

In this study, we use the HMM model to predict stock prices based only on historical prices.
However, we can calculate stock prices based on its predicted returns and reverse. Therefore, we will
calculate the out-of-sample R2

OS by using two approaches: out-of-sample R2 for stock returns and
out-of-sample R2 for stock prices based on predicted returns (without dividends). Numerical results
present in this section are for an out-of-sample and the training periods of the length q = m = 60.

The out-of-sample R2 for relative return (without dividends), namely R2
OSR, is determined by

R2
OSR = 1− ∑

q
t=1(rm+t − r̂m+t)2

∑
q
t=1(rm+t − r̄m+t)2

, (8)

where rm+t is the real relative stock return price at time m + t,

rm+t =
Pm+t − Pm+t−1

Pm+t−1
,

r̂m+t is the forecasted relative return from the HMM,

r̂m+t =
P̂m+t − Pm+t−1

Pm+t−1
, (9)

and r̃m+t is the forecasted price from the historical average model, r̃t+1 = 1
t ∑t

i=1 ri. The out-of-sample
R2 for stock price based on predicted returns, namely R2

OSP, is given by

R2
OSP = 1− ∑

q
t=1(Pm+t − P̂m+t)2

∑
q
t=1(Pm+t − P̃m+t)2

, (10)

where Pm+t is the real stock price at time m + t, P̂m+t is the forecasted price of the HMM, and P̃m+t is
the forecasted price based on the predicted return of the historical average return model,

P̃t+1 = Pt + Pt r̃t+1 = Pt(r̃t+1 + 1).

A positive R2
OS indicates that the HMM outperforms the historical average model. Therefore, we

will use the MSPE-adjusted hypothesized statistics test introduced by Clark and West (2007) to test the
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null hypothesized R2
OS = 0 versus the alternating hypothesized R2

OS > 0. In the MSPE-adjusted test,
we first define

ft+1 = (rt+1 − r̃t+1)
2 − [(rt+1 − r̂t+1)

2 − (r̃t+1 − r̂t+1)
2]. (11)

We then test for R2
OS = 0 (or equal MSPE) by regressing { fm+i}

q−1
i=2 on a constant and using

p-value for a zero coefficient. Our p-value for testing R2
OSP and R2

OSR, which are presented in Table 3,
are bigger than the efficient level α = 0.001, indicating that we accept the null hypothesis that the
coefficient of each test equals zero. Furthermore, the p-values of constants for both tests are significant
at α = 0.001 level, which imply that we reject the null hypothesized that the R2

OS = 0 and accept
the alternating hypothesized that R2

OS > 0. The out-of-sample R2 for predicted prices and predicted
returns are presented in Figure 4, showing that both out-of-sample R2 are positive, i.e., the HMM
outperforms the historical average in predicting stock returns and stock prices.

Table 3. The mean squared predictive error adjusted test, MSPE-adj, for R2
OSP and R2

OSR.

MSPE-adj. Coefficients Estimate Std. Error t-Statistics p-Value

R2
OSP

Intercept 1.968× 102 3.358× 10−14 5.861× 1015 2× 10−16 ***
fm+i 2.181× 10−18 2.198× 10−17 9.900× 10−2 0.921

R2
OSR

Intercept 6.966× 10−5 3.561× 10−21 1.956× 1016 2× 10−16 ***
fm+i 5.280× 10−19 6.807× 10−18 7.800× 10−2 0.938

Note: ‘***’ indicates that the test result is significant at the 0.001 level.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

R
2

R
2

OSR OSP

Figure 4. The R2
OSP, and R2

OSR of S&P 500 monthly prices from December 2011 to November 2016.

Although the R2
OS compares the performances of two models on the whole out-of-sample

forecasting period, it does not show the efficiency of the two competing models for each point
estimation. Therefore, we use the cumulative squared predictive errors (CSPEs), which was presented
by Zhu and Zhu (2013), to show the relative performances of the two models after each prediction.
The CSPE statistic at time m + t, denoted by CSPEt, is calculated as:

CSPEt =
t

∑
i=m+1

[(ri − r̃i)
2 − (ri − r̂i)

2]. (12)

From the definition of the cumulative squared predictive errors, we can see that, if the function
is increasing, the HMM outperforms the historical average model. In contrast, if the function is
decreasing, the historical average model outweighs the HMM on the time interval. If we replace the
return prices in Label (12) by the predicted prices, we will have the CSPE for prices. The CSPE of
predicted returns and prices is presented in Figure 5.
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Figure 5. Cumulative squared predictive errors, CSPE, of S&P 500 monthly forecasted prices (right)
and returns (left) from December 2011 to November 2016.

The results in Figure 5 show that, although in some periods the HAR outperforms the HMM,
the CSPEs are positive and follow an uptrend on the whole out-of-sample period. Therefore, we have
a conclusion that, in out-of-sample predictions, the HMM outperforms the HAR model.

We also compare the performances of HMM with the historical average model by using the four
standard error estimators: the absolute percentage error (APE), the average absolute error (AAE),
the average relative percentage error (ARPE) and the root-mean-square error (RMSE). These error
estimators are calculated using the following expressions:

APE =
1
r

N

∑
i=1

|ri − r̃i|
N

, (13)

AAE =
N

∑
i=1

|ri − r̃i|
N

, (14)

ARPE =
1
N

N

∑
i=1

|ri − r̃i|
N

, (15)

RMSE =

√√√√ 1
N

N

∑
i=1

(ri − r̃i)2, (16)

where N is a number of simulated points, ri is the real stock price (or stock return), r̃i is the estimated
price (or return), and r is the mean of the sample. We use the error estimators to calculate the errors of
predictions of the HMM and HAR models for predicted returns (Equation (8)) and predicted prices
(Equation (10)). Adopting the R2

OS statistics, we define the efficiency measure to compare the HMM
with the HAR model as:

Eff = 1− HMM′s Error
HAR′s Error

. (17)

Errors of the two models and the efficiency of the HMM over the HAR are calculated using
Equations (13)–(17). A positive efficiency (Eff) indicates that the HMM surpasses the HAR model.
Results are presented in Table 4.
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Table 4. Error and efficiency of S&P 500’s predicted prices and predicted returns using the HMM
versus HAR model.

Error Estimators APE AAE ARPE RMSE

Predicted Return
HMM 0.3325 0.0245 0.0303 2.4371
HAR 0.1708 0.0249 0.0308 2.4752
Eff. −0.9467 0.0161 0.0161 0.0154

Predicted Price
HMM 0.0242 43.5080 54.8606 0.0240
HAR 0.0246 44.2091 55.4853 0.02440
Eff. 0.0163 0.0159 0.0113 0.0164

Table 4 presents errors and efficiency of HMM over the HAR model. We can see from the table
that the HAR model beats the HMM based on the absolute percentage error estimator, APE, for stock
returns. However, in all the remaining cases, we have the positive efficiency, which strongly indicates
that the HMM outperforms the HAR.

4. Stock Trading with HMM

In this section, we will use the predicted returns of HMM and HAR models to trade S&P 500
using monthly data. If the predicted stock return is positive for the next month, we will buy the stock
this month and will sell it if the next predicted return is negative. We assume that we buy and sell
with closing prices. If HMM predicts that the stock price will not increase the next month, then we
will do nothing. We also assume that the trading cost is $7.00 per trade, this assumption is based on
the trading fee on the U.S. market. The trading fees vary from brokers to brokers; some brokers even
offer free trading for qualified investors. In reality, we will have many different ways to minimize the
transition fee. One simple way is increasing the volume or number of shares in each trading. For each
trading, we will buy or sell 100 shares of each of the S&P 500. Based on the results of model selections
in Section 2, we only use HMM with four states for the stock trading. We use different training and
trading periods to test our model. Trading results of using HMM and HAR models are presented in
Table 5.

Table 5. S&P 500 trading using the HMM, HAR, and Buy & Hold models for different time periods.

Trading Period Model Investment ($) Earning ($) Cost ($) Profit (%)

40 months HMM 168,155 65,172 168 38.66
(7/2013 HAR 168,573 52,762 14 31.29

–11/2016) Buy & Hold 168,573 52,762 14 31.29

60 months HMM 124,696 95,205 378 76.05
(12/2011 HAR 131,241 90,094 14 68.64
–11/2016) Buy & Hold 124,696 96,639 14 77.49

80 months HMM 116,943 113,971 392 97.12
(4/2010 HAR 116,943 104,392 14 89.26

–11/2016) Buy & Hold 116,943 104,392 14 89.26

100 months HMM 126,738 94282 616 73.91
(8/2008 MAR 126,738 73,010 84 57.54

–11/2016) Buy & Hold 126,738 94,597 14 74.63

120 months HMM 141,830 100,614 770 70.39
(11/2006 HAR 140,063 81,272 14 58.15
–11/2016) Buy & Hold 140,063 81,272 14 58.15
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In Table 5, the “Investment” is the price that we bought 100 shares of the S&P 500 index at the
first time. The “Cost” was calculated by multiplying the total numbers of “buy” and “sell” during the
period by $7.00. The “Profit” is the percentage of return after trading costs. In the table, we list the
trading results of HMM and HAR models, and the Buy & Hold method. In the Buy & Hold technique,
we assume that an investor will buy 100 shares of the S&P 500 at the beginning of the trading period
and hold it until the end of the period. The results show that the HMM beats the HAR model for
all cases and outperforms the Buy & Hold technique for most of the cases except for the 100-month
period. In three cases: 40 months, 80 months, and 120 months, the HAR and Buy & Hold models have
identical results since all of the HAR’s predicted returns are positive. One disadvantage of the HAR
model due to its predictions depend solidly on the mean of historical data, which is not sensitive to a
price change at a point. In contrast, HMM captures very well the change of input data at a single point.
Therefore, it is more suitable for stock price forecasting than the historical average model.

5. Conclusions

Stock performances are an essential indicator of the strengths and weaknesses of the stock’s
corporation and the economy in general. In this paper, we have used the hidden Markov model
to predict monthly closing prices of the S&P 500 and then used these predictions to trade the stock.
We first use the four criteria: AIC, BIC, HQC, and CAIC to examine the performances of HMM with
numbers of states from two to six. The results show that HMM with four states is the best model
among these five HMM models. We then use the four-state HMM to predict monthly prices of the
S&P 500 and compare this with the results obtained by the benchmark historical average return model.
We use the out-of-sample R2, and other model validation methods to test our model and the results
show that the HMM outweighs the historical average method. After validating the HMM model
for out-of-sample predictions, we apply the model to trade the S&P 500 using different training and
testing periods. The numerical results show that the four-state HMM outperforms the HAR not only in
return predictions, but also in stock trading. Overall, the HMM model beats the Buy & Hold strategy
and yields higher percentage returns. The testing and trading results indicate that the HMM is the
potential model for stock price predictions and stock trading.

Acknowledgments: We thank a co-editor and four anonymous referees for their valuable comments
and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Algorithms

Appendix A.1. Forward Algorithm

We define the joint probability function as

α
(l)
t (i) = P(O(l)

1 , O(l)
2 , ..., O(l)

t , qt = Si|λ), t = 1, 2, . . . , T and l = 1, 2, . . . , L,

and then we calculate α
(l)
t (i) recursively. The probability of observation P(O(l)|λ) is just the sum of

the α
(l)
T (i)s.
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Algorithm A1: The forward Algorithm.

1. Initialization P(O|λ) = 1
2. For l = 1, 2, . . . , L do

(a) Initialization: for i = 1, 2, . . . , N

α
(l)
1 (i) = pibi(O

(l)
1 ).

(b) Recursion: for t = 2, 3, . . . , T, and for j = 1, 2, . . . , N, compute

α
(l)
t (j) =

[
N

∑
i=1

αt−1(i)aij

]
bj(O

(l)
t ).

(c) Calculate:

P(O(l)|λ) =
N

∑
i=1

α
(l)
T (i).

(d) Update:
P(O|λ) = P(O|λ)× P(O(l)|λ).

3. Output: P(O|λ).

Appendix A.2. Backward Algorithm

Algorithm A2: The backward algorithm.

1. Initialization P(O|λ) = 1
2. For l = 1, 2, . . . , L do

(a) Initialization: for i = 1, 2, . . . , N

β
(l)
T (i) = 1.

(b) Recursion: for t = T − 1, T − 2, . . . , T, and for j = 1, 2, . . . , N, compute

β
(l)
t (i) =

N

∑
j=1

aijbj(O
(l)
t+1)β

(l)
t+1(j).

(c) Calculate:

P(O(l)|λ) =
N

∑
i=1

β
(l)
1 (i).

(d) Update:
P(O|λ) = P(O|λ)× P(O(l)|λ).

3. Output: P(O|λ).

Appendix A.3. Baum–Welch Algorithm

In order to describe the procedure, we define the conditional probability

β
(l)
t (i) = P(O(l)

t+1, O(l)
t+2, .., O(l)

T |qt = Si, λ),
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for i = 1, . . . , N, l = 1, 2, . . . , L. Obviously, for i = 1, 2, . . . , N β
(l)
T (i) = 1, and we have the following

backward recursive relation

β
(l)
t (i) =

N

∑
j=1

aijbj(O
(l)
t+1)β

(l)
t+1(j), t = T − 1, T − 2, . . . , 1.

Algorithm A3: Baum–Welch for L independent observations O = (O(1), O(2), . . . , O(L)) with
the same length T.

1. Initialization: input parameters λ, the tolerance δ, and a real number4
2. Repeat until4 < δ

• Calculate P(O, λ) = ΠL
l=1P(O(l)|λ) using the Algorithm A.1.

• Calculate new parameters λ∗ = {A∗, B∗, p∗}, for 1 ≤ i ≤ N

p∗i =
1
L

L

∑
l=1

γ
(l)
1 (i)

a∗ij =
∑L

l=1 ∑T−1
t=1 ξ

(l)
t (i, j)

∑L
l=1 ∑T−1

t=1 γ
(l)
t (i)

, 1 ≤ j ≤ N

bi(k)∗ =
∑L

l=1 ∑T
t=1 |O(l)

t =v(l)k
γ
(l)
t (i)

∑L
l=1 ∑T

t=1 γ
(l)
t (i)

, 1 ≤ k ≤ M

• Calculate4 = P(O, λ∗)− P(O, λ)

• Update
λ = λ∗.

3. Output: parameters λ.

We then defined γ
(l)
t (i), the probability of being in state Si at time t of the observation O(l), l =

1, 2, . . . , L as:

γ
(l)
t (i) = P(qt = Si|O(l), λ) =

α
(l)
t (i)β

(l)
t (i)

P(O(l)|λ)
=

α
(l)
t (i)β

(l)
t (i)

∑N
i=1 α

(l)
t (i)β

(l)
t (i)

.

The probability of being in state Si at time t and state Sj at time t + 1 of the observation O(l), l =
1, 2, . . . , L as:

ξ
(l)
t (i, j) = P(qt = Si, qt+1 = Sj|O(l), λ) =

α
(l)
t (i)aijbj(O

(l)
t+1)β

(l)
t+1(j)

P(O(l), λ)
.

Clearly,

γ
(l)
t (i) =

N

∑
j=1

ξ
(l)
t (i, j).

Note that the parameter λ∗ was updated in Step 2 of the Baum–Welch algorithm to maximize the
function P(O|λ) so we will have4 = P(O, λ∗)− P(O, λ) > 0.
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If the observation probability bi(k)∗, defined in Section 1, is Gaussian, we will use the following
formula to update the model parameter, λ ≡ {A, µ, σ, p}

µ∗i =
∑L

l=1 ∑T−1
t=1 γ

(l)
t (i)O(l)

t

∑L
l=1 ∑T−1

t=1 γ
(l)
t (i)

,

σ∗i =
∑L

l=1 ∑T
t=1 γ

(l)
t (i)(O(l)

t − µi)(O
(l)
t − µi)

′

∑L
l=1 ∑T

t=1 γ
(l)
t (i)

.

Appendix A.4. S&P 500’s Price Prediction Results
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Figure A1. S&P 500 ’s predicted prices using the four-state HMM for 40-month out-of-sample period
(left) and 60-month out-of-sample period (right).
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Figure A2. S&P 500 ’s predicted prices using the four-state HMM for 80-month out-of-sample period
(left) and 100-month out-of-sample period (right).
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